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The genesis of this presentation
• Mainframe DB2 people have an abundance of data fields 

they can look at for performance monitoring purposes
• In DB2 monitor displays and reports
• In z/OS monitor displays and reports
• In various DB2 -DISPLAY commands
• In CICS (DSNC) DISPLAY STATISTICS command output

• With all of these numbers staring back at you, you could: 
• Freeze up (sometimes referred to as “analysis paralysis”)
• Try to analyze everything, all the time (maybe OK if you have 

a LOT of free time on your hands)
• Focus too much on “FYI” and “level 2” numbers (the latter 

being fields that you should check if a “level 1” number is not 
what it should be), and overlook what’s really important 



My goal

• Through this presentation, I want to help you to be more 
effective and efficient in monitoring DB2 subsystem and 
application performance

• How?
• By spotlighting the relatively small set of metrics that are your 

most important indicators of good (or not) performance



Agenda

• Part 1
• DB2 monitor-generated reports versus online displays 
• Application performance: DB2 monitor accounting reports 

(and displays)
• Part 2

• Subsystem performance: DB2 monitor statistics reports (and 
displays)

• The best bits in DB2 and CICS DISPLAY command output
• Important DB2-related stuff in z/OS monitor reports and 

displays



DB2 monitor-generated reports 
versus online displays



Ongoing tuning versus putting out fires
• Many sites use their DB2 for z/OS monitor exclusively in 

online mode
• Online monitoring is valuable, especially when you need to 

see what’s happening right now in order to diagnose a 
performance problem

• For in-depth, ongoing analysis of the performance “health” 
of a DB2 for z/OS subsystem and associated applications, 
I prefer to use DB2 monitor-generated reports 
• If you’ve only used your DB2 monitor in online mode, look into 

the product’s batch reporting capabilities
• In this presentation, I’ll show a lot of information excerpted 

from DB2 monitor-generated reports – you should be able to 
find most of this information in online displays, as well



Generating reports with your DB2 monitor 

• Usually involves executing a batch job that includes a DD 
statement pointing to a data set containing DB2 trace 
records (these records are usually written to SMF)
• Batch job has a control statement in SYSIN, in which you 

specify things such as:
• “From” and “to” dates/times
• Report type (e.g., ACCOUNTING LONG)
• Filtering criteria (e.g., include or exclude a DB2 plan name)
• Report data organization options (e.g., order by connection type)



The two most useful DB2 monitor reports
1. Accounting long (aka “accounting detail”), with:

• “From” and “to” times encompassing either a busy 1- or 2-hour 
time period, or a 24-hour time period

• Data ordered by (or “grouped by”) connection type
• Gives you a detailed report for each DB2 connection type: CICS, 

IMS, DRDA, TSO, call attach, utility, etc.
• If more granularity needed, can get data at correlation-name level 

(e.g., CICS tran ID or batch job name), primary auth ID level, etc.
2. Statistics long (aka “statistics detail”), with:

• Same “from” and “to” times as accounting reports (see above)

• In addition to providing very useful information, these two 
reports are pretty inexpensive (records on which the reports 
are based are generated by low-overhead DB2 traces)



Application performance: DB2 
monitor accounting reports 
(and displays)



Understanding your DB2 application workload

• What’s the biggest component of your DB2 workload?
• Seems simple enough, but I’ve found that plenty of DB2 people 

cannot readily answer this question as it pertains to their site
• “Biggest” – biggest in terms of aggregate class 2 CPU time

• Information comes from DB2 accounting trace class 2
• Also known as “in-DB2” CPU time
• Indicates the CPU cost of SQL statement execution

• “Component” – connection type (e.g., CICS, batch, DRDA, 
etc.) 



Answering the “biggest component” question

• Accounting long report, with data ordered by connection type
• For each connection type, perform a simple calculation 

(referring to sample report output on following slide):
• (average class 2 CPU time) X (number of occurrences)
• “Number of occurrences” = number of trace records

• Usually one per transaction for online, one per job for batch
• DB2 can “roll up” accounting records for DRDA transactions 

(ACCUMACC – default is 10 – and ACCUMUID in ZPARM)
• Reports generated by different monitors can look a little different

• Samples in this presentation are from reports generated by IBM’s 
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS

• Fields in reports can usually be found in online monitor displays
• Note: I’m leaving out some report lines and columns because 

putting all on a slide would require a too-small font size



Sample report output (2-hour time period)

CONNTYPE: DRDA

AVERAGE        DB2 (CL.2)     HIGHLIGHTS
-----------    ----------     ------------------------
CP CPU TIME      0.003614     #OCCURRENCES  :  3087344

SE CPU TIME      0.003348

(avg CL 2 CPU) X (# of occurrences) = 0.006962 X 3,087,344
                                    = 21,494 seconds

In a DB2 data sharing environment, do this for each member of the group to 
get TOTAL DRDA SQL cost, TOTAL CICS-DB2 SQL cost, etc.

Don’t forget this! (SE = “specialty engine,” which usually means zIIP)



The DRDA part of the overall DB2 workload

• Often, DRDA-related activity is the fastest-growing 
component of an organization’s DB2 for z/OS workload

• At some sites, DRDA-related activity is the largest component 
of the DB2 for z/OS workload – bigger than CICS-DB2, bigger 
than batch-DB2
• Again, “largest” refers to total class 2 CPU time

• I have found that people – even mainframe DB2 people – are 
often unaware of this
• Not uncommon for senior IT managers to think of the mainframe 

as just the server where the “legacy” applications run
• In fact, the mainframe DB2 platform is evolving to become a 

“super-sized” (and super-available, super-secure) data server for 
multi-tier apps



Another important workload characteristic

• Is the DB2 workload CPU-constrained?
• A good place to check: “not accounted for” time in the DB2 

monitor Accounting Long report
• What it is: in-DB2 (class 2) elapsed time that is not CPU time, not 

suspension time (latter being class 3, or “waiting for” time)
• Basically DB2 saying, “this was time, related to SQL statement 

execution, that I can’t account for”
• I find that it’s usually associated with DB2 wait-for-dispatch time

• In other words, DB2 (vs. application) tasks are not being readily 
dispatched

• DB2 address spaces usually have a high priority in the system, 
so if not-accounted-for time is relatively high for a transactional 
workload, it could be that you’ve hit a processing capacity wall  



DB2 not-accounted-for time (1)

• I get concerned if not-accounted-for time is greater than 10% 
for a high-priority transactional workload such as CICS-DB2 
(or, often, DRDA)
• Not so concerned if this time exceeds 10% for batch DB2 

workload – that’s not uncommon

CONNTYPE: CICS

CLASS 2 TIME DISTRIBUTION
---------------------------------------------
CPU    |===============> 30%
SECPU  |
NOTACC |==> 5%
SUSP   |================================> 65%



DB2 not-accounted-for time (2)

• If your monitor report 
does not have the “bar 
chart” elapsed time 
breakdown shown on the 
preceding slide, it will 
likely have a “not 
accounted for” field in the 
“class 2” time column (in 
red at left)

• If “not accounted for” time 
is not provided, calculate 
it yourself:

• A – (B + C + D)

CONNTYPE: CICS

AVERAGE        DB2 (CL.2)
------------   ----------
ELAPSED TIME     0.085225 A

CP CPU TIME      0.025313 B

SE CPU TIME      0.000000 C

SUSPEND TIME     0.055708 D

NOT ACCOUNT.     0.004204



What if not-accounted-for time is high?
• Add capacity (could just be an LPAR configuration change)
• If that’s not feasible…

• May see what you can do to reduce CPU consumption of the 
DB2 workload (more on that to come in this presentation)

• Ensure that dispatching priorities are optimized for throughput in 
a CPU-constrained environment
• IRLM should be in the SYSSTC service class (very high priority)
• DB2 MSTR, DBM1, DIST, and stored procedure address spaces 

should be assigned to a high-importance service class (my opinion: 
somewhat higher priority than CICS AORs)
• If system is really busy, you may need to go with PRIORITY(LOW) 

for CICS-DB2 transaction TCBs (this is relative to priority of CICS 
AOR main task – default is PRIORITY(HIGH)) 

• Map DRDA transactions to service classes (in WLM policy) so they 
won’t run as “discretionary” work

DB2ENTRY 
resource



How is your DB2 I/O performance?

• Average service time for synchronous I/Os = A / B  
• Times are getting to be really low (in this case, 1.06 ms)

• Due to advances in I/O hardware and software: faster channels, 
parallel access volumes (reduces UCB-level queuing), lots of 
disk controller cache (and sophisticated management of same)

• A time > 5 ms represents opportunity for improvement
• A time > 10 ms could indicate a performance problem

CONNTYPE: DB2CALL
                            A            B
CLASS 3 SUSPENSIONS   AVERAGE TIME   AV.EVENT
-------------------   ------------   --------
SYNCHRON. I/O             6.520800    6133.32

Sample report output



How CPU-efficient are your DB2 applications?

• Usually, you’re aiming to reduce A (referring to sample 
report below), which is in-DB2 CPU time (CPU cost of SQL 
statement execution)
• Note that, sometimes, reducing A can be accomplished by 

increasing B (recall that “SE” is short for “specialty engine,” 
which usually is a zIIP engine – more on this to come)

AVERAGE       DB2 (CL.2)
-----------   ----------
CP CPU TIME    28.311773 A

SE CPU TIME     0.000000 B

Sample accounting report output



Average CPU time – per what and for what?
• Depends on aggregation level of information in accounting 

report (specified by you)
• Could be average:

• Per transaction/job for connection type (e.g., DRDA, call attach)
• Per transaction for a CICS AOR (an example of a connection ID)
• For a given batch job or CICS tran (these are correlation names)
• Per transaction or job for a given DB2 authorization ID 

• Larger scope can be appropriate when planning change of the 
“rising tide lifts all boats” variety (e.g., page-fixed buffer pool)
èDB2 subsystem ID
è(largest scope) AVERAGE       DB2 (CL.2)

-----------   ----------
CP CPU TIME    28.311773
SE CPU TIME     0.000000

If DRDA accounting records rolled up, number of 
commits is good indicator of number of transactions



Information at the program (package) level

• May be LOTS of packages in the 
report – where do you start?
• Your monitor may show in the 

Accounting Long report the 
top programs by elapsed time 
(class 7)

• High elapsed time often points 
to high CPU time

• Very useful if a batch job or 
transaction involves execution of 
multiple programs

• Requires data from DB2 
accounting trace classes 7 and 8

M123456B             TIMES
-----------   ------------
CP CPU TIME   13:35.566002

SE CPU TIME       0.000000

Sample report output

PROGRAM NAME   CLASS 7 CONSUMERS
D789123Y     |=> 3%
M123092G     |=======> 15%
I273459Z     |> 1%

Package name



Application efficiency: thread reuse

• Sample above shows a thread reuse rate of 99% -- very good
• Boost CICS-DB2 thread reuse via protected entry threads for 

high-use trans (PROTECTNUM in DB2ENTRY RDO resource)
• Non-protected thread usually deallocated after transaction done
• Protected thread will stick around for 45 seconds (default) after 

transaction completes – can be reused by another transaction 
associated with same DB2ENTRY if plan name doesn’t change

NORMAL TERM.     AVERAGE
-------------   --------
NEW USER            0.79
DEALLOCATION        0.01

RESIGNON            0.20

(data in this report sample is for a CICS-DB2 workload)

Thread reused, auth ID changed

Thread not reused 

Thread reused, no auth ID change



Maximizing benefit of thread reuse

• Bind packages executed via reused threads with 
RELEASE(DEALLOCATE)
• Table space locks, EDM pool elements retained until thread 

deallocation, vs. being released at commit (e.g., end of transaction)
• If package is executed repeatedly via the same thread, these 

resources won’t have to be repeatedly reacquired – that improves 
CPU efficiency

• Can reduce CPU consumption by several percentage points
• Considerations:

• Not good option for programs that get exclusive table space locks
• If using DB2 V8 or DB2 9, keep an eye on EDM pool space

• RELEASE(DEALLOCATE) will increase amount of non-stealable space
• Can impact scheduling of utilities, bind operations



DB2 10: a new thread reuse option 
• High performance DBATs (database access threads – used for 

client-server work that comes through DB2 DDF)
• High performance DBAT is instantiated when a DBAT used to 

execute a package bound with RELEASE(DEALLOCATE)
• Prior releases of DB2 treated packages bound with 

RELEASE(DEALLOCATE) as though they were bound with 
RELEASE(COMMIT) when executed via DBAT

• High performance DBAT doesn’t go back into the DBAT pool – it 
remains dedicated to connection through which it was instantiated
• Terminated after 200 units of work to free up resources 

• Best used for simple, high-volume DRDA transactions
• May want to bind IBM Data Server Driver or DB2 Connect packages 

with RELEASE(DEALLOCATE) – perhaps in a separate collection 
(e.g., NULLID2), to allow for selective use of high-performance DBATs

• Monitoring: DB2 monitor Statistics Long report 



Application efficiency: GETPAGES
• For my money, the number one determinant of CPU time for 

a DB2-accessing job or transaction
• Ways to reduce GETPAGE activity:

• Change query access paths
• Often involves adding indexes or modifying existing indexes
• Might involve rewriting query to get a better-performing access path

• Re-cluster data
• ALTER INDEX CLUSTER / NOT CLUSTER
• Table-controlled partitioning: can have different clustering, 

partitioning keys
• Archive/purge “cold” data, so “warm” data not so spread out in 

table
TOTAL BPOOL ACTIVITY    AVERAGE
--------------------   --------
GETPAGES                 359.66



Application efficiency: dynamic SQL cache

• Tends to be particularly important for client-server transactions 
(DRDA workload) – often involve execution of dynamic SQL 
• Recall that when programs issue JDBC or ODBC calls, these are 

executed as dynamic SQL statements on the DB2 server
• CPU cost of full PREPARE of a statement can be several times 

the cost of statement execution
• One way to boost statement cache hits: enlarge the dynamic 

statement cache (it’s been above 2 GB “bar” since DB2 V8)
• Also: use parameter markers (vs. literal values) in dynamic 

SQL statements (cache “hit” requires byte-for-byte match)

DYNAMIC SQL STMT        AVERAGE
--------------------   --------
NOT FOUND IN CACHE       A 0.26
FOUND IN CACHE           B 1.05

What you want: 
maximize B / (A + B)



DB2 10 and dynamic statement caching 

• CONCENTRATE STATEMENTS WITH LITERALS attribute of 
PREPARE statement (can also be enabled on DB2 client side 
via keyword in data source or connection property) 
• If match for dynamic statement with literals not found in cache, 

literals replaced with & and cache is searched to find match for 
new statement
• If not found, new statement is prepared and placed in the cache 

• Not quite as CPU-efficient as traditional dynamic statement 
caching and parameterized SQL, but less costly than full 
prepares of dynamic statements containing literals
• Note: may WANT optimization using literals for range predicates

DYNAMIC SQL STMT        AVERAGE
--------------------   --------
CSWL – MATCHES FOUND       0.24



Application efficiency: shifting work to zIIPs

• zIIP offload reduces cost of computing
• Options for increasing zIIP utilization:

• For DRDA workload, if using traditional DB2 stored procedures, 
switch to native SQL procedures (introduced with DB2 9 in NFM)

• If it’s a batch workload, consider binding some packages with 
DEGREE(ANY) to enable query parallelization
• May want to limit degree of parallelization via PARAMDEG in ZPARM

• Migrate to DB2 10 (if not there already) – prefetch processing is 
zIIP-eligible, and so is XML schema validation processing 

AVERAGE       DB2 (CL.2)
-----------   ----------
CP CPU TIME    28.311773 A

SE CPU TIME     0.000000 B
ç Aim: reduce A by increasing B 



Robert Catterall
rfcatter@us.ibm.com

You can scan this QR code and evaluate the session right now!
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