
Key Metrics for DB2 for z/OS
Subsystem and Application
Performance Monitoring (Part 1)

Robert Catterall
IBM

August 14, 2013
Session 13385

The genesis of this presentation
• Mainframe DB2 people have an abundance of data fields

they can look at for performance monitoring purposes
• In DB2 monitor displays and reports
• In z/OS monitor displays and reports
• In various DB2 -DISPLAY commands
• In CICS (DSNC) DISPLAY STATISTICS command output

• With all of these numbers staring back at you, you could:
• Freeze up (sometimes referred to as “analysis paralysis”)
• Try to analyze everything, all the time (maybe OK if you have

a LOT of free time on your hands)
• Focus too much on “FYI” and “level 2” numbers (the latter

being fields that you should check if a “level 1” number is not
what it should be), and overlook what’s really important

My goal

• Through this presentation, I want to help you to be more
effective and efficient in monitoring DB2 subsystem and
application performance

• How?
• By spotlighting the relatively small set of metrics that are your

most important indicators of good (or not) performance

Agenda

• Part 1
• DB2 monitor-generated reports versus online displays
• Application performance: DB2 monitor accounting reports

(and displays)
• Part 2

• Subsystem performance: DB2 monitor statistics reports (and
displays)

• The best bits in DB2 and CICS DISPLAY command output
• Important DB2-related stuff in z/OS monitor reports and

displays

DB2 monitor-generated reports
versus online displays

Ongoing tuning versus putting out fires
• Many sites use their DB2 for z/OS monitor exclusively in

online mode
• Online monitoring is valuable, especially when you need to

see what’s happening right now in order to diagnose a
performance problem

• For in-depth, ongoing analysis of the performance “health”
of a DB2 for z/OS subsystem and associated applications,
I prefer to use DB2 monitor-generated reports
• If you’ve only used your DB2 monitor in online mode, look into

the product’s batch reporting capabilities
• In this presentation, I’ll show a lot of information excerpted

from DB2 monitor-generated reports – you should be able to
find most of this information in online displays, as well

Generating reports with your DB2 monitor

• Usually involves executing a batch job that includes a DD
statement pointing to a data set containing DB2 trace
records (these records are usually written to SMF)
• Batch job has a control statement in SYSIN, in which you

specify things such as:
• “From” and “to” dates/times
• Report type (e.g., ACCOUNTING LONG)
• Filtering criteria (e.g., include or exclude a DB2 plan name)
• Report data organization options (e.g., order by connection type)

The two most useful DB2 monitor reports
1. Accounting long (aka “accounting detail”), with:

• “From” and “to” times encompassing either a busy 1- or 2-hour
time period, or a 24-hour time period

• Data ordered by (or “grouped by”) connection type
• Gives you a detailed report for each DB2 connection type: CICS,

IMS, DRDA, TSO, call attach, utility, etc.
• If more granularity needed, can get data at correlation-name level

(e.g., CICS tran ID or batch job name), primary auth ID level, etc.
2. Statistics long (aka “statistics detail”), with:

• Same “from” and “to” times as accounting reports (see above)

• In addition to providing very useful information, these two
reports are pretty inexpensive (records on which the reports
are based are generated by low-overhead DB2 traces)

Application performance: DB2
monitor accounting reports
(and displays)

Understanding your DB2 application workload

• What’s the biggest component of your DB2 workload?
• Seems simple enough, but I’ve found that plenty of DB2 people

cannot readily answer this question as it pertains to their site
• “Biggest” – biggest in terms of aggregate class 2 CPU time

• Information comes from DB2 accounting trace class 2
• Also known as “in-DB2” CPU time
• Indicates the CPU cost of SQL statement execution

• “Component” – connection type (e.g., CICS, batch, DRDA,
etc.)

Answering the “biggest component” question

• Accounting long report, with data ordered by connection type
• For each connection type, perform a simple calculation

(referring to sample report output on following slide):
• (average class 2 CPU time) X (number of occurrences)
• “Number of occurrences” = number of trace records

• Usually one per transaction for online, one per job for batch
• DB2 can “roll up” accounting records for DRDA transactions

(ACCUMACC – default is 10 – and ACCUMUID in ZPARM)
• Reports generated by different monitors can look a little different

• Samples in this presentation are from reports generated by IBM’s
Tivoli OMEGAMON XE for DB2 Performance Expert on z/OS

• Fields in reports can usually be found in online monitor displays
• Note: I’m leaving out some report lines and columns because

putting all on a slide would require a too-small font size

Sample report output (2-hour time period)

CONNTYPE: DRDA

AVERAGE DB2 (CL.2) HIGHLIGHTS
----------- ---------- ------------------------
CP CPU TIME 0.003614 #OCCURRENCES : 3087344

SE CPU TIME 0.003348

(avg CL 2 CPU) X (# of occurrences) = 0.006962 X 3,087,344
 = 21,494 seconds

In a DB2 data sharing environment, do this for each member of the group to
get TOTAL DRDA SQL cost, TOTAL CICS-DB2 SQL cost, etc.

Don’t forget this! (SE = “specialty engine,” which usually means zIIP)

The DRDA part of the overall DB2 workload

• Often, DRDA-related activity is the fastest-growing
component of an organization’s DB2 for z/OS workload

• At some sites, DRDA-related activity is the largest component
of the DB2 for z/OS workload – bigger than CICS-DB2, bigger
than batch-DB2
• Again, “largest” refers to total class 2 CPU time

• I have found that people – even mainframe DB2 people – are
often unaware of this
• Not uncommon for senior IT managers to think of the mainframe

as just the server where the “legacy” applications run
• In fact, the mainframe DB2 platform is evolving to become a

“super-sized” (and super-available, super-secure) data server for
multi-tier apps

Another important workload characteristic

• Is the DB2 workload CPU-constrained?
• A good place to check: “not accounted for” time in the DB2

monitor Accounting Long report
• What it is: in-DB2 (class 2) elapsed time that is not CPU time, not

suspension time (latter being class 3, or “waiting for” time)
• Basically DB2 saying, “this was time, related to SQL statement

execution, that I can’t account for”
• I find that it’s usually associated with DB2 wait-for-dispatch time

• In other words, DB2 (vs. application) tasks are not being readily
dispatched

• DB2 address spaces usually have a high priority in the system,
so if not-accounted-for time is relatively high for a transactional
workload, it could be that you’ve hit a processing capacity wall

DB2 not-accounted-for time (1)

• I get concerned if not-accounted-for time is greater than 10%
for a high-priority transactional workload such as CICS-DB2
(or, often, DRDA)
• Not so concerned if this time exceeds 10% for batch DB2

workload – that’s not uncommon

CONNTYPE: CICS

CLASS 2 TIME DISTRIBUTION

CPU |===============> 30%
SECPU |
NOTACC |==> 5%
SUSP |================================> 65%

DB2 not-accounted-for time (2)

• If your monitor report
does not have the “bar
chart” elapsed time
breakdown shown on the
preceding slide, it will
likely have a “not
accounted for” field in the
“class 2” time column (in
red at left)

• If “not accounted for” time
is not provided, calculate
it yourself:

• A – (B + C + D)

CONNTYPE: CICS

AVERAGE DB2 (CL.2)
------------ ----------
ELAPSED TIME 0.085225 A

CP CPU TIME 0.025313 B

SE CPU TIME 0.000000 C

SUSPEND TIME 0.055708 D

NOT ACCOUNT. 0.004204

What if not-accounted-for time is high?
• Add capacity (could just be an LPAR configuration change)
• If that’s not feasible…

• May see what you can do to reduce CPU consumption of the
DB2 workload (more on that to come in this presentation)

• Ensure that dispatching priorities are optimized for throughput in
a CPU-constrained environment
• IRLM should be in the SYSSTC service class (very high priority)
• DB2 MSTR, DBM1, DIST, and stored procedure address spaces

should be assigned to a high-importance service class (my opinion:
somewhat higher priority than CICS AORs)
• If system is really busy, you may need to go with PRIORITY(LOW)

for CICS-DB2 transaction TCBs (this is relative to priority of CICS
AOR main task – default is PRIORITY(HIGH))

• Map DRDA transactions to service classes (in WLM policy) so they
won’t run as “discretionary” work

DB2ENTRY
resource

How is your DB2 I/O performance?

• Average service time for synchronous I/Os = A / B
• Times are getting to be really low (in this case, 1.06 ms)

• Due to advances in I/O hardware and software: faster channels,
parallel access volumes (reduces UCB-level queuing), lots of
disk controller cache (and sophisticated management of same)

• A time > 5 ms represents opportunity for improvement
• A time > 10 ms could indicate a performance problem

CONNTYPE: DB2CALL
 A B
CLASS 3 SUSPENSIONS AVERAGE TIME AV.EVENT
------------------- ------------ --------
SYNCHRON. I/O 6.520800 6133.32

Sample report output

How CPU-efficient are your DB2 applications?

• Usually, you’re aiming to reduce A (referring to sample
report below), which is in-DB2 CPU time (CPU cost of SQL
statement execution)
• Note that, sometimes, reducing A can be accomplished by

increasing B (recall that “SE” is short for “specialty engine,”
which usually is a zIIP engine – more on this to come)

AVERAGE DB2 (CL.2)
----------- ----------
CP CPU TIME 28.311773 A

SE CPU TIME 0.000000 B

Sample accounting report output

Average CPU time – per what and for what?
• Depends on aggregation level of information in accounting

report (specified by you)
• Could be average:

• Per transaction/job for connection type (e.g., DRDA, call attach)
• Per transaction for a CICS AOR (an example of a connection ID)
• For a given batch job or CICS tran (these are correlation names)
• Per transaction or job for a given DB2 authorization ID

• Larger scope can be appropriate when planning change of the
“rising tide lifts all boats” variety (e.g., page-fixed buffer pool)
èDB2 subsystem ID
è(largest scope) AVERAGE DB2 (CL.2)

----------- ----------
CP CPU TIME 28.311773
SE CPU TIME 0.000000

If DRDA accounting records rolled up, number of
commits is good indicator of number of transactions

Information at the program (package) level

• May be LOTS of packages in the
report – where do you start?
• Your monitor may show in the

Accounting Long report the
top programs by elapsed time
(class 7)

• High elapsed time often points
to high CPU time

• Very useful if a batch job or
transaction involves execution of
multiple programs

• Requires data from DB2
accounting trace classes 7 and 8

M123456B TIMES
----------- ------------
CP CPU TIME 13:35.566002

SE CPU TIME 0.000000

Sample report output

PROGRAM NAME CLASS 7 CONSUMERS
D789123Y |=> 3%
M123092G |=======> 15%
I273459Z |> 1%

Package name

Application efficiency: thread reuse

• Sample above shows a thread reuse rate of 99% -- very good
• Boost CICS-DB2 thread reuse via protected entry threads for

high-use trans (PROTECTNUM in DB2ENTRY RDO resource)
• Non-protected thread usually deallocated after transaction done
• Protected thread will stick around for 45 seconds (default) after

transaction completes – can be reused by another transaction
associated with same DB2ENTRY if plan name doesn’t change

NORMAL TERM. AVERAGE
------------- --------
NEW USER 0.79
DEALLOCATION 0.01

RESIGNON 0.20

(data in this report sample is for a CICS-DB2 workload)

Thread reused, auth ID changed

Thread not reused

Thread reused, no auth ID change

Maximizing benefit of thread reuse

• Bind packages executed via reused threads with
RELEASE(DEALLOCATE)
• Table space locks, EDM pool elements retained until thread

deallocation, vs. being released at commit (e.g., end of transaction)
• If package is executed repeatedly via the same thread, these

resources won’t have to be repeatedly reacquired – that improves
CPU efficiency

• Can reduce CPU consumption by several percentage points
• Considerations:

• Not good option for programs that get exclusive table space locks
• If using DB2 V8 or DB2 9, keep an eye on EDM pool space

• RELEASE(DEALLOCATE) will increase amount of non-stealable space
• Can impact scheduling of utilities, bind operations

DB2 10: a new thread reuse option
• High performance DBATs (database access threads – used for

client-server work that comes through DB2 DDF)
• High performance DBAT is instantiated when a DBAT used to

execute a package bound with RELEASE(DEALLOCATE)
• Prior releases of DB2 treated packages bound with

RELEASE(DEALLOCATE) as though they were bound with
RELEASE(COMMIT) when executed via DBAT

• High performance DBAT doesn’t go back into the DBAT pool – it
remains dedicated to connection through which it was instantiated
• Terminated after 200 units of work to free up resources

• Best used for simple, high-volume DRDA transactions
• May want to bind IBM Data Server Driver or DB2 Connect packages

with RELEASE(DEALLOCATE) – perhaps in a separate collection
(e.g., NULLID2), to allow for selective use of high-performance DBATs

• Monitoring: DB2 monitor Statistics Long report

Application efficiency: GETPAGES
• For my money, the number one determinant of CPU time for

a DB2-accessing job or transaction
• Ways to reduce GETPAGE activity:

• Change query access paths
• Often involves adding indexes or modifying existing indexes
• Might involve rewriting query to get a better-performing access path

• Re-cluster data
• ALTER INDEX CLUSTER / NOT CLUSTER
• Table-controlled partitioning: can have different clustering,

partitioning keys
• Archive/purge “cold” data, so “warm” data not so spread out in

table
TOTAL BPOOL ACTIVITY AVERAGE
-------------------- --------
GETPAGES 359.66

Application efficiency: dynamic SQL cache

• Tends to be particularly important for client-server transactions
(DRDA workload) – often involve execution of dynamic SQL
• Recall that when programs issue JDBC or ODBC calls, these are

executed as dynamic SQL statements on the DB2 server
• CPU cost of full PREPARE of a statement can be several times

the cost of statement execution
• One way to boost statement cache hits: enlarge the dynamic

statement cache (it’s been above 2 GB “bar” since DB2 V8)
• Also: use parameter markers (vs. literal values) in dynamic

SQL statements (cache “hit” requires byte-for-byte match)

DYNAMIC SQL STMT AVERAGE
-------------------- --------
NOT FOUND IN CACHE A 0.26
FOUND IN CACHE B 1.05

What you want:
maximize B / (A + B)

DB2 10 and dynamic statement caching

• CONCENTRATE STATEMENTS WITH LITERALS attribute of
PREPARE statement (can also be enabled on DB2 client side
via keyword in data source or connection property)
• If match for dynamic statement with literals not found in cache,

literals replaced with & and cache is searched to find match for
new statement
• If not found, new statement is prepared and placed in the cache

• Not quite as CPU-efficient as traditional dynamic statement
caching and parameterized SQL, but less costly than full
prepares of dynamic statements containing literals
• Note: may WANT optimization using literals for range predicates

DYNAMIC SQL STMT AVERAGE
-------------------- --------
CSWL – MATCHES FOUND 0.24

Application efficiency: shifting work to zIIPs

• zIIP offload reduces cost of computing
• Options for increasing zIIP utilization:

• For DRDA workload, if using traditional DB2 stored procedures,
switch to native SQL procedures (introduced with DB2 9 in NFM)

• If it’s a batch workload, consider binding some packages with
DEGREE(ANY) to enable query parallelization
• May want to limit degree of parallelization via PARAMDEG in ZPARM

• Migrate to DB2 10 (if not there already) – prefetch processing is
zIIP-eligible, and so is XML schema validation processing

AVERAGE DB2 (CL.2)
----------- ----------
CP CPU TIME 28.311773 A

SE CPU TIME 0.000000 B
ç Aim: reduce A by increasing B

Robert Catterall
rfcatter@us.ibm.com

You can scan this QR code and evaluate the session right now!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

