
CICS and Java: How the JVM Server
Transforms Java in CICS

Ian J Mitchell,
IBM Distinguished Engineer, CICS Portfolio Architect
IBM Hursley

Thursday 15th August 2013
Session Number : 13361

Abstract

CICS has for a long time provided a Java environment for application
development. In recent releases of CICS the JVM Server has transformed
CICS into a first-class hosting environment for Java. This session will
provide a brief history of the development of the Java environment within
CICS, followed by a detailed look at the capabilities offered by CICS
version 4. In particular we will look at how the OSGi framework provides
excellent lifecycle management of Java applications without having to
restart the JVM Server, how Java application can be eligible for zAAP
offload thereby reducing the cost of a transaction, and how the JVM
Server supports multiple concurrent transactions, reducing the storage
requirements and the need for multiple JVM instances in a single region.

2

3

Agenda

JVM Options in CICS TS v4.2 and v5.1

– JVM Pool

– JVM Server

64 Bit JVM Support

OSGi for application management

WODM Rules Execution Engine

4

Overview of Java program support in CICS
“Traditional” pooled JVMs

– Multiple JVMs in a CICS region

– Single-thread, program isolation

– J8 (CICS Key) or J9 (User key) TCBs

– MAXJVMTCBs in SIT

– No JVM definition except in JVM profile via PROGRAM

– EJB and CORBA support

“New” JVM servers

– Supports JCICS interfaces for CICS Java programs

– Can have multiple JVM Servers per region

– Multi-threaded, up to 256 parallel tasks

– Facilitates data-sharing between Java applications

– Industry-standard

– T8 TCBs

– JVMSERVER and PROGRAM definitions required

– Requires deployment as OSGi bundle within a CICS BUNDLE

– No EJB or CORBA support

5

Defining a JVM server

JVM Profile

– JVM profile in HFS in
JVMPROFILEDR

– DFHJVMAX is
default

LE Runtime Options

– LE storage options

– Defaults to
DFHAXRO

Threadlimit

– Max number of T8
threads

6

CICS
Task

Thread

JVM
LE enclave

JVM
thread

JVMPool Architecture - CICS TS v3 (and v2)

CICS TS v3
JVMLE enclave

CICS
Task

J8 OTE
Thread

JVM
thread

A single CICS
task dispatched
into a JVM in the
pool at a time.
So concurrent
task count limited
to the number of
JVMs that can fit
in the 31-bit
address space.

Each JVM 'costs'
~20Mb plus the
application heap
value.

JVM

Heap &
Classes

LE enclave

CICS
Task

J8 OTE
Thread

JVM

JVM
thread

Heap &
Classes

Heap &
Classes

Shared
Classes

7

JVM Server Architecture

CICS TS v4.2
& v5.1JVMLE enclave

CICS
Task

T8 OTE
PThread

JVM
thread

New CICS
OTE TCB
“mode”.

Called “T8” -
dubbed as
both a CICS
TCB and an
LE “pthread”.

JNI call to
attach a
pthread to an
existing JVM.

Heap &
Classes

8

JVM Server Architecture

JVMLE enclave

CICS
Task PThread

JVM
thread

CICS
Task PThread

JVM
thread

CICS
Task PThread

JVM
thread

Can attach
multiple
pthread/T8/CICS
tasks to the JVM
at the same time.

Therefore serve
more requests
using a single
JVM.

JVMServer thread
“cost” is very
small.

Result is
hundreds of
tasks concurrently
per region.

Heap &
Classes

CICS TS v4.2
& v5.1

9

JVM Server Architecture

JVMLE enclave

CICS
Task PThread

JVM
thread

CICS
Task PThread

JVM
thread

Architected to
allow multiple
JVMServers in a
single CICS.

Different types of
work, or just a
degree of
isolation.

CICS
Task PThread

JVM
thread

JVMLE enclave

CICS
Task PThread

JVM
thread

Rules
Execution

Web
Container

CICS TS v4.2
& v5.1

10

JVM Server: Thread-safe and OTE
Java and Thread-safety – yes, it may be a
concern!

– In a pooled JVM, static objects are 'mine' – there's
only one application thread

– In a JVM Server, static objects are shared (visible
and accessible) with all the other
threads/tasks/transactions in the same server

– Validate whether objects should be thread-local or
static

– Ensure the concurrent versions of library classes are
used

OTE – T8 and L8 threads

– In v4.2, T8 TCBs are for Java server threads, L8
TCBs are required for DB2 → TCB switch for every
JDBC command

– New in v5.1 T8 TCBs can be used for DB2 so the
TCB switch is saved.

11

Support for Java 6/7 64-bit JVMs

12

Support for Java 64-bit JVMs

CICS now supports 64-bit JVMs

– Both Pooled JVMs and JVMSERVERs
– Java 6.0.1 (CICS v4.2) or Java 7 (CICS v5.1)

• If JAVA_HOME points to other than JVM then abend
ASJJ

– DFHSJ0900 09/27/2010 11:00:07 IYK2ZIK1 Illegal Java
version. CICS requires Java version 1.6.0 but has found
Java version 1.5.0.

– Java byte codes do not need recompilation (write once run
anywhere)

– Support for 31-bit JVMs dropped
• If JAVA_HOME points to a 31-bit installation, then abend

ASJD
– DFHSJ0503 09/27/2010 10:50:21 IYK2ZIK1 DFHJVMPR

Attempt to load DLL libjvm.so has failed. Runtime error
message is EDC5253S An AMODE64 application is
attempting to load an AMODE31 DLL load module.
(errno2=0xC40B0013)

– Java 6.0.1
• IBM zEnterprise optimized version of Java 6 JVM

– Exploits new z196 instruction set
– Improved GC
– Improved JIT – (stores interpreter profiling

information in class cache)
– Significant performance improvements

• Download from z/OS Java website

13

Java Road Map
Language Updates

Java 5.0
• New Language features:

• Autoboxing
• Enumerated types
• Generics
• Metadata

Java 6.0
• Performance

Improvements
• Client WebServices

Support

• Support for dynamic languages
• Improve ease of use for SWING
• New IO APIs (NIO2)
• Java persistence API
• JMX 2.x and WS connection for

JMX agents
• Language Changes

Java 7.0

IBM Java Runtimes
IBM Java 5.0 (J9 R23)
• Improved performance

• Generational Garbage
Collector

• Shared classes support
• New J9 Virtual Machine
• New Testarossa JIT

technology
• First Failure Data Capture
• Full Speed Debug
• Hot Code Replace
• Common runtime technology

• ME, SE, EE

IBM Java 6.0 (J9 R24)
• Improvements in

• Performance
• Serviceability tooling
• Class Sharing

• XML parser improvements
• z10™ Exploitation

• DFP exploitation for
BigDecimal

• Large Pages
• New ISA features

5.0

6.0

2005 2009

S
E

 5
.0

1

8
 p

la
tf

o
rm

s

S
E

 6
.0

2
0

p
la

tf
o

rm
s

EE 5

WAS
6.1

WAS
7.0

2006 2008

WAS
6.0

200704

EE 6.x

2010 2011

IBM Java
6.0.1/Java7.0 (J9
R26)

• Improvements in
• Performance
• GC Technology

• z196™ Exploitation
• OOO Pipeline
• 70+ New Instructions

• JZOS/Security
Enhancements

WAS
8.5

2012 2013 2014

7.0

• Language improvements
• Closures for simplified fork/join

Java 8.0**

S
E

60
1

/
7.

x
>

=
 2

0
p

la
tf

o
rm

s

IBM
Java7.0SR3/Java.Vnext**

• Improvements in
• Performance
• GC Technology

• zEC12™ Exploitation
• Transactional Execution
• Runtime Instrumentation
• Flash 1Meg pageable LPs
• 2G large pages
• Hints/traps

• Data Access Accelerator
• Cloud: Multi-tenancy/Virtualization

14

Java Execution Environments and Interoperability

IBM Java Execution Offerings
Transactional/Interactive

WebSphere for z/OS (WAS z/OS)
WebSphere Process Server for z/OS (WPS)
JCICS
IMS Java
DB2 Stored Procedures

Batch oriented
WebSphere Compute Grid (WAS-CG)

WAS/JEE runtime extensions

JZOS component of z/OS SDK
JES/JSE-based environment

z/OS V1R13 Java/COBOL Batch Runtime
Env.*

JES/JSE-based, designed to inter-op with DB2 while
maintaining transaction integrity

Open Source or non-IBM vendor
Application Server and Frameworks

Tomcat, JBoss
iBatis, Hibernate, Spring
Ant

Capitalize on pre-existing assets, artifacts, processes, core
competencies, platform strengths

COBOL/Native Interoperability
COBOL Invoke maps to JNI
RDz and JZOS** have tooling to map

COBOL copy books to Java classes
JCICS
IMS Java, JMP/JBP
WAS CG, WOLA
etc

15

IBM Java Runtime Environment
• IBM’s implementation of Java 5/6/7 are built with IBM J9 Virtual

Machine and IBM Testarossa JIT Compiler technology
• Independent clean-room JVM runtime & JIT compiler

• Combines best-of breed from embedded, development and server
environments… from a cell-phone to a mainframe!

• Lightweight flexible/scalable technology
• World class garbage collection – gencon, balanced GC policies
• Startup & Footprint - Shared classes, Ahead-of-time (AOT)

compilation
• 64-bit performance - Compressed references & Large Pages
• Deep System z exploitation – zEC12/z196/z10/z9/z990 exploitation
• Cost-effective for z - zAAP Ready!

• Millions of instances of J9/TR compiler

16

zEC12 – More Hardware for Java

Continued aggressive investment in Java on Z
Significant set of new hardware features

tailored and co-designed with Java

Hardware Transaction Memory (HTM) (no zVM)

Better concurrency for multi-threaded applications
eg. ~2X improvement to juc.ConcurrentLinkedQueue

Run-time Instrumentation (RI)
Innovation new h/w facility designed for managed runtimes
Enables new expanse of JRE optimizations

2GB page frames (no zVM)

Improved performance targeting 64-bit heaps

Pageable 1MB large pages using flash (no zVM)

Better versatility of managing memory

New software hints/directives
Data usage intent improves cache management
Branch pre-load improves branch prediction

New trap instructions
Reduce over-head of implicit bounds/null checks

New 5.5 GHz 6-Core Processor Chip

Large caches to optimize data serving

Second generation OOO design

Up-to 60% improvement in throughput amongst
Java workloads measured with zEC12 and

Java7SR3
Engineered Together—IBM Java and zEC12 Boost Workload Performance
http://www.ibmsystemsmag.com/mainframe/trends/whatsnew/java_compiler/

17

Hardware Transactional Memory (HTM)

Allow lockless interlocked execution of a block of code called a ‘transaction’
– Transaction: Segment of code that appears to execute ‘atomically’ to other CPUs

• Other processors in the system will either see all-or-none of the storage up-dates of
transaction

How it works:
– TBEGIN instruction starts speculative execution of ‘transaction’
– Storage conflict is detected by hardware if another CPU writes to storage used by the transaction
– Conflict triggers hardware to roll-back state (storage and registers)

• transaction can be re-tried, or
• a fall-back software path that performs locking can be used to guarantee forward progress

– Changes made by transaction become visible to other CPUs after TEND

Storage conflict:
Tran A will abort
Tran B will commit
changes to X and
Y

TBEGIN

…

load Y

load X

…

TEND

CPU 0: Tran A
X = Y = 0;

TBEGIN

X = 1

store X

Y = 1

store Y

TEND

CPU 1: Tran B

CPU 0 can only see (X=Y=0) or (X=Y=1),
cannot see (X=1,Y=0) or (X=0,Y=1)

18

HTM Example: Transactional Lock Elision
(TLE)

Threads must serialize despite
only reading… just in-case a
writer updates the hash

read_hash(key) {

 Wait_for_lock();

 read(hash, key);

 Release_lock();

}

Thr1: read_hash()

Thr2: read_hash()

Thr3:read_hash(
)

T

Lock elision allows readers to
execute in parallel, and safely
back-out should a writer update
hash

read_hash(key)

 TRANSACTION_BEGIN

 read hash.lock;

 BRNE
serialize_on_hash_lock

 read (hash, key);

 TRANSACTION_ENDThr1: read_hash()

…
Thr3: read_hash()

T’

19

Transactional Execution: Concurrent Linked
Queue

~2x improved scalability of
juc.ConcurrentLinkedQueue
Unbound Thread-Safe LinkedQueue

– First-in-first-out (FIFO)
• Insert elements into tail (en-queue)
• Poll elements from head (de-queue)

– No explicit locking required

Example usage: a multi-threaded work queue
– Tasks are inserted into a concurrent linked queue as multiple worker

threads poll work from it concurrently

hea
d

nod
e

nod
e

nod
e

 tail

….

last
node

En-queue

first
node

De-queue

New TX-base
implementation

Traditional CAS-base
implementation

(Controlled measurement environment, results may
vary)

20

Support for Java 6 64-bit JVMs

Pooled JVMs (v4.2 only)

– Support for many more JVMs per CICS region

• 100+ can be possible

– Larger heap sizes

• Reduces impact of Garbage Collection

– Profile changes

• JAVA_HOME=/usr/lpp/java6_64/J6.0_64
–

• USSHOME replaces CICS_HOME system
initialization parameter

21

Support for Java 6 64-bit JVMs

JVM Server

– Messages now DFHSJxxxx instead of DFHLExxxx

– Much larger heaps possible

– Garbage Collection runs after an allocation failure

• CJGC transaction is no longer used

• Default GC policy uses more efficient gencon model

• Heap dynamically sized by JVM

• -Xcompressedrefs option uses 32-bit pointers to
address 64-bit storage

• Works for heaps up to 25GB
– Reduces CPU consumption but only recommended

for use with single JVM server regions

22

Support for Java 6 64-bit JVMs

MEMLIMIT

– Java stack and heap are now allocated in above the bar
storage

– Above the bar requirement per Pooled JVM

• –Xmx value in JVM profile

• HEAP64 value in DFHJVMRO (default 8M)

• LIBHEAP64 value in DFHJVMRO (default 1M)

• STACK64 value in DFHJVMRO (default 1M) times 5
(application thread plus system threads)

23

Support for Java 6 64-bit JVMs

MEMLIMIT

– Above the bar requirement per JVM Server

• –Xmx value in JVM profile (default 512M)

• HEAP64 value in DFHAXRO (default 50M)

• LIBHEAP64 value in DFHAXRO (default 1M)

• STACK64 value in DFHAXRO (default 1M) times
number of threads

– THREADLIMIT plus system threads
– Number of GC helper threads depends on –

Xgcthreads parameter

» Default is one less than the number of
physical CPUs available

24

Support for Java 6 64-bit JVMs

JDBC and SQLJ

– DB2 8.1 or 9.1 required to support 64-bit applications

– DB2 FP4 required for CICS TS 4.2 Java

– Make sure you have the latest DB2 JDBC (JCC) Fixpack

WMQ

– 64-bit driver required

– OSGi bundle required for JVM server

Middleware bundles (MQ and DB2)

– Need to be added to JVM servers using OSGI_BUNDLES and
LIBPATH_SUFFIX settings in JVM profile

Native DLLs (JNI)

– All native DLLs must be recompiled with LP64 compiler option and
bound as AMODE(64)

– LE will not allow an AMODE(31) DLL to be loaded by an
AMODE(64) DLL

25

CICS OSGi Support

26

CICS OSGi Support Overview

OSGi

– OSGi development and packaging now required to deploy CICS applications to a
JVM server 1

– Existing CICS Java applications using main() method linkage can run unchanged if
wrapped in an OSGi bundle

– All JVM server applications must be thread-safe and can’t use stabilised CICS EJB
or CORBA functions

– Equinox used as OSGi implementation

CICS Explorer SDK

– Provides CICS Java development toolkit for use in any Eclipse 3.6.2 IDE (i.e RAD
8.0 or vanilla Eclipse SDK)

– Can be used to develop and deploy applications for any release of CICS (CICS TS
3.2 onwards)

– Java projects are developed as Plug-in Projects and then packaged in a CICS
bundle and exported to zFS

– CICS TS V3.2/V4.1 Pooled JVM applications classes/JARs can be wrapped and
deployed to OSGi JVM servers

1 Note Axis2 CICS Web Services applications do not support OSGi packaging in v4.2

27

OSGi - Isolated and Shared Bundles

In Java EE, modules are isolated within an application and applications are
isolated from one another.

– Makes sharing modules difficult

OSGi 4.2 all bundles have shared visibility to the externals of all others
bundles within an OSGi framework (JVM)

Java EE App Server

Everything isolated Everything shared

EAR 1

Module A

Module B

Module C

EAR 2

Module A

Module G

Module C

OSGi v4.2 Framework

Isolation

Sharing

28

OSGI Bundle types in CICS

OSGi Bundles

– Just a jar with a few extra lines in the jar manifest file

Application Bundles

– Provide one or more entry points which can be LINKed too by CICS.

– This is done by using the CICS-MainClass directive

– Can import packages from other bundles, i.e. JCICS

Library Bundles

– Provide no entry points but simply export code to be used by other bundles

– Shared library services

Manifest.mf
Bundle-SymbolicName: com.ibm.cics.server.examples.hello
Bundle-Version: 1.0.0
...
CICS-MainClass: examples.hello.HelloCICSWorld
Export-Package: my.library.classes 1.0.0

29

Java VM

log4j

barcode4j

axis

batik

commons

derby

fop

ezmorph

freemarker

httpunit

jakarta

jcl

json

jdbm

jdom

jenks

jpos18

jython

looks

lucene

mail

mx4j

naming

jetty

poi

resolver

rome

serializer

servlets

tomcat

velocity

ws-commons

xalan

wsdl4j

xerces

xmlgraphics

xmlrpc

xmlapis

..

geronimo

bsh

bsf

guiapp

hhfacility

manufact.

marketing

minerva

accounting

assetmaint

base

bi

catalina

common

oagis

order

ebay

content

datafile

ecommerce

entity

googlebase

ofbiz

widget

minilang

party

pos.

product

workeffort

workflow

…

sunjce_prov.

plugin

jsse

jce

rt

dnsns

..

…

Class
Not

Found
Exception

BeginBegin
HereHere

The Global Classpath

30

Class loading with OSGi

Bundle A
Import-Package: package.b
 Package.c
Export-Package: package.a

package.a

Bundle A
Export-Package: package.a

package.b

Bundle C
Export-Package: package.c

package.c

No more CLASSPATH

– Each bundle has its own class loader

Class space is the classes required for the bundle

Smallest unit is a package

31

JVMSERVER OSGi Details

OSGi Runtime

JCICS

Wrapper

MyBundle

OSGI Service Registry
query

examples.hello.Hello
CICSWorld

call referen
ce s

<MANIFEST.MF>
CICSMain-Class: examples.hello.HelloCICSWorld

<OSGI-Service>
ProxyService

> Bundle: MyBundle
> Class:examples.hello.HelloCICSWorld

In
vo

ke
M

a
in

 m
e

th
o

d

32

CICS Bundle

OSGi BundleOSGi Bundle

Deployment with CICS Bundles

1. Define OSGi bundles

2. Declare PROGRAM “service(s)”

3. Define PROGRAM

cics.xml

<define name=“B1” type=“.../OSGIBUNDLE” path=“hello.xml"/>
<define name=“B2” type=“.../OSGIBUNDLE” path=“service.xml"/>
<define name=“B3” type=“.../OSGIBUNDLE” path=“library.xml"/>

1

OSGi Bundle

3

hello.xml

<OSGIBundle name=“HELLO” jvmserver=“JVMSRV1”
 jar=“examples.hello.HelloCICSWorld”.../>

Manifest.mf
Bundle-SymbolicName: com.ibm.cics.server.examples.hello
Bundle-Version: 1.0.0
...
CICS-MainClass: examples.hello.HelloCICSWorld

Manifest.mf
2

33

CICS Explorer SDK - Development

1. Install CICS Explorer SDK into Eclipse

2. Set Target Platform
(sets JCICS and JVM levels)

– Window → Preferences…→
 Target Platform → Add… → Template

3. Create New OSGi Project

– New → Plug-in Project

4. Provided access to JCICS package

– MANIFEST.MF → Dependencies →
 Imported Packages →
 com.ibm.cics.server

– Add other bundle imports if required

5. Import/Create your Java class

34

CICS Explorer SDK - Deployment

6. Create CICS Bundle

– New→CICS Bundle Project

7. Add OSGi bundle meta-data file to CICS Bundle

– New→Include OSGi Project in Bundle

35

CICS Explorer SDK – Deployment 2

8. Provide CICS region userid read access to bundledir

– mkdir /var/cicsts/bundles

– chmod 750 /var/cicsts/bundles1

9. Connect CICS Explorer to
 USS FTP daemon

– Windows → Open Perspective → z/OS

10. Export CICS Bundle to CICS

– →CICS to z/OS UNIX File System

1 Note: CICS region userid and FTP user must be in same USS group

36

Defining a CICS BUNDLE

Bundle Directory

– Name of directory
containing deployed JAR
and bundle meta data
files

Status

– ENABLED→Activate on
install of resource

37

Defining a Program to run in JVMSERVER

JVMServer

– Name of JVM server
resource

Main Java class

– OSGIService defined
in the
OSGi bundle manifest

– Either an alias or the
full
package.class name

Also required

– CONCURRENCY(TH
READSAFE)

– EXECKEY(CICS)

39

OSGi Bundle Lifecycle

Installed

Resolved

Starting

Active

StoppingUninstalled

install

resolverefresh
update start

uninstall

uninstall

stop

refresh
update

Policy: eager/lazy

OSGi bundle
state displayed in
CICS Explorer
OSGi bundle view

40

Java Pool and EJB Statement of Direction

CICS TS V4.2 announce letter

A future release of CICS TS intends to discontinue support for session beans
using Enterprise Java Beans (EJB), and the Java pool infrastructure.
Customers are encouraged to migrate Java applications to the new JVM
server infrastructure, and to migrate EJB applications to Java SE components
and make them available through web services or the JEE Connector
Architecture (JCA). CICS will continue to support Java as a first class
application programming language for CICS applications, including
enhancements to the CICS interfaces, the deployment infrastructure, and

Java runtime environment.

GONE IN
 V5.1!!!

GONE IN
 V5.1!!!

50

ODM Rules Execution Engine in
CICS JVM Server

CICS JVM Server

CICS
COBOL

Application

CICS

Decision
Server

INVOKE
Decision
Center

MANAGE

Externalize embedded business rule logic & execute within CICS

Gain business agility with existing and new CICS applications
– Manage decision logic on a separate lifecycle to application code
– Ability to react to changes in a fast paced, competitive marketplace

Lower the cost of maintaining your business applications
– Improvement operational efficiency and total cost of ownership

Consistent Decision evaluation across the enterprise
– Author decision rules once and deploy to multiple systems on z/OS and distributed

Optimized decision execution
– Highly efficient rule execution engine
– Local optimization of Decision Server within the CICS JVM Server environment

Operational Decision Management & CICS

52

ODS for z/OS

z/OS

WebSphere
Application
Server for

z/OS*

zEvents
Execution

zRule Execution
Server

CICS TS v4.x

*OEM

zRule Execution
Server

(on CICS)

zRule Execution
Server

(Standalone)

• Decisions can be invoked from existing CICS and batch applications
• Runtime support for COBOL data types
• Flexible runtime deployment to fit any System z environment:

 Deployed on WebSphere Application Server for z/OS

 Deployed standalone to z/OS

 Deployed in CICS TS 4.x JVMServer environment

Decision Server for z/OS

zRule Execution Server
Stand-alone

WebSphere Application Server
for z/OS

WOLA

COBOL
Application

WOLA Stub

Rule Execution Server
for WAS for z/OS

COBOL <-> Java
Marshaller

COBOL
Generation

Rules

Generated
COBOL

JVM ServerJVM Server

zRule
Execution

Server

zRES Stub

Rule invocation options for CICS

CICS

zRule
Execution

Server

54

Address SpaceCICS TS 4.x & 5.1

JVMServerJVMServer

Invocation

Runtime Rule Persistence

File System
zFS

File System
zFS

DB2DB2

RES
Mediation

Layer

RES
Mediation

Layer

Rule
Server
Rule

Server

JVMJVM

Notification

Deploy

User COBOL
Application

User COBOL
Application

Decision
Service

Stub

Decision
Service

Stub T
R

U
E

Web
Container

RES
Console

RES
Console

zRule Execution Server for z/OS – CICS TS 4.x

55

Summary

JVM Options in CICS TS v4.2 and v5.1

– JVM Pool

– JVM Server

64 Bit JVM Support

OSGi for application management

WODM Rules Execution Engine

56

Questions?

● Click to edit the
outline text format

– Second Outline
Level

● Third Outline
Level

– Fourth
Outline Level

● Fifth
Outline
Level

● Sixth
Outline
Level

• Seventh Outline
LevelClick to edit
Master text styles
– Second level

● Third level
– Fourth level

● Fifth level

Two-Column Slide (Type Size=28)

57

• Topic A (Type Size=24)
● Subtopic 1 (Type Size=22)
● Subtopic 2 (Type Size=22)
● Subtopic 3 (Type Size=22)
● Subtopic 4 (Type Size=22)

• Topic B (Type Size=24)

• Topic C (Type Size=24)
● Subtopic 1 (Type Size=22)
● Subtopic 2 (Type Size=22)
● Subtopic 3 (Type Size=22)

● Sub-subtopic 1 (Type
Size=20)

● Sub-subtopic 2(Type
Size=20)

• Topic D (Type Size=24)

Slide with Table

58

● Click to edit the outline
text format

– Second Outline Level

● Third Outline Level
– Fourth Outline

Level
● Fifth Outline

Level
● Sixth Outline

Level

• Seventh Outline
LevelClick to edit Master
text styles
– Second level

● Third level
– Fourth level

● Fifth level

Slide with Text & Graphic

59

	Slide 1
	Slide 2
	Slide 3
	Overview of Java program support in CICS
	Defining a JVM server
	Slide 10
	Slide 11
	Support for Java 6 64-bit JVMs
	IBM Java Runtime Environment
	Hardware Transactional Memory (HTM)
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	JVMSERVER OSGi Details
	CICS Explorer SDK - Deployment
	Java Pool and EJB Statement of Direction
	Slide 50
	Summary
	Slide 56
	Slide 57
	Slide 58
	Slide 59

