
CICS Common Performance Problems
and Debugging

Ed Addison

IBM

August 13 2013

13342

IBM Software Group

Agenda

� CICS Dispatcher Basics

� Performance Problem - Loop

� Externalize MXT with CICS System Events

� CICS Monitoring Facility

� RMFIII

SHARE Boston - Ed Addison

� RMFIII

� Systrace perfdata

2

IBM Software Group

CICS Dispatcher Basics

SHARE Boston - Ed Addison

CICS Dispatcher Basics

3

IBM Software Group

� The box in blue below shows TCBs and SRBs using Logical
Processor 1 in an LPAR.

� Only one thing (TCB or SRB) can run at a time on this processor.

� z/OS decides which TCBs and SRBs run on the processor.

� A typical well-behaved Concurrency(quasirent) CICS application
program does not usually do anything that would cause the QR
TCB to wait or suspend the QR TCB to the z/OS dispatcher.
� But, there is nothing to stop this from occurring.

SHARE Boston - Ed Addison

� But, there is nothing to stop this from occurring.

0 10 20 30 40 50 60 70 80 90 100

CICS1 QR TCB

ASID 1 SRB

CICS2 QR TCB

ASID 2 TCB

Logical Processor 1

Time

4

IBM Software Group

� There are several different ways that one TCB or SRB can lose or
relinquish control of the processor.

� A TCB can be interrupted while it is executing instructions. Then z/OS

can give control of the processor to a higher priority TCB or SRB. The

interrupted TCB is left undispatched until z/OS gives it a processor and

it can then resume executing instructions.

� A TCB can voluntarily give up control by suspending or waiting to the

z/OS dispatcher.

� That can happen explicitly. For instance, when the CICS dispatcher

SHARE Boston - Ed Addison

� That can happen explicitly. For instance, when the CICS dispatcher

has no CICS transactions ready to run on the TCB it will issue an SVC

1 wait to temporarily give control back to z/OS so something else can

use the processor.

� Paging is another way that a TCB can lose control. If an instructions

needs a page of storage that has to be paged in from Aux, then the TCB

gives up control of the processor and waits for the I/O. In the interim,

the z/OS dispatcher can find another TCB or SRB who wants to run on the

processor.

5

IBM Software Group

0 10 20 30 40 50 60 70 80 90 100

Time

Tran 10002

Tran 10003

Tran 10004

Tran 10001

QR TCB

Dispatcher

CICS1 QR TCB

SHARE Boston - Ed Addison

•On the QR TCB, CICS has built its own dispatching environment. In that

environment CICS transactions share the QR TCB.

•The CICS Dispatcher decides which transactions run on the QR TCB.

•Here, 4 transactions have all just been attached and are all ready to run on

the QR TCB. They are all Dispatchable as indicated by the light red shading.

•The CICS Dispatcher picks one and gives it control.

6

IBM Software Group

0 10 20 30 40 50 60 70 80 90 100

Time

Tran 10002

Tran 10003

Tran 10004

Tran 10001

QR TCB

Dispatcher

CICS1 QR TCB

SHARE Boston - Ed Addison

•Tran 10001 received control. It held control of the TCB for 7 units of wall-

clock time and then it suspended giving control back to the CICS dispatcher.

•When the CICS dispatcher gets control, it knows how long transaction 10001

had control of the QR TCB, but it doesn’t know how much CPU it used until it

asks z/OS with a TIMEUSED. We’ll say it used 7 units of CPU too. That is

indicated by the solid green shading in the box.

•The dispatcher now chooses 1 of the 3 dispatchable tasks to dispatch.

7

IBM Software Group

0 10 20 30 40 50 60 70 80 90 100

Time

Tran 10002

Tran 10003

Tran 10004

Tran 10001

QR TCB

Dispatcher

CICS1 QR TCB

SHARE Boston - Ed Addison

•Transaction 10002 had control of the TCB for 13 units of time. But this time it

used only 7 units of CPU. So while transaction 10002 was in control of the QR

TCB, the QR TCB stopped executing instructions for some reason. Maybe

z/OS took control away to let higher priority work use the processor.

•Transaction 10001 is still suspended. Transaction 10002 just suspended.

10003 and 10004 are both dispatchable. The CICS dispatcher picks one of

them.

8

IBM Software Group

0 10 20 30 40 50 60 70 80 90 100

Time

Tran 10002

Tran 10003

Tran 10004

Tran 10001

QR TCB

Dispatcher

CICS1 QR TCB

SHARE Boston - Ed Addison

•Tran 10003 ran solidly and suspended.

•Then while in the CICS dispatcher code, control of the QR TCB was taken

away for about 7 units of time.

•During that time, at timeline 38, transaction 10002 became dispatchable.

That means that whatever it was suspended on has completed. An example is

when suspended for File I/O. When the I/O completes and the ECB is posted,

the waiting CICS transaction immediately becomes dispatchable.

9

IBM Software Group

0 10 20 30 40 50 60 70 80 90 100

Time

Tran 10002

Tran 10003

Tran 10004

Tran 10001

QR TCB

Dispatcher

CICS1 QR TCB

SHARE Boston - Ed Addison

•Here, several transactions ran, each time giving control back to the CICS

dispatcher.

•Transactions 10001 and 10002 have finished.

•At this point, control is in the CICS dispatcher but there are no dispatchable

tasks. When that happens, the CICS dispatcher issues an SVC 1 Wait to give

control of the TCB back to z/OS temporarily.

10

IBM Software Group

0 10 20 30 40 50 60 70 80 90 100

Time

Tran 10002

Tran 10003

Tran 10004

Tran 10001

QR TCB

Dispatcher

CICS1 QR TCB

z/OS SVC 1 Wait

SHARE Boston - Ed Addison

•During that time, notice 2 transactions became dispatchable. Typically the

TCB would wake up out of its wait immediately when a transaction becomes

dispatchable. The reason that didn’t happen is probably because the

processor was not available.

11

IBM Software Group

0 10 20 30 40 50 60 70 80 90 100

Time

Tran 10002

Tran 10003

Tran 10004

Tran 10001

QR TCB

Dispatcher

CICS1 QR TCB

z/OS SVC 1 Wait

SHARE Boston - Ed Addison

•Here the last 2 tasks finish up. Transaction 10004 lost control of the TCB for

some reason during its last dispatch.

•Since there are no more transactions, the CICS Dispatcher issues another

SVC1 Wait.

12

IBM Software Group

Problem One: LoopProblem One: Loop

SHARE Boston - Ed Addison 13

IBM Software Group

Problem One - Loop

� Customer called the Support Center for no transactions running yet high CPU consumed by the

CICS region

� ST SYS (Status SYStem)

� With a dump, from the IPCS Commands panel, enter the ST SYS command to find out what time the
dump was taken. Below is an example of the output

SYSTEM STATUS:

Nucleus member name: IEANUC01

Sysplex name: EDZPLEX Sysplex name: EDZPLEX

TIME OF DAY CLOCK: C2D443EE B58366C4 08/11/2008 18:31:27.786295 local

TIME OF DAY CLOCK: C2D3D8A4 E38366C4 08/11/2008 23:31:27.786295 GMT

Program Producing Dump: SVCDUMP

Program Requesting Dump: IEAVTSDT

Incident token: EDZPLEX 07/08/2008 23:31:27.198911 GMT

� When getting information from this screen, it is important to note both the LOCAL Time-Of-Day

and the GMT Time-Of-Day

� The CICS Dispatcher summary gives times as GMT rather than LOCAL

SHARE Boston - Ed Addison 14

IBM Software Group

VERBX DFHPDxxx ‘CSA=2’

CSA=2

=== SUMMARY OF ACTIVE ADDRESS SPACES

ASID(hex): JOBNAME:

0148 CICS01

===CSA: COMMON SYSTEM AREA AND OPTIONAL FEATURES LIST

CSA 0004EF98 Common System Area

0000 00000248 0004B020 101BA578 800BADE4 90669D14 0ECF6F30 116C8528 116C87FC *..........v....U......?..%e..%g.*

0020 9066DDD0 9066E70E 116C8C30 1021FEE0 131DE000 7F3FB960 0004E770 11AFC030 *...}..X..%.....\..\."..-..X...{.* 0020 9066DDD0 9066E70E 116C8C30 1021FEE0 131DE000 7F3FB960 0004E770 11AFC030 *...}..X..%.....\..\."..-..X...{.*

0040 00051020 00054080 0011400C 102C3680 1624268F 11D9D8C8 00000100 00000000 *......RQH........*

0060 005A2101 00000000 00090D70 000038DA 00000000 00000000 7FFFFFFF 0106189F *.!......................".......*

0080 00AC6000 E0004800 00009080 8ECF0090 000033A3 00000000 001E001E E707E762 *..-.\..............t........X.X.*

� In this example, the CSA time is 16:24:26.8 LOCAL Time

� There is other important information given in this output:

� The jobname of CICS

� The address space ID (ASID) of CICS

SHARE Boston - Ed Addison 15

IBM Software Group

Compare Times

� Once you have the CSA time and the LOCAL time from ST SYS, you can decide if CICS is

healthy or not

� If there is a several minute time gap between the two times, then you know CICS is unhealthy

� If the two times are close, then you know CICS is healthy and something else is causing the
problem

� Even when a healthy CICS is dumped, there is usually some difference between the two

times. This is because ST SYS is not the exact time CICS started dumping

� If there is less than a minute difference between CSA time and SY SYS LOCAL time, then you can
generally say CICS was healthy when the dump was taken generally say CICS was healthy when the dump was taken

� From this example, the CSA has not been updated in over 2 hours:

� CSA time is: 16:24:26.8 local

� ST SYS time is: 18:31:27.7 local

� If the difference between CSA time and ST SYS local time leads you to believe CICS is

unhealthy, then this should coincide with CICS CPU utilization

� When CICS is unhealthy, it is either getting no CPU time (hung) or it is getting all the CPU time

(looping)

SHARE Boston - Ed Addison 16

IBM Software Group

Is CICS looping or is it hung?

� In this example CICS is not healthy. This indicates the CICS Dispatcher is not getting control

for one of 2 reasons:

� The CICS Dispatcher has given control to a CICS task, and the CICS task has never given control
back

� The CICS Dispatcher has given up control to z/OS, and z/OS has never redispatched CICS

� To determine which one it is, enter VERBX DFHPDxxx ‘KE=1’

SHARE Boston - Ed Addison
17

IBM Software Group

VERBX DFHPDxxx ‘KE=1’

===KE: Kernel Domain KE_TASK Summary

KE_NUM KE_TASK STATUS TCA_ADDR TRAN_# TRANSID DS_TASK KE_KTCB ERROR

0001 0EC54C80 KTCB Step 00000000 00000000 0EC96080

0002 0EC54900 KTCB QR 00000000 10203030 0EC99020

0003 0EC54580 KTCB RO 00000000 10203148 0EC98040

0004 0EC54200 KTCB CO 00000000 10203260 1012B020 0004 0EC54200 KTCB CO 00000000 10203260 1012B020

0005 0EC71C80 KTCB FO 00000000 10203378 0EC97060

0006 0EC71900 Not Running 00000000 10136080 0EC98040

0007 0EC71580 Unused

0008 0EC71200 KTCB SL 00000000 102035A8 10169020

0009 0EC8EC80 Not Running 00000000 101F3680 0EC99020

000A 1026E400 KTCB CQ 00000000 10203490 10146020

...

0024 101EB900 ***Running** 00000000 10136380 10146020

...

01A4 116C6080 ***Running** 102C3680 84551 CSPG 101CD580 0EC99020

SHARE Boston - Ed Addison 18

IBM Software Group

VERBX DFHPDxxx ‘KE=1’(cont)

� Look to see if there is a ***Running** task under the QR TCB. If there is, then the CICS

Dispatcher has given control to the task, and the task has not given control back

� You first need to find the address of the QR KTCB. It is in the KE_KTCB column on the line showing
the KTCB QR in the STATUS column

� In the previous example, you can see there is a running task dispatched on the QR TCB

� Note: There is another running task, dispatched on the CQ TCB. This is the console/KILL task which
remains available for console requests or requests to KILL a looping or hung task

� The task on the QR TCB is ‘running’ from the CICS Dispatcher’s perspective. This simply

means it has never given control back to the CICS Dispatcher means it has never given control back to the CICS Dispatcher

� It could be looping

� It could have done something causing the CICS QR TCB to lose control

� Find out by using the z/OS System trace and the CICS trace

� Before you look at the z/OS System trace, you need to know the ASID of CICS, and the TCB

address of the QR TCB

SHARE Boston - Ed Addison 19

IBM Software Group

Find the address of the QR TCB

� Find the address of the QR TCB by listing the contents of the QR KTCB

� IP L 0EC99020 ASID(x’148’) L(999)

• We obtained this address on slide 18

� Offset x’50’ into a KTCB is the address of the corresponding z/OS TCB:

LIST 0EC99020. ASID(X'0148') LENGTH(X'03E7') AREA

ASID(X'0148') ADDRESS(0EC99020.) KEY(80)

0EC99020. D2E3C3C2 40404040 00000000 0EC54900 116C6080 0EC5C020 00000159 6D263B20 |KTCB E..E{....._...|

0EC99040. 00000000 7D000000 00000000 00000000 80000004 00000000 36800000 D800D8D9 |....'..................Q.QR|

0EC99060. 00000000 00000000 0EC99020 40000000 00AEB5D8 00000000 00006120 00000000 |.........I../.....|

0EC99080. 00000000 00000000 00000000 00000000 00000000 00000520 0000038E 00000008 |...........................|

0EC990A0. 00AEB5D8 00000000 1012B020 0EC98040 00000000 00000000 BF12AAB3 4FC4FF88 |...Q.........I.|D.h| 0EC990A0. 00AEB5D8 00000000 1012B020 0EC98040 00000000 00000000 BF12AAB3 4FC4FF88 |...Q.........I.|D.h|

� An alternate way to identify the QR TCB is to format the CICS

trace table.

Enter VERBX DFHPDxxx ‘TR=2’, then do a FIND on QR

AP 4D01 CQCQ EXIT - FUNCTION(MERGE_CIB_QUEUES) RESPONSE(OK)

TASK-TCP KE_NUM-001C TCB-QR /00AEB5D8 RET-905E1C0A TIME-16:20:56.9458823764

� Now see what the z/OS System trace indicates

SHARE Boston - Ed Addison 20

IBM Software Group

z/OS System Trace Table

SYSTRACE TIME(LOCAL)

-------------------------------------- SYSTEM TRACE TABLE -----------------------

-- ------------------

PR ASID WU-ADDR- IDENT CD/D PSW----- ADDRESS- ... PASD SASD TIMESTAMP-LOCAL CP

06 0148 00AEB5D8 EXT 1005 078D0000 929888E2 ... 0148 0148 18:31:25.338251 01

06 0148 00AEB5D8 I/O 00458 078D2000 929888E6 ... 0148 0148 18:31:25.338279 01

06 0148 00AEB5D8 EXT 1005 078D0000 929888EE ... 0148 0148 18:31:25.338675 01

06 0148 00AEB5D8 I/O 034D4 078D2000 929888EA ... 0148 0148 18:31:25.338763 01

06 0148 00AEB5D8 EXT 1005 078D0000 929888EE ... 0148 0148 18:31:25.339097 01

06 0148 00AEB5D8 I/O 03DF2 078D0000 929888E2 ... 0148 0148 18:31:25.339261 01

�From IPCS Option 6 Command enter:

� SYSTRACE TIME(LOCAL)

06 0148 00AEB5D8 I/O 03DF2 078D0000 929888E2 ... 0148 0148 18:31:25.339261 01

06 0148 00AEB5D8 EXT 1005 078D0000 929888EE ... 0148 0148 18:31:25.339519 01

06 0148 00AEB5D8 CLKC 078D0000 929888E2 ... 0148 0148 18:31:25.339861 01

06 0148 00AEB5D8 DSP 078D0000 929888E2 ... 0148 0148 18:31:25.340108 01

06 0148 00AEB5D8 I/O 0045A 078D2000 929888E6 ... 0148 0148 18:31:25.340167 01

06 0148 00AEB5D8 I/O 00458 078D2000 929888EA ... 0148 0148 18:31:25.340264 01

06 0148 00AEB5D8 EXT 1005 078D0000 929888E2 ... 0148 0148 18:31:25.340535 01

06 0148 00AEB5D8 I/O 03DF2 078D0000 929888E2 ... 0148 0148 18:31:25.340787 01

06 0148 00AEB5D8 EXT 1005 078D2000 929888EA ... 0148 0148 18:31:25.340957 01

06 0148 00AEB5D8 I/O 03DF2 078D2000 929888EA ... 0148 0148 18:31:25.341303 01

06 0148 00AEB5D8 EXT 1005 078D0000 929888EE ... 0148 0148 18:31:25.341380 01

03 0148 00AEB5D8 DSP 078D0000 929888EE ... 0148 0148 18:31:25.341420 04

� Note: 00AEB5D8 is the QR TCB derived from the previous slide

SHARE Boston - Ed Addison 21

IBM Software Group

System Trace Table (cont)

� Verify the ASID being traced is the one for the CICS region we care about

� If it isn’t, you can enter SYSTRACE TIME(LOCAL) ASID(x’xx’)

� The TCB address shows up in the second column. Verify it is the QR TCB

� This trace shows a loop on the QR TCB. Notice the PSW address on the DSP and EXT

trace entries

� Before we saw this trace, we already knew CICS was unhealthy

� A CICS task had not relinquished control to the CICS Dispatcher for over two hours� A CICS task had not relinquished control to the CICS Dispatcher for over two hours

� By looking at the System trace table, we can verify if the CICS task was looping, or if it had

lost control to z/OS

� Since we see trace entries for the QR TCB, we assume it is looping

SHARE Boston - Ed Addison 22

IBM Software Group

CICS is Looping

� What you expect to see in the System trace table is a looping pattern. In this example, we
have a pattern of DSP and EXT trace entries

� EXT trace entries are an external interrupt

• z/OS is taking control away from the TCB in order to process some sort of interrupt (an I/O
interrupt in this case)

� DSP trace entries are z/OS Dispatcher trace entries

• The z/OS Dispatcher is giving control back to the TCB at the exact instruction address where
control was taken

� I/O trace entries are z/OS high priority interrupts when I/O finishes

� CLKC trace entries are z/OS checking clocks when z/OS services haven’t been requested for � CLKC trace entries are z/OS checking clocks when z/OS services haven’t been requested for
awhile

� By looking at the PSW addresses in the System trace, you can begin to learn what
module(s) comprise the loop

� If there are several modules involved in the loop, you would likely need to look at lots of I/O, EXT,
DSP entries before you could get a handle on the extent of the loop

� In this example, it is clear fairly quickly the problem is a tight loop involving only a few instructions
between address 129888E2 and 129888EE

SHARE Boston - Ed Addison 23

IBM Software Group

Finding the Looping Program

� The next step is to identify the program(s) in which the looping instructions live

� If you are in SYSTRACE, and want to know what module a PSW address falls within, you first

need to subtract the high-order bit (the x’80’ bit, if there is one)

� For instance, if the PSW address is 81234568, then the address you need to use is 1234568

� If the PSW address is A1234568, then the address you need to use will be 21234568

� Once you have the address aaaaaaaa, you have several choices for figuring out the module:

� VERBX DFHPDxxx ‘LD=1’ displays the Loader Domain summary information

• Enter FIND ‘PROGRAM STORAGE MAP’

• The Program Storage Map lists the modules loaded by CICS, in address order• The Program Storage Map lists the modules loaded by CICS, in address order

• In our example, for PSW address 929888E2, we could do a FIND on ‘ 129’ to get closer to the
programs listed near this address

SHARE Boston - Ed Addison 24

IBM Software Group

VERBX DFHPDxxx ‘LD=1’

� VERBX DFHPDxxx ‘LD=1’

==LD: PROGRAM STORAGE MAP

PGM NAME ENTRY PT CSECT LOAD PT. REL. PTF LVL. LAST COMPILED COPY NO. USERS

DFHCSA 8004E200 DFHKELCL 0004D000 650 HCI6700 06/05/11 05.51 1 1

-noheda- 0004D4F8

DFHKELRT 0004D500 650 HCI6700 06/05/11 05.51

-noheda- 0004D8F8

DFHCSAOF 0004D900 0650 HCI6700 I 05/11 06.53

DFHCSA 0004E000 0650 HCI6700 I 05/11 06.53 DFHCSA 0004E000 0650 HCI6700 I 05/11 06.53

DFHKERCD 0004E4B0 650 HCI6700 06/05/11 05.51

... then FIND on ‘ 129' shows:

DFHCRS 92982D70 DFHCRS 12982D50 0650 I 29/11 23.23 1 0

DFHSNP 92984BE8 DFHYA630 12984BC0 630 1 0

DFHSNP 12984C58 0650 I 30/11 02.48

DFHTPR 92987FFA DFHTPR 12987FD0 0650 HCI6700 I 13/12 11.09 1 1

GGGGPEND 9298D538 DFHYA640 1298D510 640 1 0

SHARE Boston - Ed Addison 25

IBM Software Group

Using the WHERE command or Browse mode

� Enter WHERE aaaaaaaa or simply W aaaaaaaa from a command line

� If the first digit of the address starts with a letter, then you could enter the WHERE command
followed by a period:

� WHERE aaaaaaa. e.g. WHERE C00498.

� Or you could include a leading zero:

� WHERE 0aaaaaaa e.g. WHERE 0C00498

� The WHERE command is useful when CICS doesn’t know about the module

� WHERE is not helpful in this example because the looping module was loaded by CICS, not
z/OS, so z/OS is unable to identify the module. WHERE 129888E2 displays:z/OS, so z/OS is unable to identify the module. WHERE 129888E2 displays:

ASID(X'0148') 129888E2. AREA(Subpool252Key00)+1888E2 IN EXTENDED PRIVATE

� You can also try to display the PSW address in Browse mode and back up looking for an

eyecatcher

SHARE Boston - Ed Addison 26

IBM Software Group

The CICS Trace Table

� If the System trace entries indicate the loop is larger than a tight loop within one module,

it is possible CICS services are being requested by the looping module. If this is true and

if CICS internal trace is active, then you may be able to see the loop in the CICS trace

Note: Some CICS services (like EXEC CICS SUSPEND or EXEC CICS SEND WAIT)

cause the task to be suspended and the CSA Time-of-Day clock to be updated. Because

we have determined CICS is unhealthy in this discussion, we know no such services are

being requested. Other CICS services (like EXEC CICS ASSIGN or EXEC CICS

FREEMAIN) do not cause the task to be suspended (i.e. do not give control back to the FREEMAIN) do not cause the task to be suspended (i.e. do not give control back to the

CICS Dispatcher)

� To format the internal CICS trace table, enter VERBX DFHPDxxx ‘TR=2’

SHARE Boston - Ed Addison 27

IBM Software Group

CICS Trace

� VERBX DFHPDxxx ‘TR=2’

� The trace entries below are the last trace entries in the dump. The time stamps match the

CSA Time-of-Day. This is consistent with a tight loop. As soon as the tight loop starts,

there are no more CICS trace entries, no more updates of the CSA Time-of-Day, and no

more useful work done by CICS

AP 1940 APLI ENTRY - FUNCTION(START_PROGRAM) PROGRAM(DFHTPR) CEDF_STATUS(NOCEDF) EXECUTION_SET(FULLAPI)

SYNCONRETURN(NO) LANGUAGE_BLOCK(1174EAE0) COMMAREA(00000000 , 00000000) LINK_LEVEL(1)

TASK-84551 KE_NUM-01A4 TCB-QR /00AEB5D8 RET-9047C94E TIME-16:24:26.8881611423

XM 1001 XMIQ ENTRY - FUNCTION(INQUIRE_TRANSACTION)XM 1001 XMIQ ENTRY - FUNCTION(INQUIRE_TRANSACTION)

TASK-84551 KE_NUM-01A4 TCB-QR /00AEB5D8 RET-9059A64C TIME-16:24:26.8881644079

XM 1002 XMIQ EXIT - FUNCTION(INQUIRE_TRANSACTION) RESPONSE(OK) FACILITY_TYPE(TERMINAL) TRANNUM(0084551C)

ORIGINAL_TRANSACTION_ID(CSPG)

TASK-84551 KE_NUM-01A4 TCB-QR /00AEB5D8 RET-9059A64C TIME-16:24:26.8881673220

---TRACE TABLE END---

NOTE: Time to call the Support Center for loop in DFH module

SHARE Boston - Ed Addison
28

IBM Software Group

Externalize CICS MaxTask with System

SHARE Boston - Ed Addison 29

Externalize CICS MaxTask with System
Event

IBM Software Group

Externalize MXT with System Events
� New with CICS Transaction Server 4.2
� Event processing supports the following system events:

� FILE enable or disable status

� FILE open or close status

� DB2CONN connection status

� TASK threshold

SHARE Boston - Ed Addison

� TASK threshold

� TRANCLASS TASK threshold

� Unhandled transaction abend

� Use CICS Explorer to build Event Binding file
� Prepare and install a Transaction and a Program that will write out a

console message at various task thresholds.
� Set a SLIP to get a dump on one of the messages.

30

IBM Software Group

Problem: IYNXK went MaXTask
07.10.08 JOB18137 +ABOVE_60_PERCENT_OF_MXT

07.10.14 JOB18137 +ABOVE_80_PERCENT_OF_MXT

07.10.17 JOB18137 IEA794I SVC DUMP HAS CAPTURED: 032

032 DUMPID=154 REQUESTED BY JOB (IYNXK)

032 DUMP TITLE=SLIP DUMP ID=AB80

07.10.20 JOB18137 +ABOVE_100_PERCENT_OF_MXT

07.10.24 JOB18137 +BELOW_90_PERCENT_OF_MXT

07.10.26 JOB18137 +ABOVE_100_PERCENT_OF_MXT

07.10.36 JOB18137 +BELOW_90_PERCENT_OF_MXT

07.10.38 JOB18137 +BELOW_70_PERCENT_OF_MXT

07.11.32 JOB18137 +ABOVE_80_PERCENT_OF_MXT

07.11.34 JOB18137 +ABOVE_100_PERCENT_OF_MXT

07.11.46 JOB18137 IEA794I SVC DUMP HAS CAPTURED: 117

117 DUMPID=156 REQUESTED BY JOB (*MASTER*)

117 DUMP TITLE=IYNXK MXT2

07.12.00 JOB18137 +BELOW_90_PERCENT_OF_MXT

07.12.01 JOB18137 +ABOVE_100_PERCENT_OF_MXT

07.12.06 JOB18137 +BELOW_90_PERCENT_OF_MXT

07.12.07 JOB18137 +ABOVE_100_PERCENT_OF_MXT

07.12.12 JOB18137 +BELOW_90_PERCENT_OF_MXT

SHARE Boston - Ed Addison

07.10.45 JOB18137 +ABOVE_80_PERCENT_OF_MXT

07.10.51 JOB18137 +BELOW_70_PERCENT_OF_MXT

07.10.53 JOB18137 +BELOW_50_PERCENT_OF_MXT

07.11.00 JOB18137 IEA794I SVC DUMP HAS CAPTURED: 073

073 DUMPID=155 REQUESTED BY JOB (*MASTER*)

073 DUMP TITLE=IYNXK MXT

07.11.18 JOB18137 +ABOVE_60_PERCENT_OF_MXT

07.11.20 JOB18137 +ABOVE_80_PERCENT_OF_MXT

07.11.22 JOB18137 +ABOVE_100_PERCENT_OF_MXT

07.11.28 JOB18137 +BELOW_90_PERCENT_OF_MXT

07.11.30 JOB18137 +BELOW_70_PERCENT_OF_MXT

07.12.12 JOB18137 +ABOVE_100_PERCENT_OF_MXT

07.12.17 JOB18137 +BELOW_90_PERCENT_OF_MXT

07.12.18 JOB18137 +ABOVE_100_PERCENT_OF_MXT

07.12.26 JOB18137 +BELOW_90_PERCENT_OF_MXT

07.12.28 JOB18137 +ABOVE_100_PERCENT_OF_MXT

07.13.08 JOB18137 +BELOW_90_PERCENT_OF_MXT

07.13.10 JOB18137 +BELOW_70_PERCENT_OF_MXT

07.13.11 JOB18137 +BELOW_50_PERCENT_OF_MXT

07.15.27 JOB18137 IEA794I SVC DUMP HAS CAPTURED: 197

197 DUMPID=157 REQUESTED BY JOB (*MASTER*)

197 DUMP TITLE=IYNXK NORM

31

IBM Software Group

Create an Event Binding Specification that contains 6 Capture Specifications as shown. The

name of each Capture Specification is the content of the message sent to the console.

SHARE Boston - Ed Addison 32

IBM Software Group

For each Capture Specification, choose a TASK THRESHOLD System Capture

Point

SHARE Boston - Ed Addison 33

IBM Software Group

For each Capture Specification, define a predicate that matches the name of the

Capture Specification.

SHARE Boston - Ed Addison 34

IBM Software Group

For the Adapter, choose Custom (User Written) and put in a Transaction ID. Then

click on Advanced Options.

SHARE Boston - Ed Addison 35

IBM Software Group

In advanced Options, let everything default except specify Dispatch Priority High.

SHARE Boston - Ed Addison 36

IBM Software Group

Translate, Assemble, and Link the following program into a dataset in the DFHRPL

concatenation

TITLE 'EPADAPTR'

* EPADAPTR: Puts out a message to the console *

DFHEISTG DSECT

STRUCLEN DS CL4

*

DFHREGS

COPY DFHEPCXD Covers DFHEP.CONTEXT container

COPY DFHEPDED Covers DFHEP.DESCRIPTOR container

COPY DFHEPAPD Covers DFHEP.ADAPTPARM container

SHARE Boston - Ed Addison

COPY DFHEPAPD Covers DFHEP.ADAPTPARM container

*

EPADAPTR CSECT

EPADAPTR AMODE ANY

EPADAPTR RMODE ANY

*

EXEC CICS GET CONTAINER('DFHEP.CONTEXT') X

SET(R9) FLENGTH(STRUCLEN)

USING EPCX,R9

EXEC CICS WRITE OPERATOR TEXT(EPCX_CS_NAME)

EXEC CICS RETURN

*

END

37

IBM Software Group

Final Steps:

� Export the Bundle Project containing the Event Binding

Specification.

� Define and Install a Transaction definition for EPTT and a

Program definition for EPADAPTR. Specify Priority(255) on

the EPTT transaction definition.

� Using the exported Bundle Project file, define and install the

SHARE Boston - Ed Addison

� Using the exported Bundle Project file, define and install the

Bundle

� And if you want to get a dump on one of the messages, here

is a SLIP:

SLIP SET,MSGID='ABOVE_80',J=jobname,ID=AB80,A=SVCD,ML=1,END

38

IBM Software Group

CICS Monitoring Facility Information

� Two CICS/PA summary forms

� Use them with the 4 example tasks

� Use them with the problem SMF110 data

SHARE Boston - Ed Addison 39

IBM Software Group

SUSPSUM summarizes components of Suspend Time.

DISPSUM summarizes components of Dispatch Time.

SUMMARY(OUTPUT(SUSPSUM),

EXTERNAL(CPAXW001),

TOTALS(8),

INTERVAL(00:00:30),

FIELDS(START(TIMES,ASCEND),

TASKCNT,

SUMMARY(OUTPUT(DISPSUM),

EXTERNAL(CPAXW002),

TOTALS(8),

INTERVAL(00:00:30),

FIELDS(START(TIMES,ASCEND),

TASKCNT,

SHARE Boston - Ed Addison

RESPONSE(AVE),

DISPATCH(TIME(AVE)),

SUSPEND(TIME(AVE)),

SUSPEND(COUNT(AVE)),

DSPDELAY(TIME(AVE)),

MXTDELAY(TIME(AVE)),

TCLDELAY(TIME(AVE)),

DISPWAIT(TIME(AVE)),

QRMODDLY(TIME(AVE)),

FCWAIT(TIME(AVE)),

FCWAIT(COUNT(AVE)))),

RESPONSE(AVE),

SUSPEND(TIME(AVE)),

DISPATCH(TIME(AVE)),

CPU(TIME(AVE)),

QRDISPT(TIME(TOT)),

QRDISPT(TIME(AVE)),

QRCPU(TIME(TOT)),

KY8DISPT(TIME(AVE)),

KY8DISPT(COUNT(AVE)),

L8CPU(TIME(AVE)),

MXTDELAY(TIME(AVE))))

40

IBM Software Group

Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg

Start #Tasks Response Dispatch Suspend Suspend Disp1Dly MXTDelay TCLDelay DispWait QRModDly FC Wait FC Wait

Interval Time Time Time Count Time Time Time Time Time Time Count

07:08:30 3228 .1113 .0092 .1021 1 .0605 .0000 .0000 .0414 .0414 .0416 0

07:09:00 3276 .1562 .0091 .1471 1 .0830 .0000 .0000 .0638 .0638 .0641 0

07:09:30 3228 .3328 .0093 .3234 1 .1698 .0000 .0000 .1525 .1524 .1528 0

07:10:00 2285 2.1023 .0137 2.0886 1 1.0377 .0289 .0000 1.0375 1.0375 1.0076 0

07:10:30 2105 1.5692 .0131 1.5561 1 .7964 .0083 .0000 .7540 .7540 .7083 0

07:11:00 2384 1.1418 .0125 1.1293 1 .5423 .0434 .0000 .5813 .5813 .5195 0

07:11:30 1945 3.4445 .0158 3.4287 1 1.8043 .3032 .0000 1.6064 1.6064 1.4462 0

07:12:00 2446 2.4340 .0117 2.4223 1 1.2851 .1436 .0000 1.1246 1.1246 .9916 0

07:12:30 3240 1.7993 .0091 1.7902 1 .9038 .0030 .0000 .8778 .8778 .8823 0

07:13:00 3051 .6163 .0091 .6072 1 .3217 .0000 .0000 .2806 .2806 .2843 0

07:13:30 3252 .0753 .0091 .0661 1 .0413 .0000 .0000 .0246 .0246 .0248 0

SUSPSUM

SHARE Boston - Ed Addison

07:13:30 3252 .0753 .0091 .0661 1 .0413 .0000 .0000 .0246 .0246 .0248 0

07:14:00 3258 .1391 .0091 .1300 1 .0742 .0000 .0000 .0556 .0556 .0559 0

07:14:30 3258 .1640 .0091 .1548 1 .0867 .0000 .0000 .0679 .0679 .0682 0

•Average Response Time started going bad in the 7:09:30 interval.

•It was back to normal starting in the 7:13:30 interval.

•You can see from the MXTDelay column which intervals had some MXT

delay.

41

IBM Software Group

Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg

Start #Tasks Response Dispatch Suspend Suspend Disp1Dly MXTDelay TCLDelay DispWait QRModDly FC Wait FC Wait

Interval Time Time Time Count Time Time Time Time Time Time Count

07:08:30 3228 .1113 .0092 .1021 1 .0605 .0000 .0000 .0414 .0414 .0416 0

07:09:00 3276 .1562 .0091 .1471 1 .0830 .0000 .0000 .0638 .0638 .0641 0

07:09:30 3228 .3328 .0093 .3234 1 .1698 .0000 .0000 .1525 .1524 .1528 0

07:10:00 2285 2.1023 .0137 2.0886 1 1.0377 .0289 .0000 1.0375 1.0375 1.0076 0

07:10:30 2105 1.5692 .0131 1.5561 1 .7964 .0083 .0000 .7540 .7540 .7083 0

07:11:00 2384 1.1418 .0125 1.1293 1 .5423 .0434 .0000 .5813 .5813 .5195 0

07:11:30 1945 3.4445 .0158 3.4287 1 1.8043 .3032 .0000 1.6064 1.6064 1.4462 0

07:12:00 2446 2.4340 .0117 2.4223 1 1.2851 .1436 .0000 1.1246 1.1246 .9916 0

07:12:30 3240 1.7993 .0091 1.7902 1 .9038 .0030 .0000 .8778 .8778 .8823 0

07:13:00 3051 .6163 .0091 .6072 1 .3217 .0000 .0000 .2806 .2806 .2843 0

07:13:30 3252 .0753 .0091 .0661 1 .0413 .0000 .0000 .0246 .0246 .0248 0

SUSPSUM

SHARE Boston - Ed Addison

07:13:30 3252 .0753 .0091 .0661 1 .0413 .0000 .0000 .0246 .0246 .0248 0

07:14:00 3258 .1391 .0091 .1300 1 .0742 .0000 .0000 .0556 .0556 .0559 0

07:14:30 3258 .1640 .0091 .1548 1 .0867 .0000 .0000 .0679 .0679 .0682 0

•Notice that Response time is always Dispatch time plus Suspend time. A

task is always either Suspended or Dispatched.

42

IBM Software Group

Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg

Start #Tasks Response Dispatch Suspend Suspend Disp1Dly MXTDelay TCLDelay DispWait QRModDly FC Wait FC Wait

Interval Time Time Time Count Time Time Time Time Time Time Count

07:08:30 3228 .1113 .0092 .1021 1 .0605 .0000 .0000 .0414 .0414 .0416 0

07:09:00 3276 .1562 .0091 .1471 1 .0830 .0000 .0000 .0638 .0638 .0641 0

07:09:30 3228 .3328 .0093 .3234 1 .1698 .0000 .0000 .1525 .1524 .1528 0

07:10:00 2285 2.1023 .0137 2.0886 1 1.0377 .0289 .0000 1.0375 1.0375 1.0076 0

07:10:30 2105 1.5692 .0131 1.5561 1 .7964 .0083 .0000 .7540 .7540 .7083 0

07:11:00 2384 1.1418 .0125 1.1293 1 .5423 .0434 .0000 .5813 .5813 .5195 0

07:11:30 1945 3.4445 .0158 3.4287 1 1.8043 .3032 .0000 1.6064 1.6064 1.4462 0

07:12:00 2446 2.4340 .0117 2.4223 1 1.2851 .1436 .0000 1.1246 1.1246 .9916 0

07:12:30 3240 1.7993 .0091 1.7902 1 .9038 .0030 .0000 .8778 .8778 .8823 0

07:13:00 3051 .6163 .0091 .6072 1 .3217 .0000 .0000 .2806 .2806 .2843 0

07:13:30 3252 .0753 .0091 .0661 1 .0413 .0000 .0000 .0246 .0246 .0248 0

SUSPSUM

SHARE Boston - Ed Addison

07:13:30 3252 .0753 .0091 .0661 1 .0413 .0000 .0000 .0246 .0246 .0248 0

07:14:00 3258 .1391 .0091 .1300 1 .0742 .0000 .0000 .0556 .0556 .0559 0

07:14:30 3258 .1640 .0091 .1548 1 .0867 .0000 .0000 .0679 .0679 .0682 0

•Get used to what is normal. Dispatch time is normally about .0091. That

increases significantly during the problem intervals. Suspend time is

normally about .1300. That increases significantly during the problem

intervals.

43

IBM Software Group

0 10 20 30 40 50 60 70 80 90 100 110

Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg

Start #Tasks Response Dispatch Suspend Suspend Disp1Dly MXTDelay TCLDelay DispWait QRModDly FC Wait FC Wait

Interval Time Time Time Count Time Time Time Time Time Time Count

07:08:30 3228 .1113 .0092 .1021 1 .0605 .0000 .0000 .0414 .0414 .0416 0

Avg Avg Avg Avg Total Avg Avg Avg Avg Avg Avg

Start #Tasks Response Suspend Dispatch User CPU QR Disp QR Disp QR CPU KY8 Disp KY8 Disp L8 CPU MXTDelay

Interval Time Time Time Time Time Time Time Time Count Time Time

07:08:30 3228 .1113 .1021 .0092 .0086 29.6445 .0092 .0086 .0000 0 .0000 .0000

SUSPSUM

DISPSUM

SHARE Boston - Ed Addison

•Let’s graph the 07:08:30 30-second interval. It is a normal, pre-problem

interval.

•Disp1Dly is 60 milliseconds and there is no MXTDelay or TCLDelay. So

all 60 milliseconds is dispatchable, waiting to run on the QR.

44

IBM Software Group

Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg

Start #Tasks Response Dispatch Suspend Suspend Disp1Dly MXTDelay TCLDelay DispWait QRModDly FC Wait FC Wait

Interval Time Time Time Count Time Time Time Time Time Time Count

07:08:30 3228 .1113 .0092 .1021 1 .0605 .0000 .0000 .0414 .0414 .0416 0

0 10 20 30 40 50 60 70 80 90 100 110

Avg Avg Avg Avg Total Avg Avg Avg Avg Avg Avg

Start #Tasks Response Suspend Dispatch User CPU QR Disp QR Disp QR CPU KY8 Disp KY8 Disp L8 CPU MXTDelay

Interval Time Time Time Time Time Time Time Time Count Time Time

07:08:30 3228 .1113 .1021 .0092 .0086 29.6445 .0092 .0086 .0000 0 .0000 .0000

SUSPSUM

DISPSUM

SHARE Boston - Ed Addison

•Suspend Time is 102 milliseconds and Disp1Dly is 60 milliseconds. So

the remaining part of Suspend time is 42 milliseconds. Of that, 41

milliseconds is waiting for redispatch (DispWait) on the QR (QRModDly).

•So, almost the whole 102 millisecond suspend time is waiting to run on

the QR. Clearly the QR TCB is a bottleneck, during normal intervals.

45

IBM Software Group

Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg

Start #Tasks Response Dispatch Suspend Suspend Disp1Dly MXTDelay TCLDelay DispWait QRModDly FC Wait FC Wait

Interval Time Time Time Count Time Time Time Time Time Time Count

07:08:30 3228 .1113 .0092 .1021 1 .0605 .0000 .0000 .0414 .0414 .0416 0

0 10 20 30 40 50 60 70 80 90 100 110

Avg Avg Avg Avg Total Avg Avg Avg Avg Avg Avg

Start #Tasks Response Suspend Dispatch User CPU QR Disp QR Disp QR CPU KY8 Disp KY8 Disp L8 CPU MXTDelay

Interval Time Time Time Time Time Time Time Time Count Time Time

07:08:30 3228 .1113 .1021 .0092 .0086 29.6445 .0092 .0086 .0000 0 .0000 .0000

SUSPSUM

DISPSUM

SHARE Boston - Ed Addison

•Dispatch Time is 9 milliseconds. Notice that QR Disp is the same. So

we know that the transactions only ran on the QR TCB.

•User CPU (and QR CPU) round up to 9 milliseconds. So we’ll make the

whole 9 milliseconds dark green.

46

IBM Software Group

Avg Avg Avg Avg Total Avg Avg Avg Avg Avg Avg

Start #Tasks Response Suspend Dispatch User CPU QR Disp QR Disp QR CPU KY8 Disp KY8 Disp L8 CPU MXTDelay

Interval Time Time Time Time Time Time Time Time Count Time Time

07:08:30 3228 .1113 .1021 .0092 .0086 29.6445 .0092 .0086 .0000 0 .0000 .0000

07:09:00 3276 .1562 .1471 .0091 .0086 29.6774 .0091 .0086 .0000 0 .0000 .0000

07:09:30 3228 .3328 .3234 .0093 .0088 30.1325 .0093 .0088 .0000 0 .0000 .0000

07:10:00 2285 2.1023 2.0886 .0137 .0115 31.3524 .0137 .0115 .0000 0 .0000 .0289

07:10:30 2105 1.5692 1.5561 .0131 .0115 27.4879 .0131 .0115 .0000 0 .0000 .0083

07:11:00 2384 1.1418 1.1293 .0125 .0115 29.8614 .0125 .0115 .0000 0 .0000 .0434

07:11:30 1945 3.4445 3.4287 .0158 .0117 30.8260 .0158 .0117 .0000 0 .0000 .3032

07:12:00 2446 2.4340 2.4223 .0117 .0106 28.6731 .0117 .0106 .0000 0 .0000 .1436

07:12:30 3240 1.7993 1.7902 .0091 .0086 29.5015 .0091 .0086 .0000 0 .0000 .0030

07:13:00 3051 .6163 .6072 .0091 .0086 27.8617 .0091 .0086 .0000 0 .0000 .0000

07:13:30 3252 .0753 .0661 .0091 .0086 29.7519 .0091 .0086 .0000 0 .0000 .0000

DISPSUM

SHARE Boston - Ed Addison

07:13:30 3252 .0753 .0661 .0091 .0086 29.7519 .0091 .0086 .0000 0 .0000 .0000

07:14:00 3258 .1391 .1300 .0091 .0086 29.6127 .0091 .0086 .0000 0 .0000 .0000

07:14:30 3258 .1640 .1548 .0091 .0086 29.6975 .0091 .0086 .0000 0 .0000 .0000

•Here is the DISPSUM form showing dispatch time fields.

•Notice that Dispatch Time and QR Disp Time are the same. That means

that all processing is on the QR TCB.

47

IBM Software Group

Avg Avg Avg Avg Total Avg Avg Avg Avg Avg Avg

Start #Tasks Response Suspend Dispatch User CPU QR Disp QR Disp QR CPU KY8 Disp KY8 Disp L8 CPU MXTDelay

Interval Time Time Time Time Time Time Time Time Count Time Time

07:08:30 3228 .1113 .1021 .0092 .0086 29.6445 .0092 .0086 .0000 0 .0000 .0000

07:09:00 3276 .1562 .1471 .0091 .0086 29.6774 .0091 .0086 .0000 0 .0000 .0000

07:09:30 3228 .3328 .3234 .0093 .0088 30.1325 .0093 .0088 .0000 0 .0000 .0000

07:10:00 2285 2.1023 2.0886 .0137 .0115 31.3524 .0137 .0115 .0000 0 .0000 .0289

07:10:30 2105 1.5692 1.5561 .0131 .0115 27.4879 .0131 .0115 .0000 0 .0000 .0083

07:11:00 2384 1.1418 1.1293 .0125 .0115 29.8614 .0125 .0115 .0000 0 .0000 .0434

07:11:30 1945 3.4445 3.4287 .0158 .0117 30.8260 .0158 .0117 .0000 0 .0000 .3032

07:12:00 2446 2.4340 2.4223 .0117 .0106 28.6731 .0117 .0106 .0000 0 .0000 .1436

07:12:30 3240 1.7993 1.7902 .0091 .0086 29.5015 .0091 .0086 .0000 0 .0000 .0030

07:13:00 3051 .6163 .6072 .0091 .0086 27.8617 .0091 .0086 .0000 0 .0000 .0000

07:13:30 3252 .0753 .0661 .0091 .0086 29.7519 .0091 .0086 .0000 0 .0000 .0000

DISPSUM

SHARE Boston - Ed Addison

07:13:30 3252 .0753 .0661 .0091 .0086 29.7519 .0091 .0086 .0000 0 .0000 .0000

07:14:00 3258 .1391 .1300 .0091 .0086 29.6127 .0091 .0086 .0000 0 .0000 .0000

07:14:30 3258 .1640 .1548 .0091 .0086 29.6975 .0091 .0086 .0000 0 .0000 .0000

•This chart summarizes all the tasks that started during each 30-second

interval. Notice how, even during the good intervals, Total QR Disp time is

very close to 30 seconds. This is further evidence that the QR TCB is a

bottleneck. That squares with how almost all of the Suspend time is

waiting to run on the QR TCB.

48

IBM Software Group

Avg Avg Avg Avg Total Avg Avg Avg Avg Avg Avg

Start #Tasks Response Suspend Dispatch User CPU QR Disp QR Disp QR CPU KY8 Disp KY8 Disp L8 CPU MXTDelay

Interval Time Time Time Time Time Time Time Time Count Time Time

07:08:30 3228 .1113 .1021 .0092 .0086 29.6445 .0092 .0086 .0000 0 .0000 .0000

07:09:00 3276 .1562 .1471 .0091 .0086 29.6774 .0091 .0086 .0000 0 .0000 .0000

07:09:30 3228 .3328 .3234 .0093 .0088 30.1325 .0093 .0088 .0000 0 .0000 .0000

07:10:00 2285 2.1023 2.0886 .0137 .0115 31.3524 .0137 .0115 .0000 0 .0000 .0289

07:10:30 2105 1.5692 1.5561 .0131 .0115 27.4879 .0131 .0115 .0000 0 .0000 .0083

07:11:00 2384 1.1418 1.1293 .0125 .0115 29.8614 .0125 .0115 .0000 0 .0000 .0434

07:11:30 1945 3.4445 3.4287 .0158 .0117 30.8260 .0158 .0117 .0000 0 .0000 .3032

07:12:00 2446 2.4340 2.4223 .0117 .0106 28.6731 .0117 .0106 .0000 0 .0000 .1436

07:12:30 3240 1.7993 1.7902 .0091 .0086 29.5015 .0091 .0086 .0000 0 .0000 .0030

07:13:00 3051 .6163 .6072 .0091 .0086 27.8617 .0091 .0086 .0000 0 .0000 .0000

07:13:30 3252 .0753 .0661 .0091 .0086 29.7519 .0091 .0086 .0000 0 .0000 .0000

DISPSUM

SHARE Boston - Ed Addison

07:13:30 3252 .0753 .0661 .0091 .0086 29.7519 .0091 .0086 .0000 0 .0000 .0000

07:14:00 3258 .1391 .1300 .0091 .0086 29.6127 .0091 .0086 .0000 0 .0000 .0000

07:14:30 3258 .1640 .1548 .0091 .0086 29.6975 .0091 .0086 .0000 0 .0000 .0000

•How is it possible for tasks that ran in a 30-second interval to use more

than 30 seconds of QR Disp time? It is because these intervals include all

tasks that started within the interval. For example, tasks that started at

07:10:29.9 are included in the 07:10:00 interval even though all of their

processing is after 07:10:30.

49

IBM Software Group

Avg Avg Avg Avg Total Avg Avg Avg Avg Avg Avg

Start #Tasks Response Suspend Dispatch User CPU QR Disp QR Disp QR CPU KY8 Disp KY8 Disp L8 CPU MXTDelay

Interval Time Time Time Time Time Time Time Time Count Time Time

07:08:30 3228 .1113 .1021 .0092 .0086 29.6445 .0092 .0086 .0000 0 .0000 .0000

07:09:00 3276 .1562 .1471 .0091 .0086 29.6774 .0091 .0086 .0000 0 .0000 .0000

07:09:30 3228 .3328 .3234 .0093 .0088 30.1325 .0093 .0088 .0000 0 .0000 .0000

07:10:00 2285 2.1023 2.0886 .0137 .0115 31.3524 .0137 .0115 .0000 0 .0000 .0289

07:10:30 2105 1.5692 1.5561 .0131 .0115 27.4879 .0131 .0115 .0000 0 .0000 .0083

07:11:00 2384 1.1418 1.1293 .0125 .0115 29.8614 .0125 .0115 .0000 0 .0000 .0434

07:11:30 1945 3.4445 3.4287 .0158 .0117 30.8260 .0158 .0117 .0000 0 .0000 .3032

07:12:00 2446 2.4340 2.4223 .0117 .0106 28.6731 .0117 .0106 .0000 0 .0000 .1436

07:12:30 3240 1.7993 1.7902 .0091 .0086 29.5015 .0091 .0086 .0000 0 .0000 .0030

07:13:00 3051 .6163 .6072 .0091 .0086 27.8617 .0091 .0086 .0000 0 .0000 .0000

07:13:30 3252 .0753 .0661 .0091 .0086 29.7519 .0091 .0086 .0000 0 .0000 .0000

DISPSUM

SHARE Boston - Ed Addison

07:13:30 3252 .0753 .0661 .0091 .0086 29.7519 .0091 .0086 .0000 0 .0000 .0000

07:14:00 3258 .1391 .1300 .0091 .0086 29.6127 .0091 .0086 .0000 0 .0000 .0000

07:14:30 3258 .1640 .1548 .0091 .0086 29.6975 .0091 .0086 .0000 0 .0000 .0000

•Notice how the QR CPU time and the QR Disp time both suddenly

increase. Given that the suspend time is almost all waiting for dispatch on

the QR, it is clear that this sudden increase in QR Disp time has

something to do with causing the MXT.

50

IBM Software Group

Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg

Start #Tasks Response Dispatch Suspend Suspend Disp1Dly MXTDelay TCLDelay DispWait QRModDly FC Wait FC Wait

Interval Time Time Time Count Time Time Time Time Time Time Count

07:09:55 108 .4217 .0093 .4124 1 .2163 .0000 .0000 .1959 .1959 .1961 0

07:09:56 108 .4078 .0090 .3988 1 .2099 .0000 .0000 .1887 .1887 .1889 0

07:09:57 108 .4226 .0091 .4136 1 .2106 .0000 .0000 .2027 .2027 .2029 0

07:09:58 94 .5417 .0121 .5296 1 .2645 .0000 .0000 .2650 .2650 .2652 0

07:09:59 80 .6383 .0130 .6253 1 .3111 .0000 .0000 .3140 .3140 .3142 0

07:10:00 88 .7077 .0124 .6954 1 .3449 .0000 .0000 .3502 .3502 .3504 0

Avg Avg Avg Avg Total Avg Avg Avg Avg Avg Avg

Start #Tasks Response Suspend Dispatch User CPU QR Disp QR Disp QR CPU KY8 Disp KY8 Disp L8 CPU MXTDelay

Interval Time Time Time Time Time Time Time Time Count Time Time

07:09:55 108 .4217 .4124 .0093 .0086 1.0027 .0093 .0086 .0000 0 .0000 .0000

SHARE Boston - Ed Addison

•Here we have the transactions summarized on 1-second intervals.

•With this we see that the point where the QR Disp and QR CPU times

suddenly increased is actually at 07:09:58.

07:09:56 108 .4078 .3988 .0090 .0086 .9758 .0090 .0086 .0000 0 .0000 .0000

07:09:57 108 .4226 .4136 .0091 .0086 .9801 .0091 .0086 .0000 0 .0000 .0000

07:09:58 94 .5417 .5296 .0121 .0115 1.1383 .0121 .0115 .0000 0 .0000 .0000

07:09:59 80 .6383 .6253 .0130 .0115 1.0429 .0130 .0115 .0000 0 .0000 .0000

07:10:00 88 .7077 .6954 .0124 .0116 1.0879 .0124 .0116 .0000 0 .0000 .0000

51

IBM Software Group

Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg Avg

Start #Tasks Response Dispatch Suspend Suspend Disp1Dly MXTDelay TCLDelay DispWait QRModDly FC Wait FC Wait

Interval Time Time Time Count Time Time Time Time Time Time Count

07:09:55 108 .4217 .0093 .4124 1 .2163 .0000 .0000 .1959 .1959 .1961 0

07:09:56 108 .4078 .0090 .3988 1 .2099 .0000 .0000 .1887 .1887 .1889 0

07:09:57 108 .4226 .0091 .4136 1 .2106 .0000 .0000 .2027 .2027 .2029 0

07:09:58 94 .5417 .0121 .5296 1 .2645 .0000 .0000 .2650 .2650 .2652 0

07:09:59 80 .6383 .0130 .6253 1 .3111 .0000 .0000 .3140 .3140 .3142 0

07:10:00 88 .7077 .0124 .6954 1 .3449 .0000 .0000 .3502 .3502 .3504 0

Avg Avg Avg Avg Total Avg Avg Avg Avg Avg Avg

Start #Tasks Response Suspend Dispatch User CPU QR Disp QR Disp QR CPU KY8 Disp KY8 Disp L8 CPU MXTDelay

Interval Time Time Time Time Time Time Time Time Count Time Time

07:09:55 108 .4217 .4124 .0093 .0086 1.0027 .0093 .0086 .0000 0 .0000 .0000

SHARE Boston - Ed Addison

•Prior to 07:09:58, there was a balance between transaction arrival rate

and QR Disp time. Just enough transactions were arriving to keep the QR

TCB totally busy. The 33% increase in QR Disp per task breaks that

balance. Now the transactions are arriving faster than they can get their

QR TCB time. So they back up.

07:09:56 108 .4078 .3988 .0090 .0086 .9758 .0090 .0086 .0000 0 .0000 .0000

07:09:57 108 .4226 .4136 .0091 .0086 .9801 .0091 .0086 .0000 0 .0000 .0000

07:09:58 94 .5417 .5296 .0121 .0115 1.1383 .0121 .0115 .0000 0 .0000 .0000

07:09:59 80 .6383 .6253 .0130 .0115 1.0429 .0130 .0115 .0000 0 .0000 .0000

07:10:00 88 .7077 .6954 .0124 .0116 1.0879 .0124 .0116 .0000 0 .0000 .0000

52

IBM Software Group

RMFIII

� The problem is caused by transactions in IYNXK

suddenly starting to use significantly more CPU at

7:09:58.

� Maybe RMFIII will yield some clues to help explain

why that happened.

SHARE Boston - Ed Addison

why that happened.

53

IBM Software Group

. RMF Monitor III Primary Menu z/OS V1R12 RMF .

. Selection ===> 2 .

. .

. Enter selection number or command on selection line. .

. .

. .

. S SYSPLEX Sysplex reports and Data Index (SP) .

. 1 OVERVIEW WFEX, SYSINFO, and Detail reports (OV) .

. 2 JOBS All information about job delays (JS) .

. 3 RESOURCE Processor, Device, Enqueue, and Storage (RS) .

. 4 SUBS Subsystem information for HSM, JES, and XCF (SUB) .

. .

. U USER User-written reports (add your own ...) (US) .

. .

. .

. O OPTIONS T TUTORIAL X EXIT .

. .

. 5694-A01 Copyright IBM Corp. 1986, 2010. All Rights Reserved .

SHARE Boston - Ed Addison

•Type ‘2’ for Selection and press ENTER.

. Licensed Materials - Property of IBM .

. .

. .

. .

. .

. .

. F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=TOGGLE .

. F7=UP F8=DOWN F9=SWAP F10=BREF F11=FREF F12=RETRIEVE .

54

IBM Software Group

. RMF Job Report Selection Menu .

. Selection ===> 5 .

. .

. Enter selection number or command and jobname for desired job report. .

. .

. Jobname ===> IYNXK___ .

. .

. 1 DEVJ Delay caused by devices (DVJ) .

. 1A DSNJ .. Data set level (DSJ) .

. 2 ENQJ Delay caused by ENQ (EJ) .

. 3 HSMJ Delay caused by HSM (HJ) .

. 4 JESJ Delay caused by JES (JJ) .

. 5 JOB Delay caused by primary reason (DELAYJ) .

. 6 MNTJ Delay caused by volume mount (MTJ) .

. 7 MSGJ Delay caused by operator reply (MSJ) .

. 8 PROCJ Delay caused by processor (PJ) .

. 9 QSCJ Delay caused by QUIESCE via RESET command (QJ) .

. 10 STORJ Delay caused by storage (SJ) .

SHARE Boston - Ed Addison

•Type ‘5’ for Selection and ‘IYNXK’ for Jobname and press ENTER.

. 11 XCFJ Delay caused by XCF (XJ) .

. .

. These reports can also be selected by placing the cursor on the .

. corresponding delay reason column of the DELAY or JOB reports and .

. pressing ENTER or by using the commands from any panel. .

. .

. F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=TOGGLE .

. F7=UP F8=DOWN F9=SWAP F10=BREF F11=FREF F12=RETRIEVE .

55

IBM Software Group

. RMF V1R12 Job Delays Line 1 of 3 .

. Command ===> Scroll ===> CSR .

. .

. Samples: 100 System: MV23 Date: 05/28/12 Time: 07.08.20 Range: 100 Sec .

. .

. Job: IYNXK Primary delay: Job is waiting to use the processor. .

. .

. Probable causes: 1) Higher priority work is using the system. .

. 2) Improperly tuned dispatching priorities. .

. .

. .

. ------------------------- Jobs Holding the Processor -------------------------- .

. Job: IYNXJ Job: RH23MSTR Job: OMEGTEMS .

. Holding: 4% Holding: 2% Holding: 1% .

. PROC Using: 9% PROC Using: 2% PROC Using: 1% .

. DEV Using: 0% DEV Using: 0% DEV Using: 0% .

. --------------------------- Job Performance Summary --------------------------- .

. Service WFL -Using%- DLY IDL UKN ---- % Delayed for ---- Primary .

SHARE Boston - Ed Addison

. CX ASID Class P Cr % PRC DEV % % % PRC DEV STR SUB OPR ENQ Reason .

. BO 0066 BATCH * 91 91 1 9 0 0 9 0 0 0 0 0 IYNXJ .

. BATCH 1 92 57 1 5 0 0 5 0 0 0 0 0 IYNXJ .

. BATCH 2 89 34 0 4 0 0 4 0 0 0 0 0 IYNXJ .

. .

. .

. F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=TOGGLE .

. F7=UP F8=DOWN F9=SWAP F10=BREF F11=FREF F12=RETRIEVE .

•Note the Time towards the upper right corner. You can use F10 and F11 to scroll backwards and
forwards through time.

•Note the Range. That is the number of seconds in the interval.

•On this page, the information covers from 07.08.20 to 07.10.00.

56

IBM Software Group

. RMF V1R12 Job Delays Line 1 of 3 .

. Command ===> Scroll ===> CSR .

. .

. Samples: 100 System: MV23 Date: 05/28/12 Time: 07.08.20 Range: 100 Sec .

. .

. Job: IYNXK Primary delay: Job is waiting to use the processor. .

. .

. Probable causes: 1) Higher priority work is using the system. .

. 2) Improperly tuned dispatching priorities. .

. .

. .

. ------------------------- Jobs Holding the Processor -------------------------- .

. Job: IYNXJ Job: RH23MSTR Job: OMEGTEMS .

. Holding: 4% Holding: 2% Holding: 1% .

. PROC Using: 9% PROC Using: 2% PROC Using: 1% .

. DEV Using: 0% DEV Using: 0% DEV Using: 0% .

. --------------------------- Job Performance Summary --------------------------- .

. Service WFL -Using%- DLY IDL UKN ---- % Delayed for ---- Primary .

SHARE Boston - Ed Addison

. CX ASID Class P Cr % PRC DEV % % % PRC DEV STR SUB OPR ENQ Reason .

. BO 0066 BATCH * 91 91 1 9 0 0 9 0 0 0 0 0 IYNXJ .

. BATCH 1 92 57 1 5 0 0 5 0 0 0 0 0 IYNXJ .

. BATCH 2 89 34 0 4 0 0 4 0 0 0 0 0 IYNXJ .

. .

. .

. F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=TOGGLE .

. F7=UP F8=DOWN F9=SWAP F10=BREF F11=FREF F12=RETRIEVE .

•You can also overtype Time to get to the time you want.

•When you do that, keep an eye on Range. It might double. Overtype Range to get it

back to the smaller Range.

57

IBM Software Group

. RMF V1R12 Job Delays Line 1 of 3 .

. Command ===> Scroll ===> CSR .

. .

. Samples: 100 System: MV23 Date: 05/28/12 Time: 07.08.20 Range: 100 Sec .

. .

. Job: IYNXK Primary delay: Job is waiting to use the processor. .

. .

. Probable causes: 1) Higher priority work is using the system. .

. 2) Improperly tuned dispatching priorities. .

. .

. .

. ------------------------- Jobs Holding the Processor -------------------------- .

. Job: IYNXJ Job: RH23MSTR Job: OMEGTEMS .

. Holding: 4% Holding: 2% Holding: 1% .

. PROC Using: 9% PROC Using: 2% PROC Using: 1% .

. DEV Using: 0% DEV Using: 0% DEV Using: 0% .

. --------------------------- Job Performance Summary --------------------------- .

. Service WFL -Using%- DLY IDL UKN ---- % Delayed for ---- Primary .

SHARE Boston - Ed Addison

•07.08.20 is the 100 second interval before the MXT began. (MXT began right around

07.10.08. The suddenly higher CPU began at 07.09.58.)

•IYNXK is using 91% Processor and is delayed 9% for processor. IYNXJ is using 9%

Processor.

. CX ASID Class P Cr % PRC DEV % % % PRC DEV STR SUB OPR ENQ Reason .

. BO 0066 BATCH * 91 91 1 9 0 0 9 0 0 0 0 0 IYNXJ .

. BATCH 1 92 57 1 5 0 0 5 0 0 0 0 0 IYNXJ .

. BATCH 2 89 34 0 4 0 0 4 0 0 0 0 0 IYNXJ .

. .

. .

. F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=TOGGLE .

. F7=UP F8=DOWN F9=SWAP F10=BREF F11=FREF F12=RETRIEVE .

58

IBM Software Group

. RMF V1R12 Job Delays Line 1 of 1 .

. Command ===> Scroll ===> CSR .

. .

. Samples: 100 System: MV23 Date: 05/28/12 Time: 07.10.00 Range: 100 Sec .

. .

. Job: IYNXK Primary delay: Job is waiting to use the processor. .

. .

. Probable causes: 1) Higher priority work is using the system. .

. 2) Improperly tuned dispatching priorities. .

. .

. .

. ------------------------- Jobs Holding the Processor -------------------------- .

. Job: IYNXJ Job: OMPROUTE Job: DI23IRLM .

. Holding: 4% Holding: 1% Holding: 1% .

. PROC Using: 91% PROC Using: 1% PROC Using: 1% .

. DEV Using: 2% DEV Using: 0% DEV Using: 0% .

. --------------------------- Job Performance Summary --------------------------- .

. Service WFL -Using%- DLY IDL UKN ---- % Delayed for ---- Primary .

SHARE Boston - Ed Addison

•The 07.10.00 interval is mostly all in the MXT period. IYNXK hasn’t changed much.

•But IYNXJ is using 91% processor. That is a lot more than the prior interval. Let’s have

a look at CPU.

. CX ASID Class P Cr % PRC DEV % % % PRC DEV STR SUB OPR ENQ Reason .

. BO 0066 BATCH 1 93 91 1 7 0 2 5 0 0 0 0 2 IYNXJ .

. .

. .

. .

. .

. F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=TOGGLE .

. F7=UP F8=DOWN F9=SWAP F10=BREF F11=FREF F12=RETRIEVE .

59

IBM Software Group

. RMF Monitor III Primary Menu z/OS V1R12 RMF .

. Selection ===> 3 .

. .

. Enter selection number or command on selection line. .

. .

. .

. S SYSPLEX Sysplex reports and Data Index (SP) .

. 1 OVERVIEW WFEX, SYSINFO, and Detail reports (OV) .

. 2 JOBS All information about job delays (JS) .

. 3 RESOURCE Processor, Device, Enqueue, and Storage (RS) .

. 4 SUBS Subsystem information for HSM, JES, and XCF (SUB) .

. .

. U USER User-written reports (add your own ...) (US) .

. .

. .

. O OPTIONS T TUTORIAL X EXIT .

. .

. 5694-A01 Copyright IBM Corp. 1986, 2010. All Rights Reserved .

SHARE Boston - Ed Addison

•Type ‘3’ for Selection and press ENTER.

. Licensed Materials - Property of IBM .

. .

. .

. .

. .

. .

. F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=TOGGLE .

. F7=UP F8=DOWN F9=SWAP F10=BREF F11=FREF F12=RETRIEVE .

60

IBM Software Group

. RMF Resource Report Selection Menu .

. Selection ===> 1A .

. .

. Enter selection number or command for desired report. .

. .

. Processor 1 PROC Processor delays (PD) .

. 1A PROCU Processor usage (PU) .

. Device 2 DEV Device delays (DD) .

. 3 DEVR Device resource (DR) .

. 3A DSND .. Data set level by DSN (DSN) .

. 3B DSNV .. Data set level by volume (DSV) .

. Enqueue 4 ENQ Enqueue delays (ED) .

. 5 ENQR Enqueue resource (ER) .

. Storage 6 STOR Storage delays for each job (SD) .

. 7 STORF Storage usage by frames (SF) .

. 7A STORM Storage usage by memory objects (SM) .

. 8 STORR Storage usage for each resource (SR) .

. 9 STORS Storage summary for each group (SS) .

SHARE Boston - Ed Addison

•Type ‘1A’ for Selection and press ENTER.

. 10 STORC Common storage summary (SC) .

. 11 STORCR Common storage remaining (SCR) .

. I/O Subsystem 12 CHANNEL Channel path activity (CH) .

. 13 IOQUEUE I/O queuing activity (IQ) .

. .

. .

. F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=TOGGLE .

. F7=UP F8=DOWN F9=SWAP F10=BREF F11=FREF F12=RETRIEVE .

61

IBM Software Group

. RMF V1R12 Processor Usage Line 1 of 21 .

. Command ===> Scroll ===> CSR .

. .

. Samples: 100 System: MV23 Date: 05/28/12 Time: 07.08.20 Range: 100 Sec .

. .

. Service --- Time on CP % --- ----- EAppl % ----- .

. Jobname CX Class Total AAP IIP CP AAP IIP .

. .

. IYNXK BO BATCH 94.0 0.0 0.0 94.0 .

. IYNXJ BO IYNXJCLS 3.2 0.0 0.0 3.2 .

. WLM S SYSTEM 1.0 0.0 0.0 1.0 .

. XCFAS S SYSTEM 0.9 0.0 0.0 0.9 .

. RMFGAT SO STC 0.8 0.0 0.0 0.8 .

. OMEGTEMS SO STCUSER 0.6 0.0 0.0 0.6 .

. GRS S SYSTEM 0.4 0.0 0.0 0.4 .

. NETVIEW SO STCFAST 0.4 0.0 0.0 0.4 .

. OMEGCON SO STC 0.3 0.0 0.0 0.3 .

. SMSVSAM S SYSTEM 0.1 0.0 0.0 0.1 .

SHARE Boston - Ed Addison

•With the Time set to 07.08.20, the interval before the MXT, we see that IYNXK was using

most of a processor, and IYNXJ was using 3 percent of a processor.

•Press F11 to go to the next interval.

. ZFS S SYSSTC 0.1 0.0 0.0 0.1 .

. JES2 S STC 0.1 0.0 0.0 0.1 .

. RG23IRLM S STC 0.1 0.0 0.0 0.1 .

. WJBMS41Z BO BATCH 0.1 0.0 0.0 0.1 .

. WJBCM41B BO BATCH 0.1 0.0 0.0 0.1 .

. WJBCM32B BO BATCH 0.1 0.0 0.0 0.1 .

. F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=TOGGLE .

. F7=UP F8=DOWN F9=SWAP F10=BREF F11=FREF F12=RETRIEVE .

62

IBM Software Group

. RMF V1R12 Processor Usage Line 1 of 28 .

. Command ===> Scroll ===> CSR .

. .

. Samples: 100 System: MV23 Date: 05/28/12 Time: 07.10.00 Range: 100 Sec .

. .

. Service --- Time on CP % --- ----- EAppl % ----- .

. Jobname CX Class Total AAP IIP CP AAP IIP .

. .

. IYNXJ BO IYNXJCLS 91.4 0.0 0.0 91.4 .

. IYNXK BO BATCH 87.6 0.0 0.0 87.6 .

. DUMPSRV S SYSTEM 2.9 0.0 0.0 2.9 .

. IXGLOGR S SYSTEM 1.1 0.0 0.0 1.1 .

. XCFAS S SYSTEM 1.0 0.0 0.0 1.0 .

. WLM S SYSTEM 1.0 0.0 0.0 1.0 .

. RMFGAT SO STC 0.8 0.0 0.0 0.8 .

. OMEGTEMS SO STCUSER 0.6 0.0 0.0 0.6 .

. GRS S SYSTEM 0.5 0.0 0.0 0.5 .

. OMEGCON SO STC 0.3 0.0 0.0 0.3 .

SHARE Boston - Ed Addison

•During the MXT interval, IYNXJ is also using most of a processor.

•Could that cause transactions in IYNXK to use more CPU?

. NETVIEW SO STCFAST 0.3 0.0 0.0 0.3 .

. CATALOG S SYSTEM 0.2 0.0 0.0 0.2 .

. *MASTER* S SYSTEM 0.1 0.0 0.0 0.1 .

. RASP S SYSTEM 0.1 0.0 0.0 0.1 .

. SMSVSAM S SYSTEM 0.1 0.0 0.0 0.1 .

. CONSOLE S SYSTEM 0.1 0.0 0.0 0.1 .

. F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=TOGGLE .

. F7=UP F8=DOWN F9=SWAP F10=BREF F11=FREF F12=RETRIEVE .

63

IBM Software Group

Systrace Perfdata

� Systrace Perfdata is an IPCS command that gives

similar information to RMFIII regarding how much

CPU is being used and what jobs are using it.

� Systrace Perfdata is new and newly documented at

z/OS 1.12.

SHARE Boston - Ed Addison

z/OS 1.12.

� We’ll look at the SLIP dump triggered by the

“Above_80_percent_of_MXT” message.

� We’ll look at the dump of IYNXK taken after the

problem was over, while it was doing its normal

workload.

64

IBM Software Group

------------------------- IPCS Subcommand Entry -------------------------------

Enter a free-form IPCS subcommand or a CLIST or REXX exec invocation below:

===> systrace perfdata

----------------------- IPCS Subcommands and Abbreviations --------------------

ADDDUMP | DROPDUMP, DROPD | LISTDUMP, LDMP | RENUM, REN

ANALYZE | DROPMAP, DROPM | LISTMAP, LMAP | RUNCHAIN, RUNC

ARCHECK | DROPSYM, DROPS | LISTSYM, LSYM | SCAN

ASCBEXIT, ASCBX | EPTRACE | LISTUCB, LISTU | SELECT

ASMCHECK, ASMK | EQUATE, EQU, EQ | LITERAL | SETDEF, SETD

CBFORMAT, CBF | FIND, F | LPAMAP | STACK

CBSTAT | FINDMOD, FMOD | MERGE | STATUS, ST

CLOSE | FINDUCB, FINDU | NAME | SUMMARY, SUMM

COPYDDIR | GTFTRACE, GTF | NAMETOKN | SYSTRACE

COPYDUMP | INTEGER | NOTE, N | TCBEXIT, TCBX

COPYTRC | IPCS HELP, H | OPEN | VERBEXIT, VERBX

SHARE Boston - Ed Addison

•This is on the SLIP dump.

•ENTER systrace perfdata

CTRACE | LIST, L | PROFILE, PROF | WHERE, W

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=MORE F7=UP

F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=CURSOR

65

IBM Software Group

** TOP OF DATA **

Note: Only SYSTRACE records available for ALL PROCESSORS are considered.

System: MV23 SP7.1.2 HBB7770

PERFDATA Analysis:

CPU# Went from To Seconds SRB Time TCB Time Idle Time CPU Overhead

---- --------------- --------------- ------------ ------------ ------------ ------------ ------------

01 06:10:13.999836 06:10:14.912297 0.912460 0.008004 0.899153 0.000000 0.724603

00 06:10:14.000223 06:10:14.912581 0.912358 0.005718 0.900525 0.000000 0.720400

------------ ------------ ------------ ------------ ------------

1.824819 0.013722 1.799678 0.000000 1.445004

SRB time : 0.013722

TCB time : 1.799678

SHARE Boston - Ed Addison

Idle time : 0.000000

CPU Overhead : 1.445004

Total : 1.824819

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=MORE F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT

•Systrace Perfdata processes the system trace.

•We see that there are 2 processors doing work in the system trace.

•And each of those has trace covering about .9 seconds from 06:10:14.0 to 06:10:14.9.

66

IBM Software Group

** TOP OF DATA **

Note: Only SYSTRACE records available for ALL PROCESSORS are considered.

System: MV23 SP7.1.2 HBB7770

PERFDATA Analysis:

CPU# Went from To Seconds SRB Time TCB Time Idle Time CPU Overhead

---- --------------- --------------- ------------ ------------ ------------ ------------ ------------

01 06:10:13.999836 06:10:14.912297 0.912460 0.008004 0.899153 0.000000 0.724603

00 06:10:14.000223 06:10:14.912581 0.912358 0.005718 0.900525 0.000000 0.720400

------------ ------------ ------------ ------------ ------------

1.824819 0.013722 1.799678 0.000000 1.445004

SRB time : 0.013722

TCB time : 1.799678

SHARE Boston - Ed Addison

Idle time : 0.000000

CPU Overhead : 1.445004

Total : 1.824819

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=MORE F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT

•Idle Time of 0.00000 means that both processors were totally busy during the .9

seconds of systrace. There was never a moment when either had nothing to do.

•Use F8 to scroll down to see what jobs are using those 1.8 seconds of CPU time.

67

IBM Software Group

Found 54 address spaces in SYSTRACE.

Found 116 SRB and SSRB PSWs in SYSTRACE.

CPU breakdown by ASID:

ASID Jobname SRB Time TCB Time Total Time

---- -------- ------------ ------------ ------------

0043 IYNXJ 0.001483 0.885384 0.886868

000B WLM 0.000609 0.009490 0.010100

0042 IYNXK 0.000498 0.863902 0.864401

0001 *MASTER* 0.000118 0.000309 0.000427

00A4 TCPIP 0.000824 0.000381 0.001206

009A RMFGAT 0.000020 0.013223 0.013244

0006 XCFAS 0.001730 0.003591 0.005322

0036 JES2MON 0.000400 0.000456 0.000856

00A2 IYCNCTGC 0.000024 0.000087 0.000111

009E C660CI23 0.000029 0.000079 0.000109

002E TN3270 0.000785 0.000244 0.001029

SHARE Boston - Ed Addison

002F TN3270T2 0.000243 0.000253 0.000497

001C SMF 0.000577 0.000000 0.000577

00B9 RSED9 0.000014 0.000088 0.000102

00BE RSED7 0.000007 0.000032 0.000039

00B6 LOCKD 0.000006 0.000033 0.000040

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=MORE F7=UP F8=DOWN

•Here we see that IYNXJ and IYNXK are together using up most of the 1.8 seconds of

CPU time. They are each using most of a processor.

•Now let’s take a look at the normal dump.

68

IBM Software Group

** TOP OF DATA **

Note: Only SYSTRACE records available for ALL PROCESSORS are considered.

System: MV23 SP7.1.2 HBB7770

PERFDATA Analysis:

CPU# Went from To Seconds SRB Time TCB Time Idle Time CPU Overhead

---- --------------- --------------- ------------ ------------ ------------ ------------ ------------

00 06:15:23.897968 06:15:25.607760 1.709791 0.038181 0.900989 0.765688 0.718370

01 06:15:23.906162 06:15:25.607608 1.701445 0.032215 0.895750 0.768634 0.751313

------------ ------------ ------------ ------------ ------------

3.411237 0.070397 1.796739 1.534323 1.469683

SRB time : 0.070397

TCB time : 1.796739

SHARE Boston - Ed Addison

Idle time : 1.534323

CPU Overhead : 1.469683

Total : 3.411237

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=MORE F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT

•Here we see that each processor covers about 1.7 seconds of time.

•And we see there is significant Idle time, almost 1 processors worth of idle time.

•Scroll down to the next page.

69

IBM Software Group

Found 84 address spaces in SYSTRACE.

Found 207 SRB and SSRB PSWs in SYSTRACE.

CPU breakdown by ASID:

ASID Jobname SRB Time TCB Time Total Time

---- -------- ------------ ------------ ------------

0042 IYNXK 0.000904 1.631235 1.632140

0043 IYNXJ 0.003651 0.044663 0.048315

0036 JES2MON 0.000765 0.000869 0.001634

009B DG23DBM1 0.000064 0.000083 0.000148

0001 *MASTER* 0.000252 0.000759 0.001011

0095 RMF 0.000137 0.001197 0.001334

001C SMF 0.001284 0.000000 0.001284

000B WLM 0.000965 0.021250 0.022216

00A4 TCPIP 0.001359 0.000625 0.001985

002C DI23MSTR 0.000237 0.000482 0.000719

002E TN3270 0.000619 0.000444 0.001063

SHARE Boston - Ed Addison

002F TN3270T2 0.000384 0.000403 0.000787

0006 XCFAS 0.024349 0.001524 0.025873

0012 JESXCF 0.000406 0.000293 0.000700

0026 JES2 0.000087 0.000727 0.000815

0009 SMSVSAM 0.000448 0.001273 0.001721

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=MORE F7=UP F8=DOWN

•IYNXK is using about 1 processors worth of CPU. And that is about it.

•So that squares with RMFIII. During the problem, IYNXJ and IYNXK are each using

most of a processor. Before and after the problem, IYNXK is using about 1 processor

and the other processor is pretty much idle.

70

IBM Software Group

And the answer is……

� It looks like the LPAR is about 50% busy when

everything is fine. And it is 100% busy when the

problem happens. Can that cause transactions to

suddenly use 33% more CPU?

� Clues point us to IYNXJ. Let’s take a look at the

SHARE Boston - Ed Addison

� Clues point us to IYNXJ. Let’s take a look at the

SMF110 data there to see what suddenly started

using CPU.

71

IBM Software Group

•This is a slightly tweaked DISPSUM form summarizing on 1-second

Avg Avg Avg Avg Total Avg Total Total Avg Total

Start Tran #Tasks Response Suspend Dispatch User CPU QR Disp QR Disp QR CPU KY8 Disp KY8 Disp L8 CPU

Interval Time Time Time Time Time Time Time Time Count Time

07:08:11 CECI 1 245.4272 245.4141 .0131 .0046 .0131 .0131 .0046 .0000 0 .0000

07:09:58 SOAK 12 .0836 .0302 .0534 .0485 .0153 .0013 .0042 .6260 3 .5773

07:09:59 SOAK 19 .0771 .0241 .0530 .0484 .0171 .0009 .0061 .9897 3 .9129

07:10:00 SOAK 17 .0972 .0345 .0627 .0482 .0299 .0018 .0062 1.0355 3 .8134

07:10:01 SOAK 19 .0823 .0265 .0559 .0490 .0240 .0013 .0069 1.0377 4 .9240

07:10:02 SOAK 19 .0847 .0299 .0548 .0486 .0213 .0011 .0063 1.0202 4 .9172

07:10:03 SOAK 18 .0871 .0309 .0562 .0475 .0142 .0008 .0060 .9971 3 .8497

07:10:04 SOAK 19 .0796 .0257 .0539 .0486 .0234 .0012 .0062 1.0008 4 .9174

SHARE Boston - Ed Addison

•This is a slightly tweaked DISPSUM form summarizing on 1-second

intervals in IYNXJ.

•At exactly 07:09:58, SOAK transactions began.

•They are using a total of about .9 seconds of CPU per second, almost a

whole processor. So that is why IYNXJ suddenly started using about 1

processors worth of CPU.

72

IBM Software Group

•The SOAK transaction does a loop of about 15 EXEC CICS GETMAIN

followed by EXEC CICS FREEMAIN to get and free 20 Meg of EDSA, and

it specifies INITIMG.

•INITIMG causes CICS, on every getmain, to write to every page of that

20 Meg.

•Part of the reason IYNXK transactions suddenly use more CPU is

because the LPAR suddenly goes from 50% busy to 100% busy. At 50%

busy as compared to 100% busy, the high-speed cache is more likely to

always contain the pages of storage the instructions need. That is even

SHARE Boston - Ed Addison

always contain the pages of storage the instructions need. That is even

more true given the fact that the SOAK transactions in IYNXJ are

constantly writing to 20 Meg of storage. The constantly touching of the 20

Meg is making it so that the IYNXK transactions are constantly finding that

the storage they need is not in the high-speed cache. That slows the

IYNXK transactions down.

73

IBM Software Group

So what did you get?

� A neat new tool to put out console messages to

expose MXT and near MXT

� A way to get a dump on MXT or near MXT

� A CICS Dispatcher refresher

� A way to approach response time spikes using

SHARE Boston - Ed Addison

� A way to approach response time spikes using

SMF110 data

� A taste of how to make use of RMFIII

� A new IPCS tool: systrace perfdata

� An interesting reason why average CPU per

transaction may vary from moment to moment

74

IBM Software Group

Questions and Answers

SHARE Boston - Ed Addison

Questions and Answers

75

