
1

© 2013 IBM CorporationSHARE San Francisco February 2013

Session 13114
Getting Comfortable in your SLIP/PERs

MVS Core Technologies Project – February 6th, 2013

Evan Haruta haruta@us.ibm.com
Patty Little plittle@us.ibm.com

IBM Poughkeepsie

SHARE San Francisco, February 2013

2

2© 2013 IBM Corporation SHARE San Francisco, February 2013

Trademarks

The following are trademarks of the International Business Machines Corporation in the United
States and/or other countries.

•MVS
•OS/390®
•z/Architecture®
•z/OS®

* Registered trademarks of IBM Corporation

3

3© 2013 IBM Corporation SHARE San Francisco, February 2013

Table of Contents

 What is SLIP/PER? 4

 Events monitored by PER 6

 The power of PER 7

 PER processing and implementation 9

 Performance considerations in designing PER traps . . 11

 Defining PER range to be monitored 13

 Filters, actions, and tailorability 14

 Other PER trap controls 17

 Range pairs . 18

 Triplets . 19

 Examples . 20

4

4© 2013 IBM Corporation SHARE San Francisco, February 2013

What is SLIP/PER? Debugging Power!

 SLIP – Serviceability Level Indication Processing
 Used to trap abends and messages

 Primarily software-driven

 PER – Program Event Recording
 Used to trap hardware events

 Instruction Fetch

 Storage Alteration

 Successful Branch

 Hardware detects event and invokes SLIP software

 SLIP software applies filters and takes action(s)

 SLIP/PER is often generically referred to as SLIP

SLIP/PER is the premiere tool for trapping programming events in z/OS. It can
trap software events such as abends or messages, or it can trap hardware
events such as the execution (fetching) of an instruction or the alteration of an
area of storage. Its power is in its flexibility both in filtering on event
environments and in generating documentation.

The monitoring of hardware events is accomplished by the PER part of
SLIP/PER processing. When a monitored hardware event occurs, hardware
detects this and signals SLIP software. SLIP software handles the additional
filtering and taking of action as appropriate.

SLIP software also provides filtering for the software-generated events, and will
take action as appropriate.

5

5© 2013 IBM Corporation SHARE San Francisco, February 2013

What we won’t talk about today

 Non-PER SLIP traps

 SLIP SET,C=0C4,JOBNAME=TEST,
A=TRACE,TRDATA=(STD,REGS),END

 Write a GTF trace record when an ABEND0C4 occurs in job
TEST

 SLIP SET,MSGID=IEA421I,A=SVCD,END

 Take an SVC dump when message IEA421I is issued

Examples:

While we won’t talk about SLIPs for abends and messages, we will talk (in
context) about the SLIP software which supports the PER hardware, doing
filtering and taking action. This is the same code that provides filtering and takes
action for non-PER SLIPs.

6

6© 2013 IBM Corporation SHARE San Francisco, February 2013

Events Monitored by PER

 Capability to monitor certain hardware events

 Instruction Fetch (IF) – Fetching of instructions within a
specified instruction range

 Storage Alteration (SA) – Alteration of storage within a
specified range

 Successful Branch (SBT) – Branches made into or within a
specified instruction range

There is actually a 4th event that is monitored by PER as well: SAS catches
stores done by the STURA instruction as well as other alterations.

7

7© 2013 IBM Corporation SHARE San Francisco, February 2013

The Power of PER

 What PER SLIP traps can do:

 Monitor for IF, SA, or SBT over
a range that can be hardcoded,
coded through indirection, or
identified as a module + offset

 Filter events to a great level of
specificity

 Generate tailored documentation

 Trap on a sequence of PER
events (“dynamic PER”)

 Update storage and register
content

 Pseudo-IF/THEN/ELSE logic

 What PER SLIP traps can’t do

 Have more than one PER range
being monitored at a time

 Hit a moving target

 Detect “DAT off” events

 Issue a command or drive an exit

 Arithmetic

 Handle circular dynamic PER
chains

NOTE: Some modules run with PER

processing disabled to prevent recursion.

SLIP/PER’s robust filtering capabilities allow for the trapping of very specific
problem scenarios.

SLIP/PER provides a wide variety of actions that can be taken. SLIP provides
parameters for tailoring of the documentation that is asked to produce.

Dynamic PER is supported through the A=TARGETID parameter.

Updating of register and storage content is supported through the
A=REFBEFOR/REFAFTER parameter.

Pseudo-IF/THEN/ELSE logic is supported through the A=SUBTRAP parameter.

8

8© 2013 IBM Corporation SHARE San Francisco, February 2013

Disclaimers

 We can’t tell you everything about PER in an hour!

 We will discuss the most useful keywords but will not be
comprehensive.

 You may not choose to use some of these features on your own, but
you should be aware of SLIP’s wide range of capabilities when
working problems with IBM support.

 SLIP L2 welcomes questions from software service representatives.

 We love questions! We will try to answer your question right
away. But SLIP is complex and sometimes subtle. If we don’t know
the answer of the top of our heads, we will get back to you!

 For all things SLIP, see the (very large) section on SLIP in the MVS
System Commands manual.

Due to bullet #1, we will not be covering the REMOTE parameter.

9

9© 2013 IBM Corporation SHARE San Francisco, February 2013

PER Processing

 Hardware detects a monitored event
occurring and issues a program
interrupt (PIC 80)

 The operating system’s Program
Check First Level Interrupt Handler
(PC FLIH) receives control and
routes control to SLIP/PER software

 SLIP/PER software checks filters of
active PER trap to see if environment
at the time of interrupt meets all
criteria
 YES – Takes requested action(s)

 Usually operating system returns
control to point of PER interrupt

 NO – Operating system returns
control to point of PER interrupt

Pgm performs
action within
PER Range

PER range

PC FLIH SLIP/PER
Software

PIC
80

Apply filters

Match?
Take action

Return

Return

After most SLIP actions, control will be returned to the program that experienced
the PER interrupt. An exception is A=RECOVERY which instead targets the
interrupted unit of work with an ABEND06F.

10

10© 2013 IBM Corporation SHARE San Francisco, February 2013

PER Implementation

 When a PER trap is activated:

 Control Reg9 on all CPs is set to indicate event being monitored

 Control Regs 10 and 11 on all CPs are set to reflect the range
being monitored

 PSW bit 1 is turned on, indicating to hardware that it should
monitor for the event defined via Control Regs 9 thru 11

 Whenever feasible based on the requested SLIP, the operating system will
limit the setting of this bit to units of work in designated address spaces

 Can only monitor one PER range at a time on a system

 PER monitoring by hardware is very efficient

 Poorly performing PER traps are the result of poor trap design

PER processing can be enabled and disabled under a running unit of work simply
by turning on and off the PER bit in the PSW. Some operating system code turns
off this bit while it is running in order to prevent recursion scenarios. However,
most operating system code runs enabled for PER.

11

11© 2013 IBM Corporation SHARE San Francisco, February 2013

Performance Considerations in
Designing PER Traps

 A PER trap does not have to match to affect performance
 Every instruction executed in an IF range triggers PER processing

 Every alteration of storage within a SA range triggers PER
processing

 Every branch to/within a SB range triggers PER processing

 Avoid setting a PER trap over a large range

 Be careful when setting a PER trap in a frequently executed
or frequently altered range

 Be careful of setting a PER trap in a performance path

 When in doubt, use PRCNTLIM parameter! (default=10%)

The PRCNTLIM (Percent Limit) parameter limits how much CPU a PER trap is
allowed to consume on the system. If SLIP/PER CPU usage exceeds the
indicated percentage, the offending PER trap is disabled.

12

12© 2013 IBM Corporation SHARE San Francisco, February 2013

PER Performance and the JOBNAME
Parameter

 SLIP/PER provides a JOBNAME parameter which allows
for filtering of an event to only those units of work
running under a particular job

 SLIP/PER will only turn on the PSW PER bit for units of work
belonging to the specified job

 PER interrupts will not be experienced by work running under other jobs

 Use JOBNAME whenever feasible

When using PVTMOD, it is advisable to use JOBNAME=, and also
MODE=HOME whenever feasible. If you are trying to catch an event that is
occurring under a job in a cross memory environment, MODE=HOME may not be
feasible. However, be sensitive to possible system performance issues that
could result. Code a low PRCNTLIM (1-2%) to be on the safe side.

13

13© 2013 IBM Corporation SHARE San Francisco, February 2013

Defining PER Range to Be Monitored

 IF, SA, and SBT
 RANGE RANGE=(beginningaddr,endingaddr)

 Loaded into Control Registers 10 & 11 at time the SLIP is SET

 RANGE is required on SA SLIPs

 IF and SBT only, instead of RANGE
 NUCMOD or NUCEP

 LPAMOD or LPAEP

 PVTMOD or PVTEP

 SA only – identifies space where monitored storage resides
 ASIDSA ASIDSA=‘JES2’ or ASIDSA=3F

 DSSA DSSA=(‘MYJOB’.MYDSPAC1)

=(modname,startoffset,endoffset)

RANGE can be used to define the range to be monitored for SB, IF, or SA. SLIP permits
indirection to be specified in the RANGE parameter. This is resolved at the time the SLIP is set,
and the resulting address is placed into the control registers used by SLIP. Note that the ending
address can be omitted, in which case only the single byte indicated by the beginning address will
be monitored.

NUCMOD & NUCEP, LPAMOD & LPAEP, PVTMOD & PVTEP can be used in a SBT or IF PER
trap instead of RANGE. For example, one can specify:

NUCMOD=(IEAVEPST,40,4F)

on an IF PER trap to monitor the fetching of instructions in the POST code between offset +40
and offset +4F. This is much more flexible than having to hardcode the addresses in the RANGE
parameter. Note that specification of a starting offset and ending offset are optional. If neither is
specified, then the entire module is monitored. If ending offset is omitted, then only the instruction
at the starting offset is monitored.

Use ASIDSA or DSSA on every SA PER trap. If monitoring a private storage range in an address
space for alteration, specify the jobname or ASID owning that storage on ASIDSA. If monitoring
global storage, specifiy ASIDSA=SA. If monitoring data space storage, use DSSA.

14

14© 2013 IBM Corporation SHARE San Francisco, February 2013

Filters

 Filtering to an address space
level

 JOBNAME

 ASID

 Filtering on what code
triggered the PER event
(SA PER traps only)

 ADDRESS

 NUCMOD or NUCEP

 LPAMOD or LPAEP

 PVTMOD or PVTEP

 Filtering on environment

 MODE

 PSWASC

 Filtering on storage and/or
register content

 DATA

Filtering is done primarily by software, although some JOBNAME filtering may
occur at the hardware level. Software gets control as a result of the PER
interrupt and examines the defined traps in LIFO order to determine what filters
to apply. After JOBNAME/ASID, the DATA parameter is probably the most
commonly used FILTER. It provides a large degree of filtering capability,
including bit checks and/or byte checks in registers or in storage. Multiple checks
can be made as part of the filtering process.

15

15© 2013 IBM Corporation SHARE San Francisco, February 2013

Actions

 For SVC dumps:
 SVCD, SYNCSVCD, TRDUMP, STDUMP

 For GTF trace:
 TRACE, TRDUMP, STOPGTF

 For system trace:
 STRACE, STDUMP

 Other
 REFBEFOR, REFAFTER to update storage/registers
 TARGETID to activate a new PER trap
 RECOVERY to force an abend
 SUBTRAP to simulate “IF-THEN-ELSE” logic
 IGNORE to ignore the PER event
 WAIT to enter restartable wait state

Note that some actions can be combined.

SVCD takes an asynchronous (scheduled) SVC dump. SYNCSVCD takes a
synchronous SVC dump, which means that the unit of work requesting the dump
does not continue running until the dump capture completes. A synchronous
SVC dump can only be taken if the PER event occurs in an Enabled Unlocked
Task (EUT) environment. There are other restrictions as well. Note that if
A=SYNCSVCD is requested on a PER trap and the environment at the time the
trap matches is invalid for a synchronous SVC dump, then a regular (scheduled)
SVC dump will be taken instead.

For a SLIP defined to disable after N matches (via the MATCHLIM parameter),
TRDUMP writes a GTF trace record for all N matches, and also takes an SVC
dump on the Nth match. STOPGTF will stop GTF trace.

For a SLIP defined to disable after N matches (via the MATCHLIM parameter),
STDUMP writes a system trace record for all N matches, and also takes an SVC
dump on the Nth match.

16

16© 2013 IBM Corporation SHARE San Francisco, February 2013

Tailorability

 SVC dumps

 JOBLIST, ASIDLST, DSPNAME dump address/data spaces

 SDATA dump particular types of storage areas

 SUMLIST, LIST dump specified storage ranges

 STRLIST dump structures

 REMOTE take dumps on other systems in sysplex

 GTF trace

 TRDATA trace specified storage ranges

 System trace

 STDATA trace specified storage ranges

Multiple jobs, ASIDs, and data spaces may be requested. Note that JOBLIST
and ASIDLST are not mutually exclusive.

SUMLIST gathers the specified data ranges during summary dump processing.
LIST gathers the specified data ranges during later dump processing.

Indirection may be specified in the LIST, SUMLIST, TRDATA, and STDATA
parameters.

Wildcarding may be used in JOBLIST and DSPNAME.

17

17© 2013 IBM Corporation SHARE San Francisco, February 2013

Other PER trap controls

 Parameters
 ENABLE, DISABLE to define trap enabled/disabled on SET

 MATCHLIM to disable trap after N matches

 PRCNTLIM to disable trap if it uses >N pct of CP

 ID to name SLIP trap (up to 4 characters)

 Commands
 SLIP SET,

 SLIP MOD,ENABLE,ID=

 SLIP MOD,DISABLE,ID=

 SLIP DEL,ID=

 D SLIP

 D SLIP=

A SLIP trap can be set as disabled, then enabled at some later point. When
entering multiple SLIP traps with interdependencies, it is advisable to enter them
all disabled with a similar SLIP ID, then to enable them simultaneously through
the SLIP MOD,ENABLE,ID= command, using wildcarding in the ID to target the
multiple SLIPs.

A SLIP must be disabled before it can be deleted.

D SLIP will show the names of all SLIP traps defined to the system, along with an
indication of whether the SLIP is enabled or disabled. To see the parameters of
a specific SLIP, use: D SLIP=xxxx .

18

18© 2013 IBM Corporation SHARE San Francisco, February 2013

Range Pairs

 Syntax for range pairs: =(beginaddr,endaddr)

 Beginaddr, endaddr may be address or indirect address

 Parameters that support range pairs:

 RANGE, ADDRESS

 TRDATA, STDATA

 LIST, SUMLIST

 What is an indirect address?

 Combination of address or register notation, indirection symbols (%, ?, !),
and/or displacements, symbolics (BEAR, BPER)

 LIST=(1R?+4?-1C,1R?+4?+F,13R?+0,13R?+3F)

 LIST=(1R?+4?-1C,+F,13R?,+3F) shorthand for previous example

Support multiple range pairs

Note: These are displacements, NOT LENGTHs!!

Root

% - interpret address as 24-bit

? – interpret address as 31-bit

! – interpret address as 64 bit

Use R to represent a 31-bit general purpose register and G to represent a 64-bit
general purpose register.

The symbolic BEAR refers to the address where the last flow-altering instruction
occurred. This includes branches, PC, PR, LPSW, etc.

The symbolic BPER refers to the beginning address in a PER range. It is helpful
for DATA comparisons.

19

19© 2013 IBM Corporation SHARE San Francisco, February 2013

Triplets (data comparison, storage refresh)

 Syntax for triplets: =(target,operator,source)
 Target may be address, indirect address, or register

 Source may be address, indirect address, register, or constant (max 8 bytes)

 Operator options: EQ, NE, LT, NL, GT, NG
 If ‘A’ appended (e.g. EQA) – operator acts on the address of the source

 If ‘C’ appended (e.g. EQC) – operator acts on the content of the source

 If used without ‘A’ or ‘C’ appended, the source must be a constant

 “(b)” following target address indicates a bit position within the targeted
byte or register; indicates operation is on binary data

 “(n)” following operator indicates how many bits or bytes to operate on for
Address and Contents operations

 Parameters: REFBEFOR, REFAFTER, DATA
 All support multiple triplets, separated by AND or OR (default is “AND”)

 DATA=(1R?+8(0),EQ,1,OR,15R,EQC(4),13R?+10,OR,0R,GT,0)

 REFBEFOR=(FEBCC0,EQ,C1C2C3C4,15R,EQ,0)

In addition to the operators listed above, there is also NE, NL, NG, etc.

A SLIP is operating on binary data if and only if there is a “(b)” value specified after the target. Based from 0, this
indicates the beginning bit position that is to be altered or compared within the target register or address. If, in addition, a
“(n)” is specified after the operator, this indicates how many bits are to be moved or compared. If no “(n)” is specified
when performance a “C” (Contents) or “A” (Address) type of operation, the default is 1 bit.

If there is no “(b)” after the target, and the operator is followed by “(n)”, this indicates how many bytes are to be altered or
compared. This syntax should be used when performing a “C” (Contents) or “A” (Address) type of operation. The default
is 4 bytes.

When SLIP does a contents or an address refresh (alter), it refreshes the first n bytes of storage and the last n bytes of a
register.

If doing an EQ, GT, or LT, the number of bytes to be altered or compared is determined by the number of bytes in the
constant supplied as the source.

The first example above (DATA=) will match if bit 0 at the storage location pointed to by Reg1+8 (perhaps the start of the
3rd word in a parameter list?) is on, or if the content of Reg15 is the same as the data found at address 13R?+10, or if
Reg0 is greater than 0.

The second example above (REFBEFOR=) will update the storage at FEBCC0 to contain eyecatcher ‘ABCD’, and will set
Reg15 to contain 0. This is done BEFORE any other requested actions, most likely because the damage that we are
repairing would otherwise prevent successful completion of other actions.

20

20© 2013 IBM Corporation SHARE San Francisco, February 2013

SLIP
Examples

21

21© 2013 IBM Corporation SHARE San Francisco, February 2013

Case 1

 A real customer case from mid-January:

The product FMID information in the CVTPRODI field of the CVT is being overlaid,
with surprisingly devastating system effect. This 8-byte field is in the CVT prefix at
offset –X’20’. This field content is established at IPL and should never get changed.
Take a dump when this field gets altered. (Note: Low core location X’10’ points to
the CVT. The CVT lives in common storage.)

 SLIP SET,SA,ASIDSA=SA,RA=(10?-20,10?-19),
A=SYNCSVCD,END

 NOTES
 ASIDSA=SA is used when monitoring alteration of common storage.

 The indirection in the RANGE is resolved when the SLIP is enabled.

 We could have written the range as: RA=(10?-20,-19).

 See APAR OA41190!

A=SYNCSVCD and A=SVCD default to a match limit (ML) of 1, meaning the
SLIP will disable after 1 match.

22

22© 2013 IBM Corporation SHARE San Francisco, February 2013

Case 2

 Consider Case 1. If the field is static, we should be able to refresh it, thus preventing
the system impact.
Refresh the field back to its original content of ’HBB7780 ‘, before taking a dump.

 SLIP SET,SA,ASIDSA=SA,RA=(10?-20,10?-19),
A=(REFBEFOR,SYNCSVCD),
REFBEFOR=(10?-20,EQ,C8C2C2F7_F7F8F040),END

 NOTES
 An additional REFBEFOR triplet could be added prior to the existing one if we want to

copy the corruption, thereby preserving it for diagnostic purposes, prior to refresh:
 REFBEFOR=(targetaddr,EQC(8),10?-20,…)

 Use REFAFTER in the case of an overlay where the damage does not need to be
immediately corrected, so that you can see the content of the overlay in the dump.

 SLIP will update storage a max of 8 bytes at a time.

 The underscore within the REFBEFOR source value is optional and strictly cosmetic.

REFBEFOR and REFAFTER are extremely powerful. We recommend using this
option under the guidance of an experienced support representative.

23

23© 2013 IBM Corporation SHARE San Francisco, February 2013

Case 3

 You have an application named BADLUCK which runs in its own
address space of the same name. The eyecatcher of the application’s
“WXYZ” control block keeps getting overlaid. This control block
lives in common storage at address 1E123000, and its eyecatcher is
at offset +0. Take a dump when the storage gets corrupted.

 SLIP SET,SA,ASIDSA=SA,RA=(1E123000,1E123003),
DATA=(1E123000,NE,E6E7E8E9),A=SYNCSVCD,END

 NOTES
 ASIDSA=SA is used when monitoring alteration of common storage.
 We don’t want to add JOBNAME to the SLIP as that would filter out an

overlay done by another job.
 The DATA compare will make sure that we don’t match on the case where

job BADLUCK is initializing the control block eyecatcher.

24

24© 2013 IBM Corporation SHARE San Francisco, February 2013

Case 4

 You have an application named BADLUCK which runs in its own
address space of the same name. The eyecatcher of the application’s
“ABCD” control block is being overlaid. You believe the application
itself is responsible for the overlay. The overlaid control block always
lives at private storage address 6000, and the eyecatcher of “ABCD”
is at offset +0. Take a dump when the storage gets corrupted.

 SLIP SET,SA,ASIDSA=‘BADLUCK’,RA=(6000,6003),
JOBNAME=BADLUCK,MODE=HOME,
DATA=(6000,NE,C1C2C3C4),A=SYNCSVCD,END

 NOTES
 MODE=HOME restricts a match to a non-cross memory environment. If

work in JOB BADLUCK PC’s to another address space, then corrupts the
control block in private storage of job BADLUCK, this SLIP won’t catch that.

 Length of constant determines how many bytes of DATA are compared.

Remember that ASIDSA indicates the address space that the private storage
being monitored resides in. This is *not* a filter for who actually overlays the
storage. JOBNAME or ASID must be used to filter on who is doing the alteration.

25

25© 2013 IBM Corporation SHARE San Francisco, February 2013

Case 5

 Same as Case 4 except that this time we don’t know where the private storage-
resident “ABCD” control block lives until after it is GETMAINed. It is
GETMAINed by private load module GETSTOR at offset +X’1B0’. On return
from a GETMAIN, register 1 contains the address of the GETMAINed storage.
Once we have this information, we can set up the SA SLIP.

 SLIP SET,IF,DISABLE,P=(GETSTOR,1B0),ID=SLP1,
JOBNAME=BADLUCK,MODE=HOME,
A=TARGETID,TARGETID=SLP2,END

SLIP SET,SA,DISABLE,RA=(1R?+0,1R?+3),ASIDSA=‘BADLUCK’,
DATA=(BPER?+0,NE,C1C2C3C4),ID=SLP2,
A=SYNCSVCD,END

SLIP MOD,ENABLE,ID=SLP1

In this example, we’re assuming that GETSTOR+1B0 points to the return point
from the GETMAIN.

If you accidentally try to enable both SLIPs simultaneously, SLIP processing will
detect that SLP2 is targeted by SLP1 and will leave it disabled.

A dynamic PER trap chain can consist of two or more traps. The chain cannot be
circular.

26

26© 2013 IBM Corporation SHARE San Francisco, February 2013

Case 5: Notes

 Notes:
 When one PER trap targets another as it matches and disables, this is called

dynamic PER.

 We have given each SLIP an ID, which can be a maximum of 4 characters.

 The RANGE of the second SLIP is resolved at the time the SLIP is enabled,
using the value in register 1 at the time the first SLIP matched and disabled.

 The DATA parameter of the second SLIP is resolved when a PER event
occurs for that SLIP, that is, when the specified range is altered.

 The symbolic BPER can be used to indicate the Beginning address of the PER
range.

 When using dynamic PER, it is helpful to set all SLIPs disabled originally, then
enable the first in the chain.

 We do not need to specify JOBNAME and MODE on the second SLIP. The
environmental specifications on the first SLIP automatically apply to
all SLIPs in a dynamic PER chain. This cannot be overridden!

There is one other SLIP symbolic: BEAR . This is set up to be the Breaking
Event Address from the Breaking Event Address Register. This is the address of
the last instruction on this CP to cause a branch or a change in linear flow of
execution (e.g. PC or LPSW) prior to the PER interrupt.

27

27© 2013 IBM Corporation SHARE San Francisco, February 2013

Case 6

 You have an application named BADLUCK which runs in its own address space of
the same name. The eyecatcher of the application’s “ABCD” control block is being
overlaid. This application interfaces with a number of other address spaces,
any of which could have done the overlay. The overlaid control block always
lives at private storage address 6000, and the eyecatcher of “ABCD” is at offset +0.
Take a dump when the storage gets corrupted.

 SLIP SET,SA,RA=(6000,6003),ASIDSA=‘BADLUCK’,
DATA=(‘BADLUCK’.6000,NE,C1C2C3C4),
A=SYNCSVCD,END

 NOTES
 Since we don’t know what address space or cross memory environment the overlayer is

running in, we have removed JOBNAME=BADLUCK and MODE=HOME.

 Since we don’t know which address space will be current when the SA occurs, we must
qualify the address of the DATA compare to indicate that address 6000 is within job
BADLUCK.

28

28© 2013 IBM Corporation SHARE San Francisco, February 2013

Case 7

 CSECT MYMOD lives at offset X’A00’ thru X’AFF’ in LPA load
module MYLOAD. To debug a logic problem, you want to trace the
instruction flow through the entire CSECT, writing a GTF record for
each instruction. You want to trace the X’20’ byte work area pointed
to by Register 11, as well as basic environmental information.

 SLIP SET,IF,L=(MYLOAD,A00,AFF),A=TRACE,
TRDATA=(STD,REGS,11R?+0,+1F),END

 NOTES
 For A=TRACE, the default is to have no limit on how many times the SLIP can

match. Use the ML parameter in you want a match limit on the SLIP.
 Always specify STD and REGS to get fundamental diagnostic information
 Note that the X’100’ byte range that we are trapping is not huge, but if the

code executes very frequently or loops, this could cause impact.

29

29© 2013 IBM Corporation SHARE San Francisco, February 2013

Case 8

 The results from the Case 7 SLIP suggest the problem is related to bad
parameter list content. Trace the parameter list ONLY on entry to
and exit from MYMOD. (Assume the last instruction of MYMOD is
offset X’FE’ into the CSECT.) The parameter list is pointed to by
Register 1, is X’10’ bytes long, and lives above the bar. Also trace the
last X’20’ bytes of the X’30’ byte control block pointed to by the
second word of the parameter list. This block lives below the bar.

 SLIP SET,IF,D,L=(MYLOAD,A00,AFF),ID=SLP1,A=TRACE,
TRDATA=(STD,REGS,1G!+0,+F,1G!+4?+10,+2F),END

SLIP SET,IF,D,L=(MYLOAD,A01,AFD),ID=SLP2,
A=IGNORE,END

SLIP MOD,ENABLE,ID=SLP*

30

30© 2013 IBM Corporation SHARE San Francisco, February 2013

Case 8: Notes

 This is not a violation of the rule that you can only monitor one PER
range at a time.
 Software parsing of SLIP syntax detects:

 The SLP2 range is a subset of the SLP1 range
 SLP2 has A=IGNORE

 PER CR10 and CR11 will hold the range from SLP1
 Software filtering will determine whether a PER event has occurred within the

subset range defined by SLP2 and take action accordingly.
 PER EVENT ignored for all but the first and last instruction
 First and last instruction produce trace data

 The order of SLIP entry is important! SLIP software processes traps in
a LIFO order, and we want it to encounter the A=IGNORE trap first.

 Enter both SLIPs disabled with similar IDs, use wildcarding to enable
simultaneously.

 In TRDATA we must use “xG!” instead of “xR?” to perform 64-bit
interpretation of the register.

A=IGNORE defaults to no match limit.

Note that an interrupt will occur on every instruction in this PER range, even
though we are IGNORE-ing all but the first and last instructions!

31

31© 2013 IBM Corporation SHARE San Francisco, February 2013

Case 9

 What if we want to combine our actions from cases 7 and 8? Let’s trace the
parameter list on our first and last entries, let’s trace the X’20’ byte work area
pointed to by Register 11 for all the in between entries, and let’s take a dump and
stop the GTF trace if, on exit from MYMOD, we have a non-zero value in Reg15!

 SLIP SET,IF,D,L=(MYLOAD,A00,AFF),ID=SLP1,A=TRACE,
TRDATA=(STD,REGS,1G!+0,+F,1G!+4?+C,+2F),END

SLIP SET,IF,D,L=(MYLOAD,A01,AFD),ID=SLP2,
A=(SUBTRAP,TRACE),TRDATA=(STD,REGS,11R?+0,+1F),END

SLIP SET,IF,D,L=(MYLOAD,AFE),ID=SLP3,
A=(SUBTRAP,SYNCSVCD,STOPGTF),DATA=(15R,NE,0),END

SLIP MOD,ENABLE,ID=SLP*

32

32© 2013 IBM Corporation SHARE San Francisco, February 2013

Case 9: Notes

 This is not a violation of the rule that you can only monitor
one PER range at a time.
 Software parsing of SLIP syntax detects:

 The SLP2 and SLP3 RANGEs are subsets of the SLP1 RANGE

 SLP2 and SLP3 have A=SUBTRAP

 PER CR10 and CR11 will hold the RANGE from SLP1.

 Software filtering will determine whether a PER event has
occurred within the subset RANGEs defined by SLP2 or SLP3 and
take action accordingly.

 Once again the order of SLIP entry is important!

 Once again we enter the SLIP set disabled, then use
wildcarding to enable all simultaneously.

A=IGNORE defaults to no match limit.

Note that an interrupt will occur on every instruction in this PER range, even
though we are IGNORE-ing all but the first and last instructions!

33

33© 2013 IBM Corporation SHARE San Francisco, February 2013

Case 10 (a breather!)

 You are suffering an abend in your nucleus module SVC201. An SVC dump is
being produced by your recovery. However, in order to better understand the
code flow leading up to the abend, you would like to see all branches within
SVC201 in the system trace table. Include the X’10’ byte area pointed to by
Register 6 in the trace data.

 SLIP SET,SBT,N=(SVC201),
A=STRACE,STDATA=(6R?,+F),ML=10000,END

 NOTES
 A=STRACE causes an SPER system trace entry to be written.

 A maximum of X’14’ bytes of data may be written in an SPER entry.

 Default MatchLim for A=STRACE varies depending on SLIP parameters specified.
For this example, the default is 50, so we code our own much larger

 When no starting/ending offset is specified on NUCMOD (or LPAMOD or
PVTMOD), the entire module is monitored.

34

34© 2013 IBM Corporation SHARE San Francisco, February 2013

Case 11

 A rogue program keeps branching into your code at offset +B0 in
LPA module MYLOAD. The rogue program moves around in
storage, but it has the eyecatcher ‘BADGUY’ at offset +0 and makes
the branch to your code at offset +X’3C’. You want to abend this
program whenever it branches to your code.

 SLIP SET,SBT,L=(MYLOAD,B0),A=RECOVERY,ML=1000,
DATA=(BEAR?-3C,EQ,C2C1C4C7E4E8),END

 NOTES

 A=RECOVERY results in the interrupted unit of work being targeted with an
ABEND06F.

35

35© 2013 IBM Corporation SHARE San Francisco, February 2013

Are you comfortable now?

Any
Questions?

