
BCPii Programming
Beyond the Basics

for the z/OS System Programmer
Steve Warren

IBM

swarren@us.ibm.com

Tuesday, February 5, 2013

Session Number 13035

2

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States, other countries, or both.

The following are trademarks or registered trademarks of other companies.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without
notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance,
compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel

Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

For a complete list of IBM Trademarks, see www.ibm.com/legal/copytrade.shtml:

*, AS/400®, e business(logo)®, DBE, ESCO, eServer, FICON, IBM®, IBM (logo)®, iSeries®, MVS, OS/390®, pSeries®, RS/6000®, S/30, VM/ESA®, VSE/ESA,
WebSphere®, xSeries®, z/OS®, zSeries®, z/VM®, System i, System i5, System p, System p5, System x, System z, System z9®, BladeCenter®

Not all common law marks used by IBM are listed on this page. Failure of a mark to appear does not mean that IBM does not use the mark nor does it mean that the product is not

actively marketed or is not significant within its relevant market.

Those trademarks followed by ® are registered trademarks of IBM in the United States; all others are trademarks or common law marks of IBM in the United States.

Notice Regarding Specialty Engines
(e.g., zIIPs, zAAPs and IFLs):

Any information contained in this document regarding Specialty Engines ("SEs") and SE

eligible workloads provides only general descriptions of the types and portions of workloads

that are eligible for execution on Specialty Engines (e.g., zIIPs, zAAPs, and IFLs). IBM

authorizes customers to use IBM SE only to execute the processing of Eligible Workloads of

specific Programs expressly authorized by IBM as specified in the “Authorized Use Table for

IBM Machines” provided at www.ibm.com/systems/support/machine_warranties/machine_code/aut.html (“AUT”).

No other workload processing is authorized for execution on an SE.

IBM offers SEs at a lower price than General Processors/Central Processors because

customers are authorized to use SEs only to process certain types and/or amounts of

workloads as specified by IBM in the AUT.

http://www.ibm.com/systems/support/machine_warranties/machine_code/aut.html

Agenda

• BCPii Quick Overview

• BCPii Programming 101

• Programming Environment

• Language support

• Let’s meet the APIs

• Basic programming example

• BCPii Programming 201

• Coding event and command

• More advanced BCPii Programming

• Thinking and programming like the HMC/SE UI

• Dynamically adapting to the current HMC config

• Dealing with communication outages

• Dealing with BCPii outages

• Debugging Programming Errors

4

5

Quick overview - What is BCPii?

SE

SE SE

HMC

CPC1

CPC2

CPC3

Authorized z/OS application

•Monitor status or capacity

changes

•Obtain configuration data

related to CPC or image

•Re-ipl an image

•Change temp. capacity

•Query and update LPAR

settings

•Set activation profiles

Process

Control

(HMC)

Network

6

Quick overview - What is BCPii?

• Base Control Program internal interface

• Allows authorized z/OS applications to have HMC-like

control over systems in the process control (HMC) network

• A set of authorized APIs provided

• Does not use any external network.

• Communicates directly with the SE rather than going over

an IP network.

• A z/OS address space that manages authorized

interaction with the interconnected hardware

7

Quick overview - What is z/OS BCPii vs.
BCPii mentioned in TSA?

• Tivoli System Automation (ProcOps) allows its

automation product to use one of 2 transport protocols:

• SNMP over an IP network

• BCPii protocol (internal transport)

• TSA’s BCPii implementation is similar but not z/OS BCPii

and requires TSA, Netview and Comm Server.

• BCPii transport in TSA is for TSA usage only

• z/OS BCPii APIs can be invoked from ANY address and

has no other product requirements.

• GDPS is one of the main exploiters of TSA.

8

Quick overview - Who uses BCPii?

• z/OS operating system components

• System Status Detection (SSD) provided in Sysplex Failure

Manager (SFM)

• Capacity Provisioning Manager (CPM)

• Hardware Configuration Definition (HCD)

• Vendor applications

• Control center, system management applications

• Several GA’ed already

• In-house (customer-written) applications

9

Quick overview - BCPii Installation Steps

• Configure the local SE to support BCPii

• HMC/SE administrator

• Authorize an application to use BCPii

• Security administrator

• Configure the address space

• z/OS System Administrator

• Set up the event notification mechanism for z/OS UNIX callers (if

required)

• z/OS System Administrator and Security Administrator

• See the publications or download 11806: Recent z/OS

Enhancements You Can Use to Reduce Down Time handout:

• https://share.confex.com/share/119/webprogram/Session11806.html

10

Programming 101 - BCPii Execution Environment

• Hardware levels (BCPii targeted systems)

• zEnterprise (zEC12, z114, z196)

• z10 plus recommended microcode levels
• Close to full functionality

• z9 plus recommended microcode levels
• Some reduced functionality (no IPLTOKEN, reduced attributes,

no temporary capacity options)

• Lower than z9
• Significantly reduced functionality (no HWICMD, reduced

attributes)

• Software levels (System(s) which BCPii runs on)

• z/OS V1R10 + PTF, z/OS V1R11 and higher in base
•

11

Programming 101 - BCPii Release Summary

z/OS V1R10
–Base functions (no HWISET)

z/OS V1R11
–HWISET

–Support for IPL Token / Query PSWs

–Activation profiles support

–Minor internal serviceability enhancements

z/OS V1R12
–CTRACE enhancements

–Improved storage utilization and serviceability of BCPii
transport code

–Additional CPC/Image attributes and commands

12

Programming 101 - BCPii Release Summary

z/OS V1R13
–Support for user-defined image groups

–Additional CPC/Image attributes

–New STP commands

z/OS V2R1 (Coming soon!)
–Support for REXX callers

–Improved performance for HWIQUERY and HWILIST

13

Programming 101 - Programming Environment

Services available in any address space

–Program-authorized, and

–SAF-authorized

C, Assembler, and REXX (soon!) programming
languages

z/OS UNIX callers can receive event notifications
thru z/OS UNIX-only services utilizing the Common
Event Adapter (CEA)

14

Programming 101 – Language Support

Interface Definition Files (IDF, or include files)
provided by BCPii:

–C (provided in SYS1.SIEAHDRV.H)

HWICIC – Main BCPii include file

HWIZHAPI – Additional constant definitions include file

–Assembler (provided in SYS1.MACLIB)

HWICIASM – Main BCPii include file

HWIC2ASM – Additional constant definitions include file

–REXX (coming soon)

15

Programming 101 – Programming Environment

Two ways to link your BCPii program:

–Use the linkable stub routine HWICSS from

SYS1.CSSLIB to link-edit your object code.

–Use the LOAD macro to find the address of the

BCPii callable service at run time and then CALL

the service

16

Programming 101 - Programming Environment -
Samples

BCPii sample programs (provided in samplib):

–C sample written in Metal C:

HWIXMCS1 provides an example of how to use all of the

traditional BCPii APIs and how to construct a simple BCPii

application.

HWIXMCX1 provides a simple example of how a BCPii

Event Notification Facility (ENF) exit could be coded to

field various BCPii-registered events.

17

Programming 101 - Let’s Meet the APIs!

Functions performed using BCPii APIs:
–Obtain the System z topology of the current interconnected

CPCs, Images (LPARs) and their associated capacity
records, activations profiles and user-defined image groups

–Query various CPC, image (LPAR), capacity record,
activation profile and user-define image group information

–Set various CPC, image(LPAR), and activation profile
information

–Issue commands against both the CPC and image to
perform hardware and software-related functions

–Listen for various hardware and software events which may
take place on various CPC and images

18

Programming 101 - Let’s Meet the APIs!

Services available
–HWILIST (BCPii List)

–HWICONN (BCPii Connect)

–HWIDISC (BCPii Disconnect)

–HWIQUERY (BCPii Query)

–HWISET (BCPii Set) – introduced in V1R11

–HWICMD (BCPii Command)

–HWIEVENT (BCPii Event (for non-z/OS Unix callers))

–HwiBeginEventDelivery, HwiEndEventDelivery,
HwiManageEvents, HwiGetEvent (for z/OS Unix callers)

19

Programming 101 - Let’s Meet the APIs!

Services available
–HWILIST (BCPii List)

–HWICONN (BCPii Connect)

–HWIDISC (BCPii Disconnect)

–HWIQUERY (BCPii Query)

–HWISET (BCPii Set) – introduced in V1R11

–HWICMD (BCPii Command)

–HWIEVENT (BCPii Event (for non-z/OS Unix callers))

–HwiBeginEventDelivery, HwiEndEventDelivery,
HwiManageEvents, HwiGetEvent (for z/OS Unix callers)

20

Programming 101 - Let’s Meet the APIs!

 All services pass back two groups of information used to determine
the success of the request

– Return code

0 – Request completed successfully

– DiagArea

Area that is filled in for certain non-environmental failures

Field Name Field Type Description

Diag_Index 32-bit integer The array index to the parameter field that

caused the error.

Diag_Key 32-bit integer The constant value represents the field that

causes the error.

Diag_Actual 32-bit integer The incorrect actual value specified.

Diag_Expected 32-bit integer The expected value to be used.

Diag_CommErr 32-bit integer The return code of the communication error.

Diag_Text Character (12) Additional diagnostic info in text format.

21

Programming 101 - Let’s Meet the APIs!

HWILIST - Retrieve HMC and BCPii configuration-related information

–List CPCS
o List the CPCs interconnected with the local CPC

–List Images
o List the images (LPARs) contained on an individual CPC or in user-defined imagegrp

–List Capacity Records
o List the capacity records contained on an individual CPC

–List Events
o List the events already registered on a particular BCPii connection

–List Local CPC, List Local Image (available in V1R11)
o Obtain the name of the CPC name or image (LPAR) name that the BCPii application is

currently running on.

–List Reset Activation Profiles, List Image A.P. and List Load A.P. (available
in V1R11 via APAR OA29638)
o List the currently defined activation profiles contained on a individual CPC

–List User-defined Image Group Names
o List the currently defined image group names contained on an individual CPC.

22

Programming 101 - Let’s Meet the APIs!

CALL HWILIST (

 ReturnCode

,ConnectToken

,ListType

,NumofDataItemsReturned

,AnswerArea_Ptr

,AnswerAreaLen

,DiagArea)

23

Programming 101 - Let’s Meet the APIs!

HWICONN - Establish a logical connection between

the application and a:
– Central processor complex (CPC),

– CPC image (LPAR) on a particular CPC,

– Capacity record on particular CPC

– Activation Profiles

– User-defined image groups

 Input:
– Connection type (above 3 types)

– Connection name (CPC example: net1.cpc01)

– Previous ConnectToken (if type is image, caprec, activation profile, or
user-defined image group)

Output:
– ConnectToken used on subsequent BCPii calls.

24

Programming 101 - Let’s Meet the APIs!

CALL HWICONN (

 ReturnCode

,InConnectToken

,OutConnectToken

,ConnectType

,ConnectTypeValue_Ptr

,DiagArea)

25

Programming 101 - Let’s Meet the APIs!

 HWIDISC – Release a logical connection no longer
needed

 Input:
– ConnectToken

Note: Connections are implicitly disconnected when a job
completes associated with the BCPii application (JES or
z/OS UNIX initiator) or when the address space has
terminated

26

Programming 101 - Let’s Meet the APIs!

CALL HWIDISC (

 ReturnCode

,ConnectToken

,DiagArea)

27

Programming 101 - Let’s Meet the APIs!

HWIQUERY - Retrieve information about objects

managed by the hardware management console

(HMC)/support element related to:
– Central processor complexes (CPCs),

– CPC images (LPARs) on a particular CPC,

– Capacity records on particular CPC

– Activation Profiles (Reset, Image, or Load)

– User-defined Image group properties

 Input:
– ConnectToken (associated with one of the above)

– List of attributes requested, data areas to store the return values)

Output
– Data returned

28

Programming 101 - Let’s Meet the APIs!

 Examples of information you can query

–CPC information
o General information

o Name, serial, machine type, id, networking info

o Status information
o Operating status and other status values

o Capacity information
o Various CBU info, Capacity on Demand info, Processor

configuration, including IFA, IFL, ICF, IIP

o Power savings information (available on zEnterprise hardware only with
APAR OA34001 on V1R10, V1R11 and V1R12)

o Is power savings available?, current power savings mode,
supported power saving modes available

– Image information
o General information

o Name, OS info

o Capacity information
o Defined capacity, Processor weights

29

Programming 101 - Let’s Meet the APIs!

Examples of information you can query (continued):

–Capacity record information

o General information

o Name, Activation and expiration dates, activation

days

o Status information

o Record status

o Capacity information

o The entire Capacity record

–Activation profile information

o Most activation profiles values.

30

Programming 101 - Let’s Meet the APIs!

CALL HWIQUERY (

 ReturnCode

,ConnectToken

,QueryParm_Ptr

,NumOfAttributes

,DiagArea)

Structure of one QueryParm:

Field Name Field Type

AttributeIdentifier 32-bit unsigned integer

AttributeValue_Ptr Pointer

AttributeValueLen 32-bit unsigned integer

AttrbuteValueLenReturned 32-bit unsigned integer

31

Programming 101 - Let’s Meet the APIs!

• HWISET (available in V1R11) – Change or set data
for objects managed by the hardware management
console (HMC)/support element related to:
• Central processor complexes (CPCs),
• CPC images (LPARs) on a particular CPC,
• Activation Profiles (available in V1R11 via APAR OA29638)

• Input:
• ConnectToken (associated with one of the above)
• Attribute (object) to modify, the modified value, the value

length

• Output
• Return code

32

Programming 101 - Let’s Meet the APIs!

CALL HWISET (

 ReturnCode

,ConnectToken

,SetType

,SetTypeValue_Ptr

,SetTypeValueLen

,DiagArea)

33

Programming 101 - Let’s Meet the APIs!

Examples of information you can set

–CPC information

o Acceptable status values

o Next Reset activation profile name

o Processor Running Time

– Image information

o Various processor weights

–Activation Profile Information (available in V1R11 via APAR

OA29638)

o Most activation profile values

34

Programming 101 - Let’s Meet the APIs!

HWICMD – Direct hardware/software commands to
CPCs, images and user-defined image groups

 Input:

–ConnectToken (associated with a CPC, image, or image group)

–Command parameter structure (based on the type of command
issued)

Output
–Synchronous return code

–Asynchronous command completion event delivered to
previously-registered event user when command finishes.

o For image commands targeted to an image group, one image
event is returned for each image in the user-defined image
group.

35

Programming 101 - Let’s Meet the APIs!

Examples of commands that can be issued:

–CPC commands
o Activate, Deactivate an entire CPC

o CBU request

o Activate or Undo

o On/Off Capacity on Demand request

o Activate or Undo

o Switch Power Savings Mode (available on zEnterprise hardware only
with APAR OA34001 on V1R10, V1R11 and V1R12)

–Image commands
o SysReset, SysReset with IPL Token (V1R11)

o Load

o Start, Stop all CPs

o Add or remove temporary capacity

o Issue operating system command

36

Programming 101 - Let’s Meet the APIs!

CALL HWICMD (

 ReturnCode

,ConnectToken

,CmdType

,CmdParm_Ptr

,DiagArea)

CmdParm_Ptr points to the command parameter list that is unique for

each command. The data structure specified is defined in the IBM-

supplied IDF files.

37

Programming 101 - Let’s Meet the APIs!

HWIEVENT (non-z/OS Unix callers) – Register/Un-
register an application and its connection to be notified for
hardware and software events occurring on the connected
CPC or image.

 Input:
–ConnectToken (associated with a CPC or image)

–Event action (Add or Delete)

–Events for which an application wants to be notified

–ENF exit to receive control when event arrives

BCPii registers the user with ENF for this event(s) such
that the ENF exit is driven only when the CPC and/or
image name of the connector matches.

38

Programming 101 - Let’s Meet the APIs!

Examples of events that can be listened to:

–Command completions

–Status changes

–Capacity changes

–Disabled waits

–Power mode changes (available on zEnterprise hardware only

with APAR OA34001 on V1R10, V1R11 and V1R12)

–BCPii status changes and communication errors

39

Programming 101 - Let’s Meet the APIs!

CALL HWIEVENT (

 ReturnCode

,EventAction

,EventIDs

,EventExitMode

,EventExitAddr

,EventExitParm

,DiagArea)

Note: EventIDs is a 128 bit data structure is defined in the IBM-

supplied IDF files as HWI_EVENTIDS_TYPE. Specify which events

you wish to register with by turning on the appropriate bits. Make sure

to fill in the beginning “eyecatcher” field with the constant value

“HWIEVENTBLCK”

40

Programming 101 - Let’s Meet the APIs!

HwiBeginEventDelivery (z/OS Unix callers) – begin
delivery of event notifications.

 Input:
–ConnectToken (associated with a CPC or image)

Output:
–DeliveryToken

o To be used on HwiManageEvents service

41

Programming 101 - Let’s Meet the APIs!

HwiEndEventDelivery (z/OS Unix callers) – End
delivery of event notifications.

 Input:
–DeliveryToken

42

Programming 101 - Let’s Meet the APIs!

 HwiManageEvents (z/OS Unix callers) – Registers

/ un-registers for a list of hardware/software events.

 Input:
 ConnectToken

 DeliveryToken

 Event action (Add or Delete)

 Events to be registered/unregistered

43

Programming 101 - Let’s Meet the APIs!

HwiGetEvent (z/OS Unix callers) – Retrieve
outstanding event notifications.

 Input:
–DeliveryToken

–Buffer

o Where the ENF68 event data is to be returned

–Timeout

o How much time to wait for an event to occur

Output:
–ENF68 Event Data in supplied buffer

44

Programming 101 - Simple Programming
Example

Application contains calls like this:
–HWILIST (ListCPCs)

–For each CPC name returned above:

o HWICONN (CPC name (input), CPCConnectToken(output))

o HWIQUERY (CPCConnectToken (input), QueryParms
(HWI_CBUTESTAR))

o HWILIST (CPCConnectToken(input), ListImages)

o For each image returned above:

o HWICONN (CPCConnectToken(input), Image name (input),
ImageConnectToken(output))

o HWIQUERY (ImageConnectToken(input),
QueryParms(HWI_OSNAME,HWI_OSTYPE,HWI_OSLEV
EL,HWI_SYSPLEX,HWI_DEFCAP)

o HWIDISC(ImageConnectToken)

o HWIDISC (CPCConnectToken)

45

Programming 101 - Simple Programming
Example (HWILIST)

rc = -1;

numofCPCs = -1;

listtype = HWI_LIST_CPCS;

memset(List_of_CPCs, 0x00, sizeof(List_of_CPCs));

answerarealen = sizeof(List_of_CPCs);

answerarea_ptr = &answerarea[0];

hwilist(&rc,CPCoutconnecttoken,listtype,&numofCPCs,

 &answerarea_ptr,answerarealen,&diagarea);

if (rc == 0)

{

 printf("HWILIST for CPC: RC = %x\n",rc);

 printf("NumOfDataItem: %d\n",numofCPCs);

 CPC_AnswerArea_into_Array(answerarea, List_of_CPCs, numofCPCs);

46

Programming 101 - Simple Programming
Example (HWICONN)

while(i < numofCPCs)

{

 printf("CPC %d: %s\n",i+1,&List_of_CPCs[i].element);

 /* CPC **/

 /* HWICONN the CPC */

 rc = -1;

 memset(CPCinconnecttoken, 0x00, sizeof(CPCinconnecttoken));

 strcpy(CPC_target,List_of_CPCs[i].element);

 CPCconnecttypevalue = &CPC_target[0];

 CPCconnecttype = 1;

 hwiconn(&rc,CPCinconnecttoken,&CPCoutconnecttoken,CPCconnecttype,

 &CPCconnecttypevalue,&diagarea);

 if (rc == 0)

 {

 printf("HWICONN on %s: RC = %x\n",&List_of_CPCs[i],rc);

47

Programming 101 - Simple Programming
Example (HWIQUERY)

/* HWIQUERY */

/* Calling HWIQUERY, using the returned output connecttoken from

HWICONN, query for HWI_MMODEL */

printf("HWIQUERY for HWI_MMODEL\n");

rc = -1;

numofattributes = 1;

Queryparm[0].AttributeIdentifier = HWI_MMODEL;

Queryparm[0].AttributeValue_Ptr = &HWI_MMODEL_value[0];

Queryparm[0].AttributeValueLen = sizeof(HWI_MMODEL_value);

Queryparm[0].AttributeValueLenReturned = -1;

query_ptr = (char *)&queryparm[0];

hwiquery(&rc,CPCoutconnecttoken,(void **)&query_ptr

 ,numofattributes,&diagarea);

if (rc == 0)

{printf("HWIQUERY on %s: RC = %x\n",&List_of_CPCs[i],rc);

48

Programming 201 - Programming Example
(HWIEVENT)

Events are driven in a BCPii thread as they occur

–ENF exit is driven

–ENF exit needs to wake up user’s mainline program to

perform some sort of action based on the event that was

driven.

–Posting an ECB waited on by the mainline application is

easy.

–Obtain a small piece of common storage for the ECB, and

pass the address of the ECB on the HWIEVENT call.

–Mainline program waits on the ECB

–When the ENF is driven, and the ENF event exit needs to

wake up the main program, a simple Post instruction does

the trick.

49

Programming 201 - Programming Example
(HWIEVENT)

memcpy(&eventExitParm,&userdata,sizeof(eventExitParm));

memset(&eventIDs,0,sizeof(eventIDs));

strcpy(eventIDs.Hwi_EventID_EyeCatcher,HWI_EVENTID_TEXT);

eventIDs.Hwi_Event_CmdResp = 1;

eventIDs.Hwi_Event_DisabledWait = 1;

eventAction = HWI_EVENT_ADD;

eventExitMode = HWI_EVENT_TASK;

eventExitAddr = pECBandCtoken;

__asm (" LOAD EP=HWIXMCX1 " : "=r"(eventExitEP) :);

eventExitAddr = (int)eventExitEP;

/* -------------- */

/* Call HWIEVENT */

/* ---------------*/

hwievent(returncodePtr,

 connecttoken,

 eventAction,

 eventIDs,

 eventExitMode,

 eventExitAddr,

 &eventExitParm,

 &diagarea);

50

Programming 201 - Programming Example
(HWICMD)

/* --*/

/* Initialize the cmdParm to null. */

/* Note: An OS command string must be null-terminated. */

/* --*/

memset(&cmdParm,0,sizeof(cmdParm));

cmdParm_Ptr = &cmdParm;

cmdParm.PriorityType = HWI_CMD_NONPRIORITY;

strcpy(cmdParm.OSCMDString,"D GRS");

cmdType = HWI_CMD_OSCMD;

HWI_DIAGAREA_TYPE diagarea;

/* ------------ */

/* Call HWICMD */

/* ------------ */

hwicmd(returncodePtr,

 connecttoken,

 cmdType,

 &cmdParm_Ptr,

 &diagarea);

if(*returncodePtr) print_diagarea(diagarea);

51

Programming 201 - Coding the ENF Event Exit

BCPii uses ENF 68

3 Types of BCPii ENF Signals

–HWIENF68_EVENTTYPE_BCPIISTATUS

HWIENF68_BCPIISTATUS_AVAIL

HWIENF68_BCPIISTATUS_UNAVAIL

–HWIENF68_EVENTTYPE_HWCOMMERROR

HWIENF68_HWCOMMERROR_TEMP

HWIENF68_HWCOMMERROR_PERM

HWIENF68_HWCOMMERROR_AVAIL

–HWIENF68_EVENTTYPE_HWEVENT

52

Programming 201 - Coding the ENF Event Exit

HWIENF68_EVENTTYPE_HWEVENT Subtypes
– HWIENF68_HWEVENT_CMDRESP

– HWIENF68_HWEVENT_STATUSCHG

– HWIENF68_HWEVENT_NAMECHG

– HWIENF68_HWEVENT_ACTPROFCHG

– HWIENF68_HWEVENT_OBJCREATE

– HWIENF68_HWEVENT_OBJDESTROY

– HWIENF68_HWEVENT_OBJEXCEPTION

– HWIENF68_HWEVENT_APPLSTARTED

– HWIENF68_HWEVENT_APPLENDED

– HWIENF68_HWEVENT_OPSYSMSG

– HWIENF68_HWEVENT_HWMSG

– HWIENF68_HWEVENT_HWMSGDEL

– HWIENF68_HWEVENT_CAPACITYCHG

– HWIENF68_HWEVENT_CAPACITYRECORD

– HWIENF68_HWEVENT_SECURITYEVENT

– HWIENF68_HWEVENT_DISABLEDWAIT

– HWIENF68_HWEVENT_POWERCHANGE

53

Programming 201 - Coding the ENF Event Exit

Each hardware event contains unique data specific to that

event.

–Each unique hardware event has its own data mapping

–Example: HWIENF68_HWEVENT_CMDRESP
typedef struct ??< /* Command response */

 HWI_CONNTOKEN_TYPE connectToken; /* Connect Token @03A */

 HWIENF68_STRING_T eventObjName; /* Affected object name */

 HWIENF68_INT_T cmdType; /* Type of command issued */

 HWIENF68_INT_T cmdRetCode; /* Command return code */

 HWIENF68_BOOL_T lastResponse; /* If true, the last response */

??> HWIENF68_CMDRESP_T;

54

Programming 201 - Programming Example
(Event Exit)

typedef struct {

 HWIENF68 * ENFEventDataPtr; /* Data for a specific BCPii event */

 int reserved1;

 int ENFUserData; /* Optional user-supplied data */

 int reserved2;

 int reserved4;

 int reserved5;

} ENFDATA_TYPE;

 int main(ENFDATA_TYPE ENFData)

{

switch (ENFData.ENFEventDataPtr->eventType)

 {

55

Programming 201 - Programming Example
(Event Exit)

/* --- */

 /* Event Type Hardware Event */

 /* --- */

 case HWIENF68_EVENTTYPE_HWEVENT:

 /* --- */

 /* Check for a specific event subtype */

 /* --- */

 switch (ENFData.ENFEventDataPtr->eventSubType)

 {

 /* --- */

 /* Handle Command Response event subtype. */

 /* --- */

 case HWIENF68_HWEVENT_CMDRESP:

56

Programming 201 - Programming Example
(Event Exit)

 /* --- */

 /* Look at the eventdata fields for this eventSubType */

 /* which are mapped by the HWIENF68_CMDRESP_T */

 /* structure. */

 /* --- */

 /* Check whether this command response is one for */

 /* which you are waiting by comparing the connect */

 /* token to a saved connect token. */

*/

 /* --- */

 /* Validate a saved connect token. */

 /* ---

{if(savedConnectToken == ENFData.ENFEventDataPtr->

 eventData.CmdResp.connectToken)

*/

if(1) /* If connect token matches */

57

More Advanced BCPii Programming –
Thinking and programming like the HMC/SE UI

• WLM

checkbox

checked

• Minimum

processing

weight and

maximum

processing

weight

available to

be set.

58

More Advanced BCPii Programming –
Thinking and programming like the HMC/SE UI

• WLM

checkbox

unchecked

• Minimum

processing

weight and

maximum

processing

weight

grayed out.

Values are

not

settable.

59

More Advanced BCPii Programming –
Thinking and programming like the HMC/SE UI

The HMC/SE has dependencies between many attributes

found on the screen. Here are some examples:

–WLM checkbox in image and image activation profiles (means

Work Load Manager is/is not allowed to change processing

weight-related attributes.)

• If checked, then certain attributes cannot be set on or

consulted.

• Initial processing weight capped (Hwi_SGPIPWCAP) and

other attributes cannot be turned on or consulted if Hwi_WLM

is on

• Defined capacity (Hwi_Defcap) cannot be consulted if

Hwi_WLM is turned off

60

More Advanced BCPii Programming –
Thinking and programming like the HMC/SE UI

Activation profiles defined to be in a certain mode can only

have to certain specialty engines

• Example: Don’t consult CF attributes of the image

activation profile if no ICF specialty engines are made

available to the image activation profile, regardless of

the number of ICF engines installed on the CPC

(HWI_NUMICFP).

61

More Advanced BCPii Programming –
Thinking and programming like the HMC/SE UI

62

More Advanced BCPii Programming –
Thinking and programming like the HMC/SE UI

63

More Advanced BCPii Programming –
Thinking and programming like the HMC/SE UI

• Find the number of ICF processors available for this image

activation profile:
int Num_ICF, Num_ResICF, Num_SharedICF, Num_ResSharedICF;

#define NUMOFACTPROFATTRIBUTES 4

HWI_QUERYPARM_TYPE queryparm[NUMOFACTPROFATTRIBUTES];

queryparm[0].AttributeIdentifier = HWI_NUM_ICF;

queryparm[0].AttributeValue_Ptr = (char *)&Num_ICF;

queryparm[0].AttributeValueLen=sizeof(int);

queryparm[0].AttributeValueLenReturned = 0;

queryparm[1].AttributeIdentifier = HWI_NUM_RESICF;

queryparm[1].AttributeValue_Ptr = (char *)&Num_ResICF;

queryparm[1].AttributeValueLen=sizeof(int);

queryparm[1].AttributeValueLenReturned = 0;

queryparm[2].AttributeIdentifier = HWI_NUM_SHARED_ICF;

queryparm[2].AttributeValue_Ptr = (char *)&Num_SharedICF;

queryparm[2].AttributeValueLen=sizeof(int);

queryparm[2].AttributeValueLenReturned = 0;

queryparm[3].AttributeIdentifier = HWI_NUM_RES_SHARED_ICF;

queryparm[3].AttributeValue_Ptr = (char *)&Num_ResSharedICF;

queryparm[3].AttributeValueLen=sizeof(int);

queryparm[3].AttributeValueLenReturned = 0;

64

More Advanced BCPii Programming –
Thinking and programming like the HMC/SE UI

 /* ------------- */

 /* Call HWIQUERY */

 /* ------------- */

 queryparm_Ptr = (char *)&queryparm[0];

 hwiquery(returncodePtr,

 connecttoken,

 &queryparm_Ptr,

 NUMOFACTPROFATTRIBUTES,

 &diagarea);

 if (*returncodePtr == 0)

 {

 if ((Num_ICF !=0) |

 (Num_ResICF !=0) |

 (Num_SharedICF !=0) |

 (Num_ResSharedICF !=0))

 {

 /* Possible to query the HWI_ICFIPW, HWI_ICFIPWCAP, HWI_ICFPWMIN,

 HWI_ICFPWMAX, HWI_ICFPW, HWI_ICFPWCAP attributes for this actprof. */

 }

 }

65

More Advanced BCPii Programming –
Thinking and programming like the HMC/SE UI

 > ICFs available to the image in this profile: 2

 > Reserved ICFs available to the image in this profile: 0

 > Shared ICFs available to the image in this profile: 0

 > Reserved Shared ICFs available to the image in this

profile: 0

Profile has coupling facility engines available to it

 ICF attributes can be consulted for this activation profile.

 If the numbers were all zero, trying to consult an ICF

attribute would result in an error return code from BCPii.

66

More Advanced BCPii Programming –
Dynamic Config Handling

 If your program is long running, new entities may be added to

the system, old ones deleted, or names changed. For

example, activation profiles.

Consider registering for HWIENF68_HWEVENT_NAMECHG,

HWIENF68_HWEVENT_OBJCREATE, and

HWIENF68_HWEVENT_OBJDESTROY events

When activation profile is added, for example, the

OBJCREATE event will be driven with the name of the object,

the object type (e.g. Image actprof) if the version number is

greater than 1 (datavers field in the HWIENF68), and the name

of the CPC (cpcName field in the HWIENF68)

Your program takes the appropriate action.

Note: Please apply APAR OA38252.

More Advanced BCPii Programming–
Handling Communication Outages

67

 It is possible that BCPii could lose connectivity to the CPC that

you are connected to and waiting for events on.

BCPii can tell you about these outages, allowing your program

to take the appropriate actions:

– HWIENF68_HWCOMMERROR_TEMP (ENF Qual 02010001)

o BCPii detected that it lost connectivity momentarily with the target

CPC but has regained connectivity

o BCPii application should take the appropriate action

– HWIENF68_HWCOMMERROR_PERM (ENF Qual 02010002)

o BCPii detected that it lost connectivity and cannot regain connectivity

to the CPC at the moment.

o All HWIEVENT and HWICMD API requests are not processed, no

events are delivered

o BCPii application should wait for the

HWIENF68_HWCOMMERROR_AVAIL event

68

More Advanced BCPii Programming–
Handling Network Outages

– HWIENF68_HWCOMMERROR_AVAIL (ENF Qual 02010003)

o BCPii has established communications with the registered CPC (either

at first connectivity to that CPC or when communications have

resumed to that CPC

 An application has a choice of how to register for all

hardware communication events:

– Via HWIEVENT ADD service (EventIDs parameter value

Hwi_Event_HwCommError)

– Via ENFREQ LISTEN macro invocation specifying to listen for

ENF68,

o ENFREQ ACTION=LISTEN

o CODE=ENFPC068, QUAL=02010000

More Advanced BCPii Programming–
Handling Communication Outages

69

case HWIENF68_EVENTTYPE_HWCOMMERROR:

 switch (ENFData.ENFEventDataPtr->eventSubType)

 {

 case HWIENF68_HWCOMMERROR_TEMP:

 /* Take appropriate actions. */

 break;

 case HWIENF68_HWCOMMERROR_PERM:

 /* Take appropriate actions. */

 break;

 case HWIENF68_HWCOMMERROR_AVAIL:

 /* Take appropriate actions. */

 break;

 default:

 /* Unknown BCPii Communication Error value returned. */

 /* Take appropriate actions. */

 break;

 } /* end switch on the value of the BCPii Communication error evt */

70

More Advanced BCPii Programming–
Handling BCPii Outages

 While very rare, it is possible for the BCPii address space to

go away unexpectedly.

 BCPii signals an ENF68 with a QUAL of 01000002 when

the address space becomes active

BCPii signals an ENF68 with a QUAL of 01000001 when

the address space becomes unavailable

An application should register itself with ENF to listen for

these two events from occurring so it can take the appropriate

actions

When BCPii goes down, all connections are lost. The

application should throw away all recollection of connect

tokens

When BCPii come back up, all connections should be

reestablished.

71

More Advanced BCPii Programming –
Debugging Programming Errors

API Return Codes and Diag Area

CTRACE
–BCPii cuts CTRACE records using SYSBCPII

CTRACE comp

–Default CTRACE CTIHWI00 parmlib member shipped

–Two CTRACE options:

Min

All

–Dump is taken whenever CTRACE is turned off

Symptom Records
–Limited first failure data capture for select problems

Support Element Tracing

72

BCPii Publications

 z/OS MVS Programming: Callable Services for High-Level
Languages

–Primary BCPii documentation including:

o Installation instructions

o BCPii API documentation

 z/OS MVS Programming: Authorized Assembler Services
Reference, Volume 2 (EDT-IXG)

–BCPii’s ENF68 documentation

 z/OS MVS System Commands

–START HWISTART and STOP HWIBCPII commands

 z/OS MVS Diagnosis: Tools and Service Aids

–BCPii’s CTRACE documentation

 z/OS MVS Initialization and Tuning Reference

–Miscellaneous documentation

 z/OS MVS System Codes

–BCPii abend ‘042’x documentation

73

Other BCPii information

 Other SHARE presentations regarding BCPii:

–11806: Recent z/OS Enhancements You Can Use to Reduce
Down Time, presented by Frank Kyne and Karan Singh.

 IBM Redbooks (http://www.redbooks.ibm.com)

–System z Parallel Sysplex Best Practices

–z/OS Version 1 Release 13 Implementation

Other publications
– z/OS Hot Topics

• August 2012: Seeing BCPii with new eyes (pg. 7)

• August 2009: The application doesn’t fall far from the

tree (BCPii: Control your HMC and support element

directly from z/OS apps)

Questions?

• Please fill out the online session evaluation at either:

• SHARE.org/SanFranciscoEval, or

• Aim your smartphone at this QR code below:

74

