
JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 11

JES2 Performance Considerations

Tom Wasik
IBM Rochester, MN

Tuesday 1:30 PM
Session Number 13026

This presentation will cover selected topics in JES2 tuning.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 2

© 2012, 2013 IBM Corporation

Trademarks
The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.
• IBM®
• MVS™
• Redbooks®
• RETAIN®
• z/OS®
• zSeries®

The following are trademarks or registered trademarks of other companies.
• Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.
• Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.
• Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.
• UNIX is a registered trademark of The Open Group in the United States and other countries.
• SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

• All other products may be trademarks or registered trademarks of their respective companies.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.
IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.
All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance
characteristics will vary depending on individual customer configurations and conditions.
This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM
Business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to
non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.
Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 3

© 2012, 2013 IBM Corporation

• Checkpoint tuning issues
• Goals
• Measurement
• Adjusting

• SYSOUT queuing and selection
• Understand queuing
• Watch for long queues
• Adjust SYSOUT attributes, WS criteria

• Miscellaneous suggestions
• PCE counts
• Mean time to restart

Session Objectives

This talk will concentrate on the checkpoint data set and tuning of that data set and SYSOUT queuing
and work selection. It will cover consideration on how to tune these item for best performance.

Also a number of miscellaneous item will be discussed including PCE counts and mean time to
restart (the other MTTR).

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 4

© 2012, 2013 IBM Corporation

Checkpoint Tuning

• Checkpoint is a serially shared resource
• Time sliced among all MAS members
• MASDEF HOLD= and DORMANCY= controls sharing

• HOLD indicates how long member keeps CKPT
• DORMANCY is a 2 part operand

• Min Dormancy – must wait time before getting CKPT
• Max Dormancy – obtain CKPT even if not needed

• Can be altered at any time via operator command
• Trace 17 and its reduction program helps adjust the balance

• Still gold standard in checkpoint tuning
• $D PERFDATA(CKPTSTAT) quick and dirty way to collect data

The JES2 checkpoint is a serially shared resource. Essentially it is time sliced
among all the active MAS members. The sharing is controlled by the MASDEF
HOLD and DORMANCY values. HOLD controls how long a member will hold the
checkpoint once it has read all the information in it. Once the hold time expires and
checkpoint activity has subsided, the checkpoint is released. Dormancy controls
when a member will try to get the checkpoint back. There are 2 values for
dormancy, Min and Max dormancy. Min dormancy is the minimum amount of time a
member must wait before attempting to re-acquire the checkpoint. No attempt to
obtain the checkpoint will be made until that interval expires. Once the Min
dormancy expires, a member will attempt to access the checkpoint IF it believes
that access is needed (there is a process in JES2 that has requested checkpoint
access… done a $QSUSE). If there are no processes that require the checkpoint,
the member will not attempt to re-acquire the checkpoint until max dormancy has
expired. Looking at actual hold and dormancy values is a good indication of whether
a member is properly tuned or not.

The gold standard for looking a checkpoint performance has been trace 17 and its
related reduction program. Together they provide hold and dormancy values and
low level details about what data was written to the checkpoint. But this is often too
much data. It is also not the easiest data to gather. The $D
PERFDATA(CKPTSTAT) gives similar (though less) data and is easier to collect.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 5

© 2012, 2013 IBM Corporation

Checkpoint Tuning

• Goal in tuning
• Reduce MAS performance penalty
• Functions in MAS are delayed waiting for checkpoint
• Impact of delay can be reduced by parallel processing

• Parallel processing example - use multiple internal readers to submit
jobs instead of a single internal reader

• CKPT tuning can also reduce delays
• Balancing act between

• Reduce time to reacquire checkpoint
• Hold long enough to not create additional delays
• Keep non-useful time in CKPT cycle short
• Can be an issue with faster machines and devices

The goal in checkpoint tuning is to reduce the MAS penalty. Because processes
need to access the checkpoint to perform certain functions, there is a latency that is
introduced that is proportional to the checkpoint cycle time (how long it take a
member to acquire access to the checkpoint, hold the checkpoint, release access,
and then re-acquire access). There are 2 primary ways to reduce the MAS penalty,
reduce cycle time or increase parallelism. By increasing parallelism, you increase
the amount of work done once the checkpoint is obtained, lessening the impact of
the checkpoint latency.

But there is a cost to pushing cycle time too low. There is an overhead in acquiring
and releasing the checkpoint. This costs in both CPU and other resources, and in
an increase in the ratio of non-useful time to productive time in the checkpoint
process. As machines and devices get faster, there are issues where an old hold
and dormancy value can throw things out of balance.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 6

© 2012, 2013 IBM Corporation

Checkpoint Tuning

R
ea

d
1

R
ea

d
2

P
rim

ar
y

W
rit

e

In
te

rm
ed

ia
te

 W
rit

e

Fi
na

l w
rit

e
R

el
ea

se
 lo

ck

O
bt

ai
n

Lo
ck

R
ea

d
1

R
ea

d
2

P
rim

ar
y

W
rit

e

In
te

rm
ed

ia
te

 W
rit

e

Fi
na

l w
rit

e
R

el
ea

se
 lo

ck

O
bt

ai
n

Lo
ck

Member 1
R

ea
d

1
R

ea
d

2
Pr

im
ar

y
W

rit
e

In
te

rm
ed

ia
te

 W
rit

e

Fi
na

l w
rit

e
R

el
ea

se
 lo

ck

O
bt

ai
n

Lo
ck

Member 2

Hold Dormancy Hold

Hold
Non useful

time
Non useful

time

Checkpoint Cycle

This is the basic checkpoint cycle with 2 members. This shows the I/Os performed
and the terms used to describe the parts of the cycle. The ratio of non-useful time
to hold time is one of the consideration in checkpoint tuning. The non-useful time
starts when the final write starts on one member and the primary write starts on the
next member. The write/read performance and lock passing time make up the non-
useful time.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 7

© 2012, 2013 IBM Corporation

Checkpoint Tuning

• Contention Mode for Checkpoint
• Set MASDEF HOLD= and DORMANCY=(min) to low values

• HOLD=5 DORMANCY=(5,500)
• Member holds checkpoint only as long as needed
• Member tries to get checkpoint as soon as then need it

• Seems to work better when CKPT on CF
• Can significantly increase CKPT overhead (CPU, I/O requests to device)
• Increases non-useful times (less of an impact with fast devices and

processors)
• Makes JES2 more “responsive”

• Especially when viewed from the outside (SDSF, etc)
• Is it for me?

• Value less with $POSTing done via XCF (z/OS 1.8)
• Higher cost (CPU, I/O or CF capacity)
• Benefits some workloads

Arguing contention mode is like talking politics or religion with the potential inlaws. Unless you agree
with them totally, no-one will ever win. This is an age old queuing problem that goes beyond
computers. Keeping the toilet seat up saves me time if I am then next one to use the toilet and only
takes my wife a second to deal with, but my wife (and I dare say most women) just don’t not see it
that way.

Contention mode make a member go through the overhead of releasing the checkpoint as soon as
they no longer need it. But it also gives them the freedom to get it as soon as they need it. The idea
is why hold the checkpoint any longer than is absolutely needed. And then go grab it as soon as you
need it. This does seem to fit well with the CF FIFO lock processing. The benefit is JES2 is much
more responsive. The cost is a significant increase in checkpoint I/O activity and CPU overhead in
the JES2 address space. It can also increase the non-useful time (or more correctly the ratio of non-
useful to useful time). It is not clear that more responsive implies things get done sooner.

Is it for your shop? Well the value of this goes down with some of the $POSTing changes made in
z/OS 1.8. There is a higher CPU cost, greater load on the device(s) that contain the checkpoint.
BUT there are some very large shops with highly experienced and skilled system programmers that
swear there systems run better this way.

My recommendations, do not try this unless you have the time to monitor the system closely (learn
more about trace 17 and the reduction program… which is beyond what this presentation will get
into).

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 8

© 2012, 2013 IBM Corporation

Checkpoint Tuning

$HASP660 $DPERFDATA(CKPTSTAT)

PERFDATA from one member of a 2 way MAS
CKPT1 on CF, HOLD=50,DORMANCY=(50,100)

$HASP660 CKPT PERFORMANCE STATISTICS - INTERVAL=10:40:56.729026,

$HASP660 AVGHOLD=0.500445,AVGDORM=0.782173,TOT$CKPT=3824054,

$HASP660 WRITE-4K=441609,WRITE-CB=0,OPT$CKPT=0,OPT4K=105663,
$HASP660 IO=R1,COUNT=29979,AVGTIME=0.002916,

$HASP660 IO=R2,COUNT=29940,AVGTIME=0.002482,TOTAL4K=301670,

$HASP660 TOTALCB=0,

$HASP660 IO=PW,COUNT=8363,AVGTIME=0.007229,TOTAL4K=140168,

$HASP660 TOTALCB=0,

$HASP660 IO=IW,COUNT=42048,AVGTIME=0.004678,TOTAL4K=372513,

$HASP660 TOTALCB=0,

$HASP660 IO=FW,COUNT=29979,AVGTIME=0.002940,TOTAL4K=69096,

$HASP660 TOTALCB=0

General statistics

I/O Specific Statistics

This is the output of a $D PERFDATA(CKPTSTAT) for one member of a 2 member
MAS. In this MAS, CKPT1 is in a CF structure and CKPT2 is on DASD. HOLD on
this member is set to 50 and dormancy is min 50 and max 100.

PERFDATA displays status information from the time PERFDATA was reset until
the current time. By default, it displays data from the time the JES2 address space
was started to the time of the command. To reset PERFDATA statistics, issued the
command $TPERFDATA(CKPTSTAT),RESET. This will reset the statistics for
CKPTSTAT and leave the other statistics alone. INTERVAL in the display indicates
how long the current sampling window is (in this example, 10 hours and 40
minutes).

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 9

© 2012, 2013 IBM Corporation

Checkpoint Tuning

• Actual average HOLD and Dormancy
• Average cycle time is sum of HOLD and DORMANCY

• Viewed from each member of the MAS
• Does not need to be the same for all members

• For an active system, under 2 seconds is good
• Non-JES intensive system higher is OK
• Very short cycle time can increase CPU and I/O overhead

• HOLD on MASDEF should be close to AVGHOLD
• If significantly larger, may want to consider increasing MASDEF

• Unless contention mode is your goal
• TOT$CKPT is a relative busyness indicator

• Compare to other system over the same interval

$HASP660 CKPT PERFORMANCE STATISTICS - INTERVAL=10:40:56.729026,

$HASP660 AVGHOLD=0.500445,AVGDORM=0.782173,TOT$CKPT=3824054,

$HASP660 WRITE-4K=441609,WRITE-CB=0,OPT$CKPT=0,OPT4K=105663,

One of the first things to look at is the AVGHOLD (average hold time) and AVGDORM (average dormancy time). Combine
these to get average cycle time. The average cycle time should be close to 2 seconds. System that have very small JES2
workloads can have longer cycle times (closer to 4 seconds).

Cycle times that are too short can cause increased CKPT overhead without significantly improving performance (cycle times
less than 1 second) and can actually make processing take longer. This happens when work that could have been done in
one hold interval of 0.5 seconds instead take 2 shorter hold intervals. If the cycle time is 1 second, then this process takes 1
second to complete instead of 0.5 seconds. If you want to see this effect you need to use trace 17 and look at the average
time PCE $WAITing for the CKPT and compare this to average dormancy. Or you can just keep cycle times closer to 2
seconds by increasing HOLD and not worry about it.

If AVGHOLD is much larger than HOLD, then this system may have a HOLD value that is too short. If hold is greater than
15, also look at the IW and FW counts. If the IW count is much smaller than the FW count, then this system is so busy, it
cannot even get an IW started in the allotted hold time. This system could benefit from a longer hold time (closer to the
AVGHOLD time it is actually running with). Note that this is an easy way to see a system that is not getting enough hold
time. But there is no easy way to determine a hold time is too long.

The TOT$CKPT can be used as a relative CKPT activity indicator when compared to other members over the same interval.
It can be thrown off by command activity (automatic commands that are issued on only one member) and other asymmetric
processing. But depending on the importance of that activity, it may warrant favoring systems that have a relatively high
TOT$CKPT value.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 10

© 2012, 2013 IBM Corporation

Checkpoint Tuning

• Watch actual average I/O times
• Much shorter than historical times

• Shorter time implies less non-useful time
• Look for changes over time

• Indication of over-committed device
• Can dramatically impact performance
• Over-commit has caused delays in minutes

• IOCOUNT for R1 indicates number of CKPT cycles over interval
• Indicates relative access to the checkpoint (compare to other members)

• Delta between R1 and R2 count (in duplex mode)
• Number of times this member released CKPT and then obtained it without other

members getting CKPT
• Delta between IW and FW count

• Indication of the amount of work a member had to do when CKPT was obtained
• Unless hold time is less than 15, in which case low IW count is normal

$HASP660 IO=R1,COUNT=29979,AVGTIME=0.002916,

$HASP660 IO=R2,COUNT=29940,AVGTIME=0.002482,TOTAL4K=301670,

$HASP660 TOTALCB=0,

:

When looking at the records for each I/O, concentrate on the average I/O time and the count field. You should become
familiar with what the I/O times for the various writes are on your system when it is running well. Then use these values as a
basis for later examinations of the times looking for unexplained growth. The times on modern devices with modern
processors are much shorter that historical times (from 10 years ago). What this shorter time implies is a shorter non-useful
time and that the I/O times really do not need to be considered when calculating hold and dormancy times.

One thing you are looking for is the impact of over-committing the device. Too much other activity on the device can lead to
significant delays in the JES2 I/O times. This is especially true of checkpoint on CF. JES2 writes blocks to the CF in bursts.
If the CF is busy with other exploiters, these bursts can sometimes overwhelm the CF and cause significant delays to both
JES2 and other exploiters. This will start as a small, but noticeable increase in the I/Os to the CF but can escalate to
significant delays.

The COUNT= field tells how many of a particular type of I/O has completed in the interval. Based on the timing of the last
reset and the current display, then can be inconsistent by one or 2. Looking at these counts can tell how well the checkpoint
is performing. The R1 (read 1) and FW (Final Write) count tell you how checkpoint cycles this member has completed in the
interval. This is useful to compare to other members to understand relative access to the checkpoint. Because of the way
dormancy works, relative access can also be thought of as relative need.

The delta between the R1 (read 1) and R2 (read 2) counts (in duplex mode) reflects the number of times this member
released the checkpoint and then re-acquired it without other members accessing the checkpoint.

The delta between the IW (intermediate write) and the FW (final write) indicates the relative work a member has to do once it
gets the checkpoint. As long as hold is at least 15, JES2 will schedule one intermediate write per checkpoint cycle (if hold is
less than 15 then none are scheduled). If there are less intermediate writes than expected, this indicates a system so busy
that it could not spend time doing a checkpoint write, This system could benefit from a longer hold time. If there are the
expected number this system may have too long a hold time (in an active system, this number should be above the FW
count). The amount above the expected count, it is one indicator of the relative checkpoint use of this system as compared
to other members.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 11

© 2012, 2013 IBM Corporation

Checkpoint Tuning

• So steps to adjusting HOLD and DORMANCY
• Collect data over a typical time period

• No extra overhead in collecting data
• Interval should be at least an hour but could be

• An entire prime/batch shift
• End of month processing

• Issue ROUTE *ALL $TPERFDATA(CKPTSTAT),RESET
• After interval do ROUTE *ALL $DPERFDATA(CKPTSTAT)

• Collect actual hold and dormancy values across all members
• Use commands/SDSF to be sure you have correct values

• Compare values described and assess if changes are needed
• Update HOLD and DORMANCY values

• Repeat this process until you are happy with what you have
• Periodic assessment is a good thing

• If your workload is significantly different at various times consider adjusting HOLD and
DORMANCY dynamically

First thing to do when adjusting HOLD and DORMANCY is to select a time interval. Pick a time
when the system is running a typical workload. It can be the middle of the day, during your batch
window, etc. You should collect at least and hours worth of data. You can collect data for a longer
period of time (such as the entire batch window, of an entire prime shift). You could do an entire 24
hour period if that is what you want to average your tuning to. Use the ROUTE *ALL command to
send a RESET and Display PERFDATA command to all members. This ensures you have a
consistent interval. Be sure to collect the actual HOLD and DORMANCY values via command (or
SDSF). There are many systems that set these values via command at startup instead of using just
the initialization deck In fact, you should probably collect then at the start and end of the interval to
ensure that they did not actually change over the interval (that can really confuse your). Also, once
you collect data, ensure the intervals are about the same. If a system is unexpectedly restarted, then
the samples are not very useful.

Use the information to compare the systems and asses if changes are needed (depending on how
much of a cowboy you are, you may want to collect data a couple of times before changing anything).
Update the values and start another interval to see the effect of what you just did. Repeat this
process until you are satisfied with the numbers you are using. Be sure to check with others to see if
they are also happy with the performance (after all, it is not about making these number look good,
you want the applications that run on the system to perform well). You should do this assessment
periodically to ensure your HOLD and Dormancy values are good.

You may also want to consider adjusting these values dynamically based on the characteristics of the
work running. This is not normally needed. But if a particular workload is causing problems, it may
be what is needed. Also be sure you are aware if this is happening when you are gathering sampling
data. Changing HOLD and DORMANCY during the interval can make looking at the data very
confusing.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 12

© 2012, 2013 IBM Corporation

Checkpoint Tuning

• Recommendations (3+ Members)
• Assume CKPT I/O delay are negligible
• Set HOLD to 200 (2 seconds) / Number of MAS members

• Exclude members with very little JES2 work
• For members that need more checkpoint time (SAPI intensive

systems) shift time from other system
• Total of all HOLD= values should be about 200

• Excluding members with little JES2 work
• Dormancy should be at least 2 time lowest HOLD
• Monitor with PERFDATA, SDSF, and if needed trace 17

Here are some basic recommendations for setting HOLD and DORMANCY. Note I
am assuming a 3 way and larger MAS.

You can assume that I/O delays re negligible. In the past, the read 1, read 2 and
final write times were used to calculate adjustments to hold and dormancy. With
modern processors and devices, these times are no longer significant.

Start out with a HOLD value the is 200 divided by the number of members in your
MAS. Adjust the hold values to favor systems that need more checkpoint time but
the total of all hold times for all members of the MAS should be 200. Also avoid
dropping a member below 15 unless it is a very large MAS or there is a member
that uses little checkpoint services. In the case of a member that does use very few
JES2 services, set there hold to 15 and do not consider their system at all in
calculating the other members hold values.

The minimum dormancy should be set to two times the lowest hold value you came
up with (unless this is a 2 way MAS, then set it to a little less than the hold value on
the other member).

Monitor the values with PERFDATA(CKPTSTAT) and SDSF as well as looking at
application performance. Trace 17 and the reduction program give lots more details
on this but can take more time to analyze.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 13

© 2012, 2013 IBM Corporation

SPOOL Space ENQ

• Jobs waiting for SPOOL space
• System level ENQ
• Major name SYSZjes2 (name of JES2 subsystem)
• Minor name 'AWAITING SPOOL SPACE‘

• Contention on this ENQ indicates potential CKPT tuning problem
• Short infrequent delays can happen
• If you are using SPOOLDEF FENCE=, this may be “normal”

• May need to tune fencing to increase the number of volumes
• The member with contention is not getting CKPT often enough

• Impact of contention
• Creation of SYSOUT
• Submitting jobs, started tasks, TSO logon

• Good canary in the mine for potential CKPT tuning issues
• Monitor for contention on this ENQ

Now that you know how to tune checkpoint, how do you know you have to? One indication that has
been showing up lately is the JES2 SPOOL space ENQ. JES2 maintains a cache of SPOOL space
for use by address spaces when JES2 does not own the checkpoint. This cache is a fixed size.
When the cache is empty (or if SPOOL fencing is on, if there are no appropriate volumes in the
cache) address spaces start to queue up on the ‘AWAITING SPOOL SPACE’ system ENQ. Actually,
only the second and later requestor queue up so contention indicates 3 address spaces cannot get
the SPOOL space they need (1st requestor, holder of the ENQ, and the requestors that come after
that).

If you are seeing significant contention on this ENQ, then the member with the contention is not
getting the checkpoint often enough. Short, infrequent delays may be normal, but a consistent list of
waiters is not. The problem in this case is cycle time. You may need to lower the cycle time, you
may need to lower the minimum dormancy on the member with the problem, or simply lower the hold
time on all the members.

Think of this as your canary in the mine. This ENQ contention will often show up long before there
are any other problems with checkpoint. The fact that there is contention may NOT prove there is a
problem with the MASDEF values, but it does indicate that there is some problem and you need to
start looking. It could be CF (we have seen problems with the CF or XCF couple data set cause all
kinds of problems), or DASD, or some other problem keeping JES2 from passing the checkpoint
around. But then again, if you just changed MASDEF (or have NOT changed it in 20 years) it could
be a checkpoint tuning problem.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 14

© 2012, 2013 IBM Corporation

Sample charts altering
HOLD/DORMANCY

• Following examples are run on a lab machine (under VM)
• Configuration is constant – z/OS & JES2 level is z/OS 1.13
• They are NOT performance claims, only illustrations

• (I am not saying what the units of time are)
• 1st test is always a single system (HOLD=9999999)
• Other tests have dormancy set to 2x hold

• “Simulates” the effect of 2 other MAS members
• As always, your results may vary greatly from what is

shown here

To illustrate the effect of HOLD and DORMANCY on a workload, a few
workloads were run with various values for hold and dormancy. The
configuration in all the tests was kept constant. Though the tests were run
on a second level VM guest machine, they were run at a time when the
workload on the VM system was light (middle of the night). These are NOT
performance claims nor are they meant as suggested hold and dormancy
values to run with. They are instead examples to help understand the
effects of these parameters on execution time.
The first test is always done with HOLD=9999999 to simulate a single
system. Other tests have DORMANCY set to 2 times hold to simulate the
effect of a 3 way MAS.
Your results may greatly vary from what is presented here.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 15

© 2012, 2013 IBM Corporation

IEBDG to create 4m 80 byte records

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
=999999

H
=0 D

=10

H
=5 D

=10

H
=10 D

=20

H
=15 D

=30

H
=20 D

=40

H
=25 D

=50

H
=30 D

=60

H
=40 D

=80

H
=50 D

=100

H
=60 F=120

H
=70 D

=140

H
=80 D

=160

H
=90 D

=180

H
=100 D

=200

Create 4M
records

This is a simple IEBDG job that generates 4,000,000, 80 byte SYSOUT
records. Notice how the single system value, though faster than any other
sample, is very close to the other values. The main limiting factor here is
SPOOL space in the BLOB. The BLOB is updated on every intermediate
and final write. If you recall, there is no intermediate write done if hold is less
than 15. So notice the dip in the curve at HOLD=15. This is the effect of the
extra intermediate write. This extra write helps until dormancy starts kicking
in at about HOLD=50,DORMANCY=100.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 16

© 2012, 2013 IBM Corporation

Submit and run 100 IEFBR14 jobs

0
2
4
6
8

10
12
14
16

H
=999999

H
=0 D

=10

H
=5 D

=10

H
=10 D

=20

H
=15 D

=30

H
=20 D

=40

H
=25 D

=50

H
=30 D

=60

H
=40 D

=80

H
=50 D

=100

H
=60 F=120

H
=70 D

=140

H
=80 D

=160

H
=90 D

=180

H
=100 D

=200

Submit 100

This is a single TSO submit of a job stream with 100 2 card IEFBR14 jobs.
Each of the 100 jobs has a unique job name. What is happening here is that
every job submitted requires a CKPT access followed by a SPOOL access
and then another CKPT access. This is what causes most of the delays you
see. But it is especially noticeable when HOLD is pushed down to 0. This
aggravates the situation since every SPOOL access results in the loss of the
CKPT and a corresponding DORMANCY delay. Also notice that the times
do fluctuate as hold gets longer. This is typical based on how long a SPOOL
write takes and how many can be done in a CKPT HOLD interval.
Sometimes a little more time allows one more SPOOL I/O within the HOLD
period, allowing a bit faster job completion.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 17

© 2012, 2013 IBM Corporation

Lab test case that runs jobs and does SAPI
requests (Modify characteristics by token)

0

0.5

1

1.5

2

2.5

H
=999999

H
=0 D

=10

H
=5 D

=10

H
=10 D

=20

H
=15 D

=30

H
=20 D

=40

H
=25 D

=50

H
=30 D

=60

H
=40 D

=80

H
=50 D

=100

H
=60 F=120

H
=70 D

=140

H
=80 D

=160

H
=90 D

=180

H
=100 D

=200

SAPI Workload

This is one we discovered when doing some SAPI testing. This is a test
case that does a number of SAPI requests by token and then alters the
characteristics of a single data set. The test case submits about 10 jobs,
makes the SAPI requests, and then purges the jobs. This is a recreateable
result where HOLD=0 takes 8 times longer to complete than any other
HOLD value. It is all based on the number of SPOOL accesses followed by
CKPT access that can be done in one HOLD period. This is the most
dramatic example of HOLD impacting external performance I am aware of.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 18

© 2012, 2013 IBM Corporation

SYSOUT Queuing

• SYSOUT (JOEs) are queued by
• SYSOUT class, destination, priority

• (36*3) + 2 = 110 queue heads
• Local, Remote, Userid head per class
• NJE bound output
• Held output

• Characteristics (Char JOE)
• Same form, FCB, UCS, writer, overlay, PRMODE, User part of

dest, SECLABEL, burst
• Job level (JQE)

There are 3 major queues running through the output queue (JOEs). The class
queue, the characteristics queue, and the job level queue. For each SYSOUT class
there are 3 sub queues, a local, remote, and userid queue. So this is 36*3 = 108
queue heads.

The userid queue is a misnomer. It refers to any destination that cannot be
resolved to a binary JES2 route code (ie local, U1234, or R1234). If the destination
has a DESTID statement that equates it to a binary route code, then this is not a
userid destination. This is important to understand later.

There are also 2 separate queues, one for ALL NJE output and one for ALL held
output.

A second queue that runs through the output queue is the characteristics queue
(the Char JOE queue). All JOEs that have the same value for form, FCB, UCS,
writer, overlay, PRMODE, User part of destination, SECLABEL, and burst are
queued to the same Char JOE.

Finally, there is a job level queue. All output for the same job is queued off the JQE.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 19

© 2012, 2013 IBM Corporation

SYSOUT Queuing

• Avoid long queue problems
• Long class queues

• Impacts performance of selecting work
• SAPI, Printers, FSS, etc
• As seen in CPU used in trace id 20

• Impacts SYSOUT creation time
• Need to add to proper place in queue

• Long characteristics queues
• Impacts output creation time

• Need to find where to add to queue
• Long job queue

• Minimal impact (queue is not ordered)

One way to avoid performance problems is to ensure that SYSOUT queues do not
get too long. If too many elements are on one queue, then this can impact
processing of elements on the queue. In general, removing an element from a
queue is not a problem. JES2 maintains a backwards pointer to simplify deleting an
element. But large queues can impact SYSOUT creation and selection.

The 108 class queues and the NJE queue are maintained in order by binary route
code and priority within the route code. The held queue is simple LIFO queues.
Adding to the class or NJE queue requires looping through the elements looking for
the correct place to add an element. Higher route codes implies a larger search.
Similarly, selecting from a class queue (especially if route code is part of the
selection) requires looping to the correct place in the queue to start processing.
The held queue is not ordered in any meaningful way (except new stuff is at the
beginning) so selecting from that queue can be slow.

The characteristic queue is ordered by SYSOUT class and then priority. Again,
adding to that queue involves scanning to the correct place to add the element.
Since we do not select using the characteristic queue, a large queue only impacts
creating JOEs.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 20

© 2012, 2013 IBM Corporation

SYSOUT Queuing

• Long queue avoidance
• Separate jobs into multiple queues

• Use multiple SYSOUT classes
• Use multiple types of route codes (Rxxx, Uxxx, user destination)

• Avoid selecting output that is held
• OK for low volume work, not high production

• Assign high use devices lower route codes
• Helps work post algorithm work better

• Use “parking” route code that have high values
• Output that sits and needs to be updated to be processed

• Watch for large characteristics chains
• User route codes can help here

Here are some techniques to avoid long SYSOUT queues. The most basic is to ensure that the 108
SYSOUT queues are all well utilized. Having 90% of your print output is class A with one of 1000
different Uxxxx route codes will not give the best performance. Separate them either by altering
DESTIDs to route some output to Rxxxx and other to user route code OR get them to use different
SYSOUT classes (as appropriate).

Under all circumstances, try to avoid major processing that select held output. This is probably going
to give the worst performance of any SYSOUT selection. Held was intended for TSO users to be
able to look at output and either delete it or print it (by making it not held). It was not intended for
1000 convenience printers to process data set via SAPI. The TSO or web application that looks for
some data set is OK. If you need to process held output for a specific job on the held queue, it may
be faster to find the SYSOUT using extended status and then use the SYSOUT token to select it
using SAPI.

JES2 work selection is optimized for a large number of relatively idle printers. Printers that generally
only have one piece of output queued to them perform better than those that build up a print queue.
Those low volume printers should be assigned higher route codes than high use printers that do build
a queue.

If there are printers that no longer exist (but output may be queued to them) or if there is a need to
“park” SYSOUT on a class queue (route it to a dummy device for some later processing) assign
those devices the higher route codes. This keeps them out of the normal selection scans.

Large characteristics queues can creep up on a system. One way to avoid this is the use of user
route codes. Though this can cause problems on the class queues, it can reduce problems on the
characteristics queue. Use the $D F command to display the characteristics JOEs and add the
counts for all the queues displayed. This indicates how large each characteristics queue is.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 21

© 2012, 2013 IBM Corporation

Sample 1 Distribution of JOEs
F Local HOLD 16050
F Local HOLD CHARLIE 3
I Local HOLD 600
K Local HOLD 260
K Local HOLD ERNIE 79

A Local WRITE 340
A Local WRITE FRED 1
B Local WRITE 341
E Local WRITE 3
G Local WRITE 4
H Local WRITE 3176
I Local WRITE 5
J RMT11 WRITE 5
J Local WRITE 88
K Local WRITE 100856
K Local WRITE CHARLIE 35
K Local WRITE ERNIE 45069
K Local WRITE LAURA 26

L Local WRITE 253
Q Local WRITE 1
R Local WRITE 165
R Local WRITE CHARLIE 2522
S Local WRITE 8
T Local WRITE 3
T Local WRITE ROBERT 3
U Local WRITE 128
V Local WRITE 5
W RMT31 WRITE 5
W Local WRITE 5
X Local WRITE 447
Y Local WRITE 27
Z Local WRITE 29
0 Local WRITE 66
0 Local WRITE ERIC 2
8 Local WRITE 17

We have had to look at distributions of JOEs on the various JOE chains over
the years. Here is a distribution from a customer that shows where their
JOEs are queued. For the most part, the non-held JOEs are all on unique
queue heads and depending on how they are selecting output to process,
there should be little queuing impact for this customer. Only the class K user
destination queue has a bit of an overload, but only if there is lots of LAURA
routed output being selected. That would have to step over the 45K ERNIE
output to be selected. My only recommendation for this customer would be
to consider assigning ERNIE a DESTID with a remote route code thus
moving the 45K JOEs to the remote class K queue.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 22

© 2012, 2013 IBM Corporation

Sample 2 Distribution of JOEs

Class A has 1615 unique user route codes and 33,496 JOEs
Class D has 609 unique user route codes and 21,157 JOEs
8,120 JOEs on the held queue
Remaining 10,075 JOEs spread over various classes
• Accessing JOEs in higher route codes requires stepping

over all prior route codes
• DESTIDs can spread user route codes to special local

queue
• Does not require JCL or operator changes
• DESTID(FRED),DEST=U1
• Use for most commonly selected destinations

Now this customer has a mess on their hands. They have 33K JOEs
queued to 1,615 user route codes all in class A. The full list would have
been an eye chart. Some route codes has thousands of JOEs. This
customer would benefit from distributing their JOEs to other queues using
either DESTIDs to assign remote or special local route codes to some of the
destinations, or by spreading the SYSOUT across more classes. Since this
is a point in time capture of the data, it is possible that some or all of this
work may be waiting to be printed. But there are still improvements that can
be made.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 23

© 2012, 2013 IBM Corporation

SYSOUT Work Selection

• JES2 trace ID 20
• Traces most calls to select SYSOUT for processing

• Printer/Punch, SAPI, NJE, RJE, Offload
• NOT PSO, External Writer

• Displays selection criteria
• Reports overhead of selection
• Used to determine efficiency of setup
• Tuning knobs that this can help with

• WS= on devices
• SYSOUT processing philosophy

Trace ID 20 can be used to get a sense of the overhead associated with SYSOUT
work selection. It can be used to understand the impact of large class queues or to
optimize work selection criteria. The reports on real devices, SAPI, offload and
NJE. It cannot be used for PSO requests (including external writers). The trace
include the device name, the work selection list, and the effort used to select an
item (including the CPU associated with the request).

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 24

© 2012, 2013 IBM Corporation

SYSOUT Work Selection

21.51.08.60099 ID= 20 $#GET STC00041 PRT2 09F18468 $#GET CALL FOR PRT2

WS = (W,Q,R,PRM,LIM/F,UCS,FCB)

OUTGRPS DEFINED = 500 OUTGRPS IN USE = 499

OUTGRPS SCANNED = 497 OUTGRPS THRU WS = 1

OUTGRP MASK = FFFEFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

CLASS = A ROUTE = 00010000 FLAGS = 20A00000

ELEMENT SELECTED = 497

CPU TIME USED (SEC) = 0.000083

$#GET CALLED BY = HASPPRPU 0002A488 + 000AA0

Elements
examined

Elements scanned
(high overhead)

Which element
was selected

Total CPU time
used

The 4 most interesting elements of trace 20 are shown here. The first thing to look
at is the elements examined vs the elements scanned. Scanning is a high CPU
overhead process. Keeping this number down will greatly improve performance. In
many cases, you can keep this number down to 1. This number is mostly impacted
by the WS list specified. The elements examined is how many elements were
looked at and quickly dismissed. Keeping this number down is a factor of how the
output is queued. This is an indication of queue length.

The element selected indicates if we kept scanning after we found the element we
finally selected. If this is not the same (or nearly the same) as the elements
examined, then the selection criteria is causing extra overhead.

The CPU time used is a raw value that indicates the cost of this selection.
Ultimately, this is the number that needs to be kept low.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 25

© 2012, 2013 IBM Corporation

SYSOUT Work Selection

• Fast exit is lowest overhead selection
• Occurs when work created for idle printer
• If queue backs up, select must scan queue

21.45.08.94285 ID= 20 $#GET PRT2 09F18468 $#GET CALL FOR PRT2

WS = (W,Q,R,PRM,LIM/F,UCS,FCB)

OUTGRPS DEFINED = 500 OUTGRPS IN USE = 497

OUTGRPS SCANNED = 0 OUTGRPS THRU WS = 0

FLAGS = 20A0A000

FAST EXIT INDICATOR SET - FAST EXIT SUCCESSFUL

CPU TIME USED (SEC) = 0.000002

$#GET CALLED BY = HASPPRPU 0002A488 + 000AA0

Print selection tries to assign new output directly to an output device. If the device
is idle, it can perform the assignment and when the device wakes up, it simply
processes the assigned output group. This is the fastest way a device can select
output. However, this processing does not work if there is a queue of output.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 26

© 2012, 2013 IBM Corporation

SYSOUT Work Selection

• Controls what output is selected
• Devices (FSS, local, remote, etc) use WS=
• SAPI builds WS list from IAZSSS2
• PSO has separate method

• WS list is an ordered list
• Looking for best output to select
• Items earlier in list more important than later
• Items after slash are preferred matches

• Can select non-matching values
• Most items have values associated with them

• Values can be generic, a range, or a list
• Some lists are considered ordered by preference

• Route code, PRMODE, Volume, Queue

SYSOUT work selection controls what output is selected for processing. Selection
is controlled by an list of criteria called the work selection list (specified as WS= on
most devices). SAPI constructs this list using parameters passed on the IAZSSS2
macro. The PSO interface (including the external writer) uses a separate method to
select work to process.
The order of items in the work selection list controls what attribute is most important
when selecting output. The earlier in the list an item is, the more important a match
on that item is.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 27

© 2012, 2013 IBM Corporation

SYSOUT Work Selection

• Order of criteria can impact performance
• SYSOUT queue ordering can help exit search early

• Exit when scan past highest route code
• Priority ordering ensures best priority seen first

• Do not put priority too early in list
• Bad order in list can cause extra searching

• Avoid selecting on multiple values for
• Queue – causes multiple queue scans
• Route code – causes extra elements to be scanned

• Should select on at least queue and route code
• Avoid selecting held output queues

• Held queue is not ordered

SYSOUT work selection is always looking for the best output group to assign to a
device. Because of this, it is possible to find a JOE to process but then continue
searching for a better JOE. This may be needed if that is the requirement of the
device. But often, it does not matter which JOE is selected as long as it matches
the criteria. One way to control the processing is to take advantage of how the
SYSOUT is queued. The code will exit the scan once it is clear that a better JOE
will not be found.

One way to ensure that a better JOE cannot be found is to not code multiple values
for Queue and Route code. Multiple values just forces the code to scan multiple
queues looking for a match. Also, devices should select on at least queue and
route code. If they do not, then extra queues must be scanned to find the best
output.

Avoid selecting from the held queue since it is not ordered and often the entire
queue must be scanned looking for a proper match.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 28

© 2012, 2013 IBM Corporation

SYSOUT Work Selection

• 496 JOEs with mostly same attributes
• 495 with PRMODE=LINE, 1 PRMODE=PAGE

• WS=(W,Q,R,PRM,F/), PRMODE=(PAGE,LINE)
20.10.57.72160 ID= 20 $#GET JOB00035 PRT1 09F18A30 $#GET CALL FOR PRT1

WS = (W,Q,R,PRM,F/)
OUTGRPS DEFINED = 500 OUTGRPS IN USE = 498
OUTGRPS SCANNED = 496 OUTGRPS THRU WS = 496
OUTGRP MASK = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
CLASS = A ROUTE = 000004D2 FLAGS = 20A00000
ELEMENT SELECTED = 496
CPU TIME USED (SEC) = 0.003921
$#GET CALLED BY = HASPPRPU 0002A488 + 000AA0

• WS=(W,Q,R,P,PRM,F/), PRMODE=(PAGE,LINE)
20.19.14.30418 ID= 20 $#GET JOB00036 PRT1 09F18A30 $#GET CALL FOR PRT1

WS = (W,Q,R,P,PRM,F/)
OUTGRPS DEFINED = 500 OUTGRPS IN USE = 498
OUTGRPS SCANNED = 1 OUTGRPS THRU WS = 1
OUTGRP MASK = FFFFFF09 00FEFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
CLASS = A ROUTE = 000004D2 FLAGS = 20A00000
ELEMENT SELECTED = 1
CPU TIME USED (SEC) = 0.000047
$#GET CALLED BY = HASPPRPU 0002A488 + 000AA0

A test was set up with 496 identical SYSOUT JOEs with the exception that the last
JOE has PRMODE=PAGE (all others have PRMODE=LINE). Work selection was
set up with a fairly standard list that included PRMODE. The PRMODE for the
device specified both PAGE and LINE mode (in that order). Since PRMODE is an
order dependent list, PAGE mode is preferred over LINE mode output. As a result,
when the printer was started, the PAGE mode JOE was selected AFTER scanning
all 496 JOEs in the queue. However, if the intent was not to prefer PAGE mode
over LINE mode, you can greatly improve performance by adding Priority to the WS
list AFTER Queue and Routcode. Priority has the effect of negating the order
preference of any criteria after it. However, do NOT move priority above Routcode
if there are multiple Routcodes in the list. Since class queues are ordered by
routcode and then priority, putting priority ahead of routcode in the WS list will
cause excessive scanning of output looking for the best priority.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 29

© 2012, 2013 IBM Corporation

z/OS 2.1 SAPI Performance
Improvements

• New search tree structures to improve SAPI processing
• Improves search for output (JOEs) for SAPI selection
• Improves SAPI search when new output is created

• Controlled by parameters on OUTDEF
• SAPI_OPT=YES|NO controls selection optimization
• WS_OPT=YES|NO controls SAPI selection performance

• Benefit requires selection on at least
• QUEUE,ROUTECDE,OUTDISP
• QUEUE,OUTDISP
• ROUTECDE,OUTDISP
• OUTDISP

• Extra overhead of maintaining the tree structure

In z/OS 2.1 the code was updated to improve overall performance for SAPI
devices. Two new tree structures are being used to improve the
performance of processing SAPI requests. One tree is used to organize the
JOEs based on various characteristics. This new tree is stored in the JES2
checkpoint for use by all members (2.1 and later). The other tree organizes
the SAPI devices waiting for work to process. That tree is maintained in
private JES2 storage. The creation and maintenance of each tree is
controlled by new keywords on the OUTDEF statement. These can be set
at initialization or via operator command. Turning these options on and off
will create and destroy the tree.
The trees are organized based on fixed characteristics that have traditionally
been used to process output groups. These are queue, route code and
OUTDISP. If you are not selecting on these characteristics (or any of the
combinations above), then these tree structures may not be for you. There
is a cost to maintain the trees that could be greater than the benefits
provided by the tree structure. If this is the case in your environment, you
may want to consider restructuring how you select output to take advantage
of the benefits of the tree structure.
Note that if you are selecting held output, the tree structure helps organize
the held output on your system. This may alter the order that output is
processed but it provides significant improvement over the current selection
process. It is still not recommended to select held output due to
performance cost, this change goes a long way to improve that environment.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 30

© 2012, 2013 IBM Corporation

z/OS 2.1 Trace records

• Select when 1 element available
OUTDEF WS_OPT=NO
01.00.55.51166 ID= 20 $#GET JOB00018 SPI 0BC7E238 $#GET CALL FOR SAPI.NOSUBTSK

WS = (QUEUE,ROUTECDE,OUTDISP/)
OUTGRPS DEFINED = 11000 OUTGRPS IN USE = 9098
OUTGRPS SCANNED = 3504 OUTGRPS THRU WS = 1
OUTGRP MASK = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FF
CLASS = A ROUTE = 00000C17 FLAGS = 00A40000
ELEMENT SELECTED = 3504
CPU TIME USED (SEC) = 0.000177
$#GET CALLED BY = HASPSASR 0BAEF000 + 001E28

OUTDEF WS_OPT=YES
01.04.36.96405 ID= 20 $#GET JOB00018 SPI 0BC7E6E8 $#GET CALL FOR SAPI.NOSUBTSK

WS = (QUEUE,ROUTECDE,OUTDISP/)
OUTGRPS DEFINED = 11000 OUTGRPS IN USE = 9967
OUTGRPS SCANNED = 1 OUTGRPS THRU WS = 1
OUTGRP MASK = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FF
CLASS = A ROUTE = 00000C16 FLAGS = 00A40400 1
ELEMENT SELECTED = 1
CPU TIME USED (SEC) = 0.000065
$#GET CALLED BY = HASPSASR 0BAEF000 + 001E28

This is a simple example in a small environment of the benefit of the tree
structure for work selection. The two areas to focus on are the number of
OUTGRPS scanned and the total CPU time. The major benefit can be seen
in the number of elements examined. The tree in this case gave direct
access to the output group that matched the selection criteria. The benefit
can be seen by the amount the CPU usage dropped. The benefits are even
greater when there are more output groups and more devices selecting
work.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 31

© 2012, 2013 IBM Corporation

z/OS 2.1 Trace records

• Select when no work available
OUTDEF WS_OPT=NO
01.00.55.55973 ID= 20 $#GET SPI 0BC7E6E8 $#GET CALL FOR SAPI.NOSUBTSK

WS = (QUEUE,ROUTECDE,OUTDISP/)
OUTGRPS DEFINED = 11000 OUTGRPS IN USE = 9097
OUTGRPS SCANNED = 6506 OUTGRPS THRU WS = 3003
FLAGS = 00A42000
CPU TIME USED (SEC) = 0.000205
$#GET CALLED BY = HASPSASR 0BAEF000 + 001E28

OUTDEF WS_OPT=YES
01.04.36.97033 ID= 20 $#GET SPI 0BC7EB98 $#GET CALL FOR SAPI.NOSUBTSK

WS = (QUEUE,ROUTECDE,OUTDISP/)
OUTGRPS DEFINED = 11000 OUTGRPS IN USE = 9967
OUTGRPS SCANNED = 0 OUTGRPS THRU WS = 0
FLAGS = 00A42400 1
CPU TIME USED (SEC) = 0.000002
$#GET CALLED BY = HASPSASR 0BAEF000 + 001E28

What is even more significant, is the benefit when a device reaches the end
of the element to process. In this case, it generally takes longer to discover
that there is no work than to discover that there is work. The number of
OUTGRPs scanned and the number that need to have work select filtering
done is eliminated with the new tree structure. This is reflected in the total
CPU time used by this request. The benefit grows with the number of output
groups in your environment.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 32

© 2012, 2013 IBM Corporation

Distribution of SAPI Work Selections
12 HOLD ECB (CLASS,BROWSE,OUTDISP/)
12 WRITE ECB (CLASS,BROWSE,OUTDISP/)
1 WRITE ECB (CLASS,JOBNAME,RANGE,OUTDISP/)

184 WRITE ECB (CLASS,OUTDISP/)
3 WRITE ECB (CLASS,ROUTECDE,FORMS,LIMIT,OUTDISP/)

54 WRITE ECB (CLASS,ROUTECDE,FORMS,OUTDISP/)
1 WRITE ECB (CLASS,ROUTECDE,JOB,OUTDISP/)
1 WRITE ECB (CLASS,ROUTECDE,JOBNAME,RANGE,FORMS,LIMIT,OUTDISP/)
2 WRITE ECB (CLASS,ROUTECDE,JOBNAME,RANGE,OUTDISP/)

24 WRITE ECB (CLASS,ROUTECDE,LIMIT,OUTDISP/)
11841 WRITE ECB (CLASS,ROUTECDE,OUTDISP/)

1 WRITE ECB (CLASS,ROUTECDE,WRITER,FORMS,OUTDISP/)
5 WRITE ECB (CLASS,ROUTECDE,WRITER,OUTDISP/)

45 WRITE ECB (ROUTECDE,FORMS,LIMIT,OUTDISP/)
1 WRITE ECB (ROUTECDE,FORMS,OUTDISP/)

48 WRITE ECB (ROUTECDE,LIMIT,OUTDISP/)
366 WRITE ECB (ROUTECDE,OUTDISP/)
10 WRITE ECB (ROUTECDE,PRIORITY,OUTDISP/)
10 WRITE ECB (WRITER,PRIORITY,OUTDISP/)

17402 BOTH NOECB (CLASS,ROUTECDE,JOBNAME,RANGE,JOB,OUTDISP/)
4 WRITE NOECB (CLASS,JOBNAME,RANGE,OUTDISP/)
1 WRITE NOECB (CLASS,ROUTECDE,JOB,OUTDISP/)

29 WRITE NOECB (CLASS,ROUTECDE,OUTDISP/)
9 WRITE NOECB (CLASS,ROUTECDE,RANGE,OUTDISP/)
1 WRITE NOECB (ROUTECDE,WRITER,FORMS,PRMODE,FCB,OUTDISP/)

27 WRITE NOECB (TOKEN/)

This is an interesting chart. This data is accumulated from multiple dumps from multiple
customers. This is a total of all SAPI request in all the dumps. The top ones use ECBs and
are POSTed when new work arrive. The bottom ones are not posted and just select work
until there is no more to select. A couple of interesting selection choices:
HOLD ECB (CLASS,BROWSE,OUTDISP/) – this is selecting from the
HELD queue by class. Since the held queue is not organized by
class, this is an expensive request.

(ROUTECDE,….) – these do NOT select on class and thus must search
all non-held class queues for matches on the passed route code. If
we think back to some of the earlier examples, this can be a very
expensive scan that looks at many queues for a specific route code.

(WRITER,…) – this is also expensive since there is nothing other
than writer that we can match on. WRITER is not a criteria in any
of the sorting, so this request will examine every non-held JOE
using work selection looking for a match. This is the most
expensive of the searches listed.

17402 BOTH NOECB (CLASS,ROUTECDE,JOBNAME,RANGE,JOB,OUTDISP/) –
this is interesting. This number happens to be from a single dump
where they exhausted one of the SAPI related data spaces. Turns
out to be an application error that caused a SAPI request to not be
cleaned up. Over time, it filled a data space and caused an IPL.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 33

© 2012, 2013 IBM Corporation

PCE Counts

• A number of PCEs have user specifiable counts
• Converter, Purge, PSO, Output, Status/Cancel, SPIN

• Cost of extra PCEs is low
• Uses an additional data area (less than a page of storage)

• In general, in a large system, define the max for each type you use
• PSO and Status/Cancel only if interface used heavily
• Converter sometimes set to 1 for application reasons

• Helps ensure jobs run in order submitted
• Don’t do it unless you must (use job scheduler)

• SPIN PCE number less critical
• Significant performance work in SPIN in z/OS 1.11

The number of certain PCEs can be specified via an initialization option. The
PCEDEF initialization statement control the number JES2 defines. It can only be
specified at initialization (no commands to adjust the number). In general, a large
system should set these values to the maximum. There is little cost (performance
or resources) but lots of benefits. However, there are some PCEs that you may not
want to increase the number of:
•The PSO and Status/Cancel (STAC) PCE process requests for the PSO interface
(including external writer, TSO RECEIVE and OUTPUT commands) and the TSO
STATUS and CANCEL commands. If these interfaces are not heavily used, then
increasing these PCEs would not do much good.
•The converter PCE count in some installation is set to 1. This is because
application sometimes require that jobs are executed in the order they are
submitted. With more than 1 converter PCE, then jobs can run in different order
because conversion time is related to the complexity of the JCL. This could cause
simple jobs to convert before complex jobs and thus the jobs run out of order. This
is generally only an issue for installation that explicitly set the converter PCE count
to 1. IBM does not recommend setting converter PCE counts to 1. You should use
job schedulers to ensure jobs run in the correct order.
•The SPIN PCE count is somewhat less critical. The count is mainly for redundancy
rather than performance. Also the overall SPIN process performance has been
greatly enhanced with changes made in z/OS 1.11. This performance
enhancement does not require additional PCEs.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 34

© 2012, 2013 IBM Corporation

PCE counts

• Default and maximum PCE limits updated in z/OS 1.11

1022510Purge

1022510Output

1022510Convert

New defOld defNew MaxOId MaxPCE

Ensure enough buffers for updated limits
–BUFDEF EXTBUF= value

The default and maximum number of PCEs has been increased in z/OS 1.11.
Increasing the number of PCEs will improve parallelism and improve performance.

The converter PCEs does most of it’s work in a subtask, keeping the main task free
to do other work. Increasing the number of converter PCEs improves job
submission time.

The OUTPUT and PURGE PCEs are both I/O intensive processes. Increasing the
number of these PCEs improves throughput when jobs complete and are purged.
However, these PCEs both need buffers to perform their I/O. If you have specify
these values in your initialization deck, you may need to increase the value when
you increase the number of purge or output PCEs. A general rule of thumb is to
define 3 buffers per PCE you define.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 35

© 2012, 2013 IBM Corporation

Mean Time To Restart

• JES2 QUICK start is fasted type of JES2 start
• Having active work prevents quick starts

• End up doing a warm start instead
• Resetting work on an active member ensures a QUICK start

• $E MEMBER processing
• Can be done automatically using AUTOEMEM support

• Setting up AUTOEMEM support
• On “failing” member set MASDEF AUTOEMEM=ON
• On at least one surviving member set MASDEF RESTART=YES
• When member with AUTOEMEM=ON is partitioned out of the

SYSPLEX, a member with RESTART=YES will reset any work
active on the failed member

• Best advice - set MASDEF AUTOEMEM=ON,RESTART=YES on
all members

This is the “other MTTR”, mean time to restart. The goal is to reduce the time it
takes to get a member back up after a system crash. One thing you can do to
speed up JES2 restart Is to ensure JES2 that the failed member does a quick start.
If there is work (jobs and SYSOUT) that is still marked active when a system is
restarted, warm start processing must find that work and reset it so that it can
complete processing. This work can be done when the member is restarted (as
part of startup processing) or it can be done by a surviving member. By having it
done by a surviving member, it ensures the failed member does a quick start. The
process of resetting with from a failed member is called E-Member processing.

E-Member processing can be done by an operator command or automatically by
JES2. There are 2 options on MASDEF that control this processing. The first is the
AUTOEMEM operand, Setting this to ON indicates that the member should be
restarted automatically if it fails. This should be set on the failing member. In fact,
all members should probably have this set to ON. The second operand is
RESTART. This controls what member can do restart processing for failed
members. This should be set to YES on members that have the capacity to restart
the failed work (in general, any member can do this). Note, JES2 will temporarily
update the MASDEF HOLD= value for any member performing the reset processing
while the processing is active.

In general, it is good practice to set MASDEF AUTOEMEM=ON, RESTART=YES
on all MAS members.

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 36

© 2012, 2013 IBM Corporation

Mean Time To Restart

• For planned outages stop address spaces that create lots
of SPIN output
• Cleaning up SPIN output takes a lot of time

• Must read in all SPIN IOTs for the job
• Get the job to the HARDCOPY queue before shutdown
• Other jobs help but not as much

• Use $D PERFDATA(INITSTAT) to see times for each
phase

If this is a planned outage, one other thing that can speed up restart processing is to
get jobs that create lots of SPIN output our of execution before shutdown. If a job
was executing and it ever produced SPIN SYSOUT, then restart processing must
read the control blocks for ALL the SPIN output the job has ever created (include
stuff that was purged) in an attempt to locate output that was active and had not
spun. This can involve a significant amount of I/O. If you can get these jobs to the
hardcopy queue, then restart processing does not need to do anything for these
jobs. Any job that you can get to the hardcopy queue will improve restart time, but
not as much as ones that create SPIN SYSOUT.

There is a command in JES2 that breaks down where JES2 is spending its time
during initialization. The $DPERFDATA(INITSTAT) can be used at any time after
JES2 has started to display the time for each phase of JES2 warm start,

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 37

© 2012, 2013 IBM Corporation

Mean Time To Restart

• Sample PERFDATA(INITSTAT) output
• Quick start of JES2

$HASP660 $DPERFDATA(INITSTAT)
$HASP660 STATISTICS FROM INITIALIZATION:
$HASP660 ROUTINE=MVSSTART,TIME=0.210569,CPU=0.000962,
$HASP660 ROUTINE=LOADINIT,TIME=0.052681,CPU=0.000663,
$HASP660 ROUTINE=IRMODCHK,TIME=0.148789,CPU=0.000907,
$HASP660 ROUTINE=IRSSI,TIME=0.217735,CPU=0.030346,
$HASP660 ROUTINE=IROPTS,TIME=0.001619,CPU=0.000356,
$HASP660 ROUTINE=IRSETUP,TIME=0.054504,CPU=0.034510,
$HASP660 ROUTINE=IRENF,TIME=0.000282,CPU=0.000280,
$HASP660 ROUTINE=IRPL,TIME=1.606372,CPU=1.336937,
$HASP660 ROUTINE=IRPOSTPL,TIME=0.308332,CPU=0.007552,
$HASP660 ROUTINE=IRDCTDCB,TIME=0.005040,CPU=0.004222,
$HASP660 ROUTINE=IRURDEV,TIME=0.000006,CPU=0.000006,
$HASP660 ROUTINE=IREMVS,TIME=0.194420,CPU=0.040542,
$HASP660 ROUTINE=IRDA,TIME=2.066009,CPU=0.380852,
$HASP660 ROUTINE=IRNJE,TIME=0.755167,CPU=0.736799,
$HASP660 ROUTINE=IRRJE,TIME=0.008381,CPU=0.008176,
$HASP660 ROUTINE=IRCSA,TIME=0.001973,CPU=0.000990,
$HASP660 ROUTINE=IRDCTCP,TIME=0.000043,CPU=0.000043,
$HASP660 ROUTINE=IRMVS,TIME=0.046165,CPU=0.000895,
$HASP660 ROUTINE=IRPCE,TIME=0.002338,CPU=0.001182,
$HASP660 ROUTINE=IRINFO,TIME=0.000004,CPU=0.000004,
$HASP660 ROUTINE=IRFINAL,TIME=0.001469,CPU=0.000242,
$HASP660 ROUTINE=WARMSTRT,TIME=0.191271,CPU=0.090822

Some of the note worthy phases that are returned:
•MVSSTART – Time from the start JES2 command until JES2 first gets control
(PROC processing, loading HASJES20, etc)
•LOADINIT – Time to load the HASPINIT load module
•IRPL – Initialization deck processing
•IRDA – Checkpoint and SPOOL initialization. Job and output queue verification
•WARMSTRT – Warm start processing (reset work busy on this system).

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 38

© 2012, 2013 IBM Corporation

Mean Time to Restart

• JES2 uses z/OS timed event service to track restart times
• JES2 creates timed events data during initialization and

warm start process
• Uses z/OS IEATEDS service
• Output formatted by IEAVFTED REXX macro

• Can be done at any time after initialization
• Subsystem name registered as component

• Similar to $D PERFDATA(INITSTAT)
• More granular events tracked

• Includes $HASP709 delays
• Also key exit delays

• Foundation for future efforts to reduce JES2 start times
• Currently in data gathering mode

JES2 does use the new z/OS timed event service to record our startup
events. This allows them to be examined in the context of other address
spaces trying to start. The events recorded are a superset of the data in
$DPERFDATA(INITSTAT). They include things that cause HASP709 delay
messages and delays caused by exits. This is a foundation for future
studied to understand how we can improve overall system restart times. If
you want to see these records, use the IEAVFTED REXX service to format
them any time after an IPL. For more information on using this service
see http://publib.boulder.ibm.com/infocenter/zos/v1r12/topic/com.ibm.zos.r1
2.ieaa200/iea2a2b0774.htm

JES2 Performance Considerations SHARE San Francisco 2013

Session 13026 39

© 2012, 2013 IBM Corporation

Questions?
Session Number 13026

