
1

Problem Diagnosis for OpenSSH on z/OS

C.T. Ware

ctware@us.ibm.com

IBM Poughkeepsie, NY

February 4, 2013
Session 13024

Trademarks and Disclaimers

• See http://www.ibm.com/legal/copytrade.shtml for a list of IBM trademarks.

• The following are trademarks or registered trademarks of other companies

• UNIX is a registered trademark of The Open Group in the United States and other countries

• CERT® is a registered trademark and service mark of Carnegie Mellon University.

• ssh® is a registered trademark of SSH Communications Security Corp

• X Window System is a trademark of X Consortium, Inc

• All other products may be trademarks or registered trademarks of their respective companies

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The
actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the
I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and

the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and
conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the

information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products
and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should
be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

2

Session Agenda

•• >> >> OpenSSHOpenSSH Review <<Review <<

• Debug Facilities

• Collecting Debug Documentation

• Reading Debug Output

• Diagnosing Common Problems

• Appendix

This session is based on z/OS OpenSSH 5.0p1,
unless otherwise noted [OpenSSH 1.2 HOS1120]

OpenSSH Review

• The OpenSSH suite gives the following:

• Encrypted remote access, including tunneling insecure protocols.

• Encrypted file transfer.

• Run remote commands, programs or scripts.

• Secure replacement for rsh, rlogin, telnet and ftp.

• OpenSSH prevents:

• Eavesdropping of data transmitted over the network.

• Manipulation of data at intermediate elements in the network (e.g.
routers).

• Address spoofing where an attack hosts pretends to be a trusted
host by sending packets with the source address of the trusted host.

• IP source routing.

3

OpenSSH Review

sshd

daemon

ssh

client

(encrypted data)

I am me

I am me

too

OpenSSH Review

• OpenSSH is a very useful tool, but much of its
effectiveness depends on correct use. It cannot
protect from any of the following situations:

• Misconfiguration, misuse or abuse.

• Compromised systems, particularly where the root account is
compromised.

• Insecure or inappropriate directory settings, particularly home
directory settings.

• The z/OS OpenSSH messages use a FOTS prefix, we
endeavor to keep the User’s Guide as accurate as
possible with explanations and solutions for each.

4

Functionality Review

• ssh

• OpenSSH client (remote login program)

• a secure alternative to rlogin, rsh, rexec

• sshd

• OpenSSH daemon

• daemon that listens for connections from ssh clients

• handles key exchange, encryption, authentication, command
execution, and data exchange

Functionality Review

• sftp
• Secure file transfer program
• Similar to ftp user interface and performs all operations over encrypted ssh

transport
• Note: sftp does not use standard ftp protocols
• Assumes files are binary. Files copied between EBCDIC and ASCII platforms are

not converted by default. (See ‘ascii’ subcommand)

• sftp-server
• Server side of the sftp protocol
• sftp-server is not intended to be called directly, but from sshd using the Subsystem

option.

• scp
• Secure copy (remote file copy program)
• Similar to rcp, but will ask for passwords/passphrases if needed and performs all

operations over encrypted ssh transport
• Assumes files are text. Files copied between EBCDIC and ASCII platforms are

converted.

5

Session Agenda

• OpenSSH Review

•• >> Debug Facilities <<>> Debug Facilities <<

• Collecting Debug Documentation

• Reading Debug Output

• Diagnosing Common Problems

• Appendix

This session is based on z/OS OpenSSH 5.0p1,
unless otherwise noted [OpenSSH 1.2 HOS1120]

Debug Facilities

Use USS syslogd, or in debug
mode (-ddd or -De)

sshd

-vvvssh-rand-helper

-vssh-keyscan

-dssh-agent

Nonessh-add

-vvvssh-keygen

-vvvsftp

-vvvscp

-vvvssh

How to get debug output:Command:

6

Debug Facilities

• Important note:

• The client debug facilities may not be sufficient, for security
reasons, they often will not tell the user why they were unable
to establish a connection.
• The server (when configured for debugging) typically provides

more detailed information about why a particular connection
attempt may have failed.

• To collect the most amount of information, ideally you’d like
to run both the client and server with the most verbose level
of debugging and collect both a client and server trace from
the same connection attempt.

• You may also need to watch the MVS console for security
messages from RACF (or your favorite security product).

Client Debug Facilities

• ssh

• -v

• Verbose mode. Causes ssh to print debugging messages about

its progress. This is helpful in debugging connection,

authentication, and configuration problems. Multiple -v options

increase the verbosity. You can specify up to three -v options.

• Recommended invocation for debugging:
• ssh –vvv [other options] user@remote.host

• Debug information will be written to stderr, be prepared to

capture if needed.

7

Client Debug Facilities

• sftp and scp

• -v
• Enables verbose mode. This option is also passed to ssh. Multiple -v

options increase the verbosity. You can specify up to three -v options.

• Since this is passed to ssh as well, you’ll continue to receive messages
regarding connection, authentication, and configuration problems, in
addition to the file transfer messages.

• Recommended invocation for debugging:
• sftp –vvv [other options] user@remote.host

• scp –vvv [other options] user@remote.host

• Debug information will be written to stderr, be prepared to capture if
needed.

Server Debug Facilities

• sftp-server has a debug facility but must be enabled in the
sshd_config file, and will only write to syslogd.

• There is also the ability to cut SMF records for file transfer
records

• Specifically SMF Type 119 and subtype 96, 97, and 98 records

• Two primary methods to debug SSHD

• Production debugging using USS syslogd

• Preferred method – best for debugging problems encountered

outside of daemon startup.

• “Debug Mode” – special mode for sshd

• Doesn’t fork a daemon, so if problems lie in system configuration,

they may not occur when running in ‘debug mode’.

8

Server Debug Facilities

• sshd –t

• Test mode
• This instructs sshd to only check the validity of the sshd_config configuration file

and sanity of the keys. This does not actually start sshd.

• sshd –ddd

• Interactively debug sshd in debug mode (up to 3 for increased detail).

• sshd will terminate after processing a single connection attempt.

• sshd –De

• Interactively debug sshd, very similar to –ddd but:
• sshd will remain active until terminated manually (control-c or kill <pid>).

• Debug level based on value of sshd_config file value for LogLevel.

• sshd and syslogd

• Best in practice, provides up to DEBUG3 level of detail while continuing to
run in a production environment.

• Can be combined with options to enable debugging in sftp-server.

Server Debug Facilities

• sshd and syslogd

• sshd has the ability to write to the USS syslogd facility while
running in production mode

• Using these options in /etc/ssh/sshd_config:

• SyslogFacility

• Allows you to specify which syslogd facility to write to, we

recommend “DAEMON” for debugging.

• LogLevel

• Specify the amount of debug output to write. DEBUG3 is the most

verbose and recommended value for debugging.

• Changes to the config file require restarting sshd.

• Best for general debugging and/or failing connection
attempts.

9

Server Debug Facilities

• sftp-server

• sftp-server also has the ability to write to the USS syslogd facility:

• In the /etc/ssh/sshd_config file, the default definition for the sftp-server

is:
• Subsystem sftp /usr/lib/ssh/sftp-server

• You can place sftp-server in debug mode by specifying these options on

the Subsystem entry in /etc/ssh/sshd_config:

• -f SyslogFacility

• Allows you to specify which syslogd facility to write to, we recommend

“DAEMON” for debugging.

• -l LogLevel (lower case L)

• Specify the amount of debug output to write. DEBUG3 is the most verbose

and recommended value for debugging.

• Note: changes to the config file require restarting sshd.

Session Agenda

• OpenSSH Review

• Debug Facilities

•• >> Collecting Debug Documentation <<>> Collecting Debug Documentation <<

• Reading Debug Output

• Diagnosing Common Problems

• Appendix

This session is based on z/OS OpenSSH 5.0p1,
unless otherwise noted [OpenSSH 1.2 HOS1120]

10

Collecting output from the shell

• Typically client debug information will be written to stderr.

• You may need to be prepared to capture for later review or to
pass along to IBM support teams.

• Shell redirection of output

• Standard z/OS shell sample:
• ssh –vvv user@host 2>&1 | tee ssh-debug.log

• This will collect both, stderr and stdout, into a file called ‘ssh-
debug.log’. The ‘2>&1’ redirects stderr to stdout, while the
tee program duplicates stdout into the file (this allows
capturing of data while also displaying output on the
terminal).

Collecting Client Debug Output

• ssh –vvv

• Example:
ssh –vvv ctware@localhost 2>&1 | tee ssh-debug.log

OpenSSH_5.0p1, OpenSSL 0.9.8k 25 Mar 2009

debug1: Reading configuration data /etc/ssh/ssh_config

debug3: cipher ok: aes128-cbc [aes128-cbc,aes192-cbc,a

debug3: cipher ok: aes192-cbc [aes128-cbc,aes192-cbc,a

debug3: cipher ok: aes256-cbc [aes128-cbc,aes192-cbc,a

debug3: cipher ok: rijndael-cbc@lysator.liu.se [aes128

debug3: cipher ok: 3des-cbc [aes128-cbc,aes192-cbc,aes

debug3: cipher ok: aes128-ctr [aes128-cbc,aes192-cbc,a

debug3: cipher ok: aes192-ctr [aes128-cbc,aes192-cbc,a

debug3: cipher ok: aes256-ctr [aes128-cbc,aes192-cbc,a

debug3: cipher ok: arcfour256 [aes128-cbc,aes192-cbc,a

debug3: cipher ok: arcfour128 [aes128-cbc,aes192-cbc,a

debug3: cipher ok: blowfish-cbc [aes128-cbc,aes192-cbc

debug3: cipher ok: cast128-cbc [aes128-cbc,aes192-cbc,

debug3: cipher ok: arcfour [aes128-cbc,aes192-cbc,aes2

debug3: ciphers ok: [aes128-cbc,aes192-cbc,aes256-cbc,

...

11

Collecting Client Debug Output

• sftp –vvv

• Example:
sftp –vvv ctware@localhost 2>&1 | tee ssh-debug.log

• Similar to ssh but also includes things like:

sftp> debug3: zsshSmfSetClientOpData: subcommand PUT

debug3: Looking up tmp.out

debug3: Sent message fd 6 T:17 I:2

debug3: Received stat reply T:105 I:2

debug3: Got file attribute "nlink_t_zos@us.ibm.com"

Uploading tmp.out to /u/ctware/tmp.out2

debug3: Sent message SSH2_FXP_OPEN I:3 P:/u/ctware/tmp.out2

debug3: Sent message SSH2_FXP_WRITE I:4 O:0 S:32768

debug3: SSH2_FXP_STATUS 0

debug3: In write loop, ack for 4 32768 bytes at 0

debug3: Sent message SSH2_FXP_WRITE I:5 O:32768 S:32585

debug3: SSH2_FXP_STATUS 0

debug3: In write loop, ack for 5 32585 bytes at 32768

debug3: Sent message SSH2_FXP_CLOSE I:4

debug3: SSH2_FXP_STATUS 0

debug1: zsshSmfWriteRecord: Writing SMF record type 119 subtype

sftp> debug2: channel 0: read<=0 rfd 4 len 0

Collecting Client Debug Output

• scp –vvv
• Example:

scp –vvv tmp.out ctware@localhost:tmp.copy 2>&1 | tee ssh-debug.log

• Similar to ssh and sftp but also includes things like:

debug1: Entering interactive session.

debug2: callback start

debug2: client_session2_setup: id 0

debug1: Sending command: scp -v -t tmp.copy

debug2: channel 0: request exec confirm 0

debug2: fd 3 setting TCP_NODELAY

debug2: callback done

debug2: channel 0: open confirm rwindow 0 rmax 32768

debug2: channel 0: rcvd adjust 2097152

zsshSmfReadPipe: data length read = 198

zsshSmfReadPipe: SMF status = 84

zsshSmfTestRecord: SMF is collecting type 119, subtype 97 records

zsshSmfSetCommonData: SMF type 119 subtype 97

zsshSmfSetClientOpData: subcommand PUT

Sending file modes: C0644 65353 tmp.out

debug2: channel 0: rcvd ext data 26

Sink: C0644 65353 tmp.out

12

Collecting Server Debug Output

• sshd –De -or- sshd –ddd
• Example:
/usr/sbin/sshd -De 2>&1 | tee server.log
or
/usr/sbin/sshd -ddd 2>&1 | tee server.log

debug2: load_server_config: filename /etc/ssh/sshd_config

debug2: load_server_config: done config len = 244

debug2: parse_server_config: config /etc/ssh/sshd_config len 244

debug3: /etc/ssh/sshd_config:28 setting Protocol 2

debug3: /etc/ssh/sshd_config:122 setting Subsystem sftp /usr/lib/ssh/sf

debug3: /etc/ssh/sshd_config:129 setting SyslogFacility DAEMON

debug3: /etc/ssh/sshd_config:130 setting LogLevel DEBUG3

debug3: /etc/ssh/sshd_config:131 setting StrictModes no

debug3: /etc/ssh/sshd_config:132 setting Protocol 2,1

debug2: load_server_config: filename /etc/ssh/zos_sshd_config

debug2: load_server_config: done config len = 30

debug2: parse_server_config: config /etc/ssh/zos_sshd_config len 30

debug3: RNG is ready, skipping seeding
...

Collecting Server Debug Output

• sshd and syslogd

• Ensure USS syslog daemon is available.

• Add a configuration statement to /etc/syslog.conf
• For our purposes we’re going to utilize the ‘daemon’ syslog facility and

the ‘debug’ priority code
• daemon.debug /tmp/syslogd/server.logfile

• ensure the directory /tmp/syslogd/ exists

• Update the /etc/ssh/sshd_config file to reflect our desire to run in a
debug mode

• Update/define the option “SyslogFacility” to be “DAEMON”
• Update/define the option “LogLevel” to be “DEBUG3”

• SyslogFacility DAEMON

LogLevel DEBUG3

• After updating configuration settings for the daemons, they require
restarting for the changes to be picked up.

13

Collecting Server Debug Output

• sshd and syslogd
• After restarting sshd and syslogd, sshd will be writing debug3 data to

/tmp/syslogd/server.logfile while running a production server.
• syslogd has the added advantage of timestamping all entries, and will show the creation

of child address spaces.

sshd[54]: Server listening on 0.0.0.0 port 22.

sshd[54]: debug1: fd 4 clearing O_NONBLOCK

sshd[54]: debug1: Forked child 33554485.

sshd[54]: debug3: send_rexec_state: entering fd = 8 config len

sshd[54]: debug3: ssh_msg_send: type 0

sshd[54]: debug3: send_rexec_state: done

sshd[33554485]: debug1: rexec start in 4 out 4 newsock 4 pipe

sshd[33554485]: debug1: inetd sockets after dupping: 3, 3

sshd[33554485]: debug1: cipher_init: none from source OpenSSL

Collecting Server Debug Output

• sftp-server and syslogd

• Ensure USS syslog daemon is available and configured for
collecting sshd debug data as described previously.

• Update the sftp subsystem configuration statement in
/etc/ssh/sshd_config to reflect our desire to run in a debug mode
• Use –f to define the value for “SyslogFacility” to be “DAEMON”
• Use –l (lower L) to define the option “LogLevel” to be “DEBUG3”

• Subsystem sftp /usr/lib/ssh/sftp-server -f DAEMON -l DEBUG3

• After updating configuration settings for the daemons, they
require restarting for the changes to be picked up.
• After restarting sshd and syslogd, sftp-server will be writing debug3

data to /tmp/syslogd/server.logfile while running a production server.

14

Collecting Server Debug Output

• Sample of the sftp-server debug output written to the syslog:

sftp-server[52]: session opened for local user ctware from 9.x.x.17

sftp-server[52]: received client version 3

sftp-server[52]: debug3: request 1: realpath

sftp-server[52]: realpath "."

sftp-server[52]: debug1: request 1: sent names count 1

sftp-server[52]: debug3: request 2: stat

sftp-server[52]: stat name "/tmp.copy"

sftp-server[52]: debug3: request 2: sent status 2

sftp-server[52]: sent status No such file

sftp-server[52]: debug3: request 3: open flags 26

sftp-server[52]: debug3: Got file attribute "nlink_t_zos@us.ibm.com"

sftp-server[52]: open "/tmp.copy" flags WRITE,CREATE,TRUNCATE mode 0644

sftp-server[52]: debug1: request 3: sent handle handle 0

sftp-server[52]: debug1: request 4: write "/tmp.copy" (handle 0) off 0 l

sftp-server[52]: debug3: request 4: sent status 0

sftp-server[52]: sent status Success

sftp-server[52]: debug1: request 5: write "/tmp.copy" (handle 0) off 327

sftp-server[52]: debug3: request 5: sent status 0

sftp-server[52]: sent status Success

sftp-server[52]: debug3: request 4: close handle 0

sftp-server[52]: close "/tmp.copy" bytes read 0 written 65353

sftp-server[52]: debug3: request 4: sent status 0

sftp-server[52]: sent status Success

Session Agenda

• OpenSSH Review

• Debug Facilities

• Collecting Debug Documentation

•• >> Reading Debug Output <<>> Reading Debug Output <<

• Diagnosing Common Problems

• Appendix

This session is based on z/OS OpenSSH 5.0p1,
unless otherwise noted [OpenSSH 1.2 HOS1120]

15

Reading Debug Output

• Recall:

• For best effectiveness you will likely want to collect a debug trace
from both the client and server for the same connection attempt.

• Since the messages may be intimidating or confusing, remember:
when in doubt, Google is your friend.

• Note: OpenSSH runs on many platforms, keep this in mind when using
searching the internet - not everything you discover will apply to the
z/OS implementation.

• A great place to begin (if possible) is to also collect a set of traces from
a working connection and compare with the failing results.

• Rather than reviewing one of many potential failing scenarios, let’s
take a look through a working one to build familiarity and comfort…

Client Debug Output – A Walkthrough

• A brief overview of the general flow of an sftp connection
(note this will include ssh debug output and scp will be
similar):

• We’ll review the output of:
sftp –vvv ctware@9.x.x.13

• Which is going to do:
put tmp.out tmp.copy

• Note: Some of the messages will be truncated or omitted for the

sake of readability.

16

Client Debug Output – A Walkthrough

Connecting to 9.x.x.13...

debug3: zsshSmfCreatePipe: SMF pipe created fdout=7, fdin=8

debug1: Reading configuration data /etc/ssh/zos_ssh_config

OpenSSH_5.0p1, OpenSSL 0.9.8k 25 Mar 2009

debug1: Reading configuration data /etc/ssh/ssh_config

debug3: cipher ok: aes128-cbc [aes128-cbc,aes192-cbc,aes256

…

debug2: mac_setup: found hmac-sha1

debug3: mac ok: hmac-sha1 [hmac-sha1,

…

debug3: RNG is ready, skipping seeding

…

IP Name or Address of Remote System

RNG is ready since /dev/random exists

IP Name or Address of Remote System

Client Debug Output – A Walkthrough

debug1: zsshVerifyIcsfSetup: ICSF FMID is 'HCR77A0 '

debug1: zsshVerifyIcsfSetup (163): CSFIQA successful: return

debug2: -----------------------------------

debug2: CRYPTO SIZE KEY SOURCE

debug2: -----------------------------------

debug2: AES 256 SECURE COP

…

debug1: Connecting to 9.x.x.13 [9.x.x.13] port 22.

debug1: Connection established.

…

debug3: Not a RSA1 key file /u/ctware/.ssh/id_rsa.

debug2: key_type_from_name: unknown key type '-----BEGIN'

debug3: key_read: missing keytype

debug3: key_read: missing whitespace

…

ICSF is installed and available

List of available Crypto methods and source

debug1: zsshVerifyIcsfSetup: ICSF FMID is 'HCR77A0 '

debug1: zsshVerifyIcsfSetup (163): CSFIQA successful: return

debug2: -----------------------------------

debug2: CRYPTO SIZE KEY SOURCE

debug2: -----------------------------------

debug2: AES 256 SECURE COP

…

debug1: Connecting to 9.x.x.13 [9.x.x.13] port 22.

debug1: Connection established.

…

debug3: Not a RSA1 key file /u/ctware/.ssh/id_rsa.

debug2: key_type_from_name: unknown key type '-----BEGIN'

debug3: key_read: missing keytype

debug3: key_read: missing whitespace

…

List of available Crypto methods and source

Reading private key(s)

17

Client Debug Output – A Walkthrough

debug1: Remote protocol version 2.0, remote software version
OpenSSH_5.0

debug1: match: OpenSSH_5.0 pat OpenSSH*

…

debug1: Local version string SSH-2.0-OpenSSH_5.0

…

debug3: RNG is ready, skipping seeding

debug1: SSH2_MSG_KEXINIT sent

debug1: SSH2_MSG_KEXINIT received

debug2: kex_parse_kexinit: diffie-hellman-

…

debug1: mac_setup_by_id: hmac-sha1 from source ICSF

debug2: mac_setup: found hmac-sha1

debug1: kex: server->client aes128-cbc hmac-sha1 none

debug1: mac_setup_by_id: hmac-sha1 from source ICSF

debug2: mac_setup: found hmac-sha1

debug1: kex: client->server aes128-cbc hmac-sha1 none

…

Local and remote versions of OpenSSH

Beginning key exchange

Using ICSF for message authentication codeUsing ICSF for message authentication code

Client Debug Output – A Walkthrough

debug1: SSH2_MSG_KEX_DH_GEX_INIT sent

debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY

debug3: check_host_in_hostfile: filename /u/ctware/.ssh/known_hosts

debug3: check_host_in_hostfile: filename /etc/ssh/ssh_known_hosts

…

debug2: key: /u/ctware/.ssh/id_rsa (0)

debug2: key: /u/ctware/.ssh/id_dsa (0)

debug1: Authentications that can continue: publickey,password

…

debug3: authmethod_is_enabled publickey

debug1: Next authentication method: publickey

debug1: Trying private key: /u/ctware/.ssh/id_rsa

debug1: read PEM private key done: type RSA

debug3: sign_and_send_pubkey

debug2: we sent a publickey packet, wait for reply

debug1: Authentications that can continue: publickey,password

debug1: Trying private key: /u/ctware/.ssh/id_dsa

debug1: read PEM private key done: type DSA

Host key authentication occurring

User authentication

Host key authentication occurring

18

Client Debug Output – A Walkthrough

debug3: sign_and_send_pubkey

debug2: we sent a publickey packet, wait for reply

debug1: Authentications that can continue: publickey,password

debug2: we did not send a packet, disable method

debug3: authmethod_lookup password

debug3: remaining preferred: ,password

debug3: authmethod_is_enabled password

debug1: Next authentication method: password

debug2: we sent a password packet, wait for reply

debug1: Authentication succeeded (password).

…

debug1: Entering interactive session.

debug2: callback start

debug2: client_session2_setup: id 0

debug1: Sending subsystem: sftp

…

User authentication occurring

Pubkey failed, trying password

User authentication occurring

Pubkey failed, trying password

Password Authentication
Successful
Password Authentication
Successful

Requesting sftp

Client Debug Output – A Walkthrough

debug3: SSH_FXP_REALPATH . -> /

…

sftp> debug3: zsshSmfSetClientOpData: subcommand PUT

debug3: Looking up tmp.out

…

Uploading tmp.out to /tmp.copy

debug3: Sent message SSH2_FXP_OPEN I:3 P:/tmp.copy

debug3: Sent message SSH2_FXP_WRITE I:4 O:0 S:32768

debug3: SSH2_FXP_STATUS 0

debug3: In write loop, ack for 4 32768 bytes at 0

debug3: Sent message SSH2_FXP_WRITE I:5 O:32768 S:32585

debug3: SSH2_FXP_STATUS 0

debug3: In write loop, ack for 5 32585 bytes at 32768

debug3: Sent message SSH2_FXP_CLOSE I:4

debug3: SSH2_FXP_STATUS 0

debug1: zsshSmfWriteRecord: Writing SMF record type 119 subtype 97
length 332 with record exit IEFU84.

Starting remote directory

Performing a ‘put’File to putFile to put

Destination file

Open, Write, Close

32k chunks

Performing a ‘put’

19

Client Debug Output – A Walkthrough

sftp> debug2: channel 0: read<=0 rfd 5 len 0

…

debug2: channel 0: close_read

…

debug2: channel 0: ibuf empty

debug2: channel 0: send eof

debug2: channel 0: input drain -> closed

debug2: channel 0: rcvd eof

debug2: channel 0: rcvd close

debug3: channel 0: will not send data after close

debug2: channel 0: almost dead

debug2: channel 0: gc: notify user

debug2: channel 0: gc: user detached

debug2: channel 0: send close

debug2: channel 0: is dead

debug2: channel 0: garbage collecting

debug1: channel 0: free: client-session, nchannels 1

…

debug1: Exit status 0

Disconnect flow

Exit Success Exit Success

Server Debug Output – A Walkthrough

• A brief overview of the general flow of an sftp connection
from the server side

• This is the server trace which corresponds to the sftp client
trace we just reviewed.
• sftp –vvv ctware@9.x.x.13

• Which is going to do:
put tmp.out tmp.copy

• Note: Some of the messages will be truncated or omitted for
the sake of readability and the timestamp prefix information
has been removed.

• Note: sftp-server doesn’t have additional debug messages.

20

Server Debug Output – A Walkthrough

sshd[33554489]: debug1: Bind to port 22 on 0.0.0.0.

sshd[33554489]: Server listening on 0.0.0.0 port 22.

…

sshd[33554489]: debug1: Forked child 33554486.

…

sshd[33554486]: Connection from 9.x.x.17 port 43820

…

sshd[33554486]: debug1: Client protocol version 2.0; client
software version OpenSSH_5.0

sshd[33554486]: debug1: match: OpenSSH_5.0 pat OpenSSH*

sshd[33554486]: debug1: Local version string SSH-2.0-OpenSSH_5.0

sshd[33554486]: debug2: Network child is on pid 83886136

sshd[33554486]: debug3: Current IBM Release level: 23

sshd[33554486]: debug3: MLS: seclabel of AS: uid:0

…

sshd[33554486]: debug3: mm_answer_pwnamallow

sshd[33554486]: debug3: get_pwnamallow: input user name ctware,

sshd[33554486]: debug3: Trying to reverse map address 9.x.x.17.

…

Server is up

Incoming connection Incoming connection

Version info.

Server is up

Privsep child

z/OS release 1.13

Incoming username

Server Debug Output – A Walkthrough

sshd[33554486]: debug3: mm_answer_keyallowed entering

sshd[33554486]: debug3: mm_answer_keyallowed: key_from_blob:
25DE6120

sshd[33554486]: debug1: temporarily_use_uid: 0/512 (e=0/512)

sshd[33554486]: debug1: trying public key file
/.ssh/authorized_keys

sshd[33554486]: debug3: key_read: type mismatch

sshd[33554486]: debug2: user_key_allowed: check options: 'ssh-dss
AAAAB3NzaC…’

sshd[33554486]: debug1: restore_uid: 0/512

sshd[33554486]: debug2: key not found

…

sshd[33554486]: debug3: auth_log: authenticated 0, valid 1,
failures 0, max 6, half 3, method publickey

sshd[33554486]: Failed publickey for ctware from 9.x.x.17 port
43820 ssh2

sshd[33554486]: debug3: mm_answer_keyallowed: key 25DE6120 is
disallowed

…

Processing user keys

sshd[33554486]: debug3: mm_answer_keyallowed entering

sshd[33554486]: debug3: mm_answer_keyallowed: key_from_blob:
25DE6120

sshd[33554486]: debug1: temporarily_use_uid: 0/512 (e=0/512)

sshd[33554486]: debug1: trying public key file
/.ssh/authorized_keys

sshd[33554486]: debug3: key_read: type mismatch

sshd[33554486]: debug2: user_key_allowed: check options: 'ssh-dss
AAAAB3NzaC…’

sshd[33554486]: debug1: restore_uid: 0/512

sshd[33554486]: debug2: key not found

…

sshd[33554486]: debug3: auth_log: authenticated 0, valid 1,
failures 0, max 6, half 3, method publickey

sshd[33554486]: Failed publickey for ctware from 9.x.x.17 port
43820 ssh2

sshd[33554486]: debug3: mm_answer_keyallowed: key 25DE6120 is
disallowed

…

Processing user keys

User DSA public key

Not found

Processing user keys

User DSA public key

Processing user keys

User DSA public key

Not found

Processing user keys

User DSA public key

Not found

Processing user keys

User DSA public key

Not found

Processing user keys

User DSA public key

21

Server Debug Output – A Walkthrough

sshd[33554486]: debug3: mm_answer_keyallowed: key_from_blob:
25DE5078

sshd[33554486]: debug1: temporarily_use_uid: 0/512 (e=0/512)

sshd[33554486]: debug1: trying public key file
/.ssh/authorized_keys

sshd[33554486]: debug3: key_read: type mismatch

sshd[33554486]: debug2: user_key_allowed: check options: 'ssh-rsa
AAAAB3…’

sshd[33554486]: debug1: restore_uid: 0/512

sshd[33554486]: debug2: key not found

…

sshd[33554486]: debug3: auth_log: authenticated 0, valid 1,
failures 1, max 6, half 3, method publickey

sshd[33554486]: Failed publickey for ctware from 9.x.x.17 port
43820 ssh2

sshd[33554486]: debug3: mm_answer_keyallowed: key 25DE5078 is
disallowed

…

Not found

Processing user keys

User RSA public key

Processing user keys

Server Debug Output – A Walkthrough

sshd[33554486]: debug3: monitor_read: checking request 10

sshd[33554486]: debug3: mm_answer_authpassword: sending result 1

sshd[33554486]: debug3: mm_request_send entering: type 11

sshd[33554486]: debug3: auth_log: authenticated 1, valid 1,
failures 2, max 6, half 3, method password

sshd[33554486]: Accepted password for ctware from 9.x.x.17 port
43820 ssh2

sshd[33554486]: debug1: monitor_child_preauth: ctware has been
authenticated by privileged process

…

Now trying password

Successful login

22

Server Debug Output – A Walkthrough

sshd[33554486]: debug1: mac_setup_by_id: hmac-sha1 from source
OpenSSL

sshd[33554486]: debug2: mac_setup: found hmac-sha1

sshd[33554486]: debug3: mm_get_keystate: Waiting for second key

sshd[33554486]: debug3: mm_newkeys_from_blob: 25DE5180(123)

sshd[33554486]: debug1: mac_setup_by_id: hmac-sha1 from source
OpenSSL

sshd[33554486]: debug2: mac_setup: found hmac-sha1

sshd[33554486]: debug3: mm_get_keystate: Getting compression state

sshd[33554486]: debug3: mm_get_keystate: Getting Network I/O
buffers

sshd[33554486]: debug2: set_newkeys: mode 0

sshd[33554486]: debug1: cipher_init: aes128-cbc from source OpenSSL

sshd[33554486]: debug2: set_newkeys: mode 1

sshd[33554486]: debug1: cipher_init: aes128-cbc from source OpenSSL

sshd[33554486]: debug1: Entering interactive session for SSH2.

…

Message
Authentication Code
from software

Message
Authentication Code
from software

Ciphers from software
(ICSF unavailable on
this system)

Message
Authentication Code
from software

Server Debug Output – A Walkthrough

sshd[33554486]: subsystem request for sftp

sshd[33554486]: debug1: subsystem: exec() /usr/lib/ssh/sftp-server

sshd[33554486]: debug3: do_exec: subsystem 1

sshd[33554486]: debug3: do_exec: passwd name=ctware, uid=0,
gid=512, dir=/, shell=/bin/sh

…

Starting an sftp
session
Starting an sftp
session

sftp environment

sshd[33554486]: subsystem request for sftp

sshd[33554486]: debug1: subsystem: exec() /usr/lib/ssh/sftp-server

sshd[33554486]: debug3: do_exec: subsystem 1

sshd[33554486]: debug3: do_exec: passwd name=ctware, uid=0,
gid=512, dir=/, shell=/bin/sh

… sftp environment

sshd[33554486]: subsystem request for sftp

sshd[33554486]: debug1: subsystem: exec() /usr/lib/ssh/sftp-server

sshd[33554486]: debug3: do_exec: subsystem 1

sshd[33554486]: debug3: do_exec: passwd name=ctware, uid=0,
gid=512, dir=/, shell=/bin/sh

… sftp environment

Starting an sftp
session

23

Server Debug Output – A Walkthrough

sftp-server[52]: session opened for local user ctware from 9.x.x.17

…

sftp-server[52]: stat name "/tmp.copy"

sftp-server[52]: debug3: request 2: sent status 2

sftp-server[52]: sent status No such file

…

sftp-server[52]: open "/tmp.copy" flags WRITE,CREATE,TRUNCATE mode 0644

sftp-server[52]: debug1: request 3: sent handle handle 0

sftp-server[52]: debug1: request 4: write "/tmp.copy" (handle 0) off 0 l

sftp-server[52]: debug3: request 4: sent status 0

sftp-server[52]: sent status Success

sftp-server[52]: debug1: request 5: write "/tmp.copy" (handle 0) off 327

sftp-server[52]: debug3: request 5: sent status 0

sftp-server[52]: sent status Success

sftp-server[52]: debug3: request 4: close handle 0

sftp-server[52]: close "/tmp.copy" bytes read 0 written 65353

sftp-server[52]: debug3: request 4: sent status 0

sftp-server[52]: sent status Success

…

Open destination file

stat() destination file

Open destination file

write destination filewrite destination file

close destination file

Successful write

Server Debug Output – A Walkthrough

sshd[33554486]: debug2: channel 0: rcvd eof

sshd[33554486]: debug2: channel 0: output open -> drain

sshd[33554486]: debug2: channel 0: obuf empty

sshd[33554486]: debug2: channel 0: close_write

sshd[33554486]: debug2: channel 0: output drain -> closed

…

sshd[33554486]: debug2: channel 0: send close

sshd[33554486]: debug3: channel 0: will not send data after close

sshd[33554486]: debug2: channel 0: rcvd close

sshd[33554486]: debug3: channel 0: will not send data after close

…

sshd[33554486]: debug2: channel 0: gc: user detached

sshd[33554486]: debug2: channel 0: garbage collecting

sshd[33554486]: Connection closed by 9.x.x.17

sshd[33554486]: debug1: do_cleanup

sshd[33554486]: debug3: zsshCloseOldDev: fd=-1

sshd[33554486]: Closing connection to 9.x.x.17

Disconnect flow

Closed by client (using
“exit” sftp subcmd)

Server cleanup (and
termination of this
process)

24

Reading Debug Output

• Where to go from here, Messages, and Guidance

• After walking through a successful client/server flow as we’ve
done, when a curveball (i.e. failure) is thrown your way, you
hopefully will have better understanding of what part of the
connection is in question.

• If the failure is coupled with a FOTS* message, please refer
to the z/OS OpenSSH User Guide for explanations.

• Note: OpenSSH is a complex product requiring the use of
many other components (LE, CRTL, USS, TCP/IP, HFS, etc).

• Watch for other messages in the job output and MVS console.

Session Agenda

• OpenSSH Review

• Debug Facilities

• Collecting Debug Documentation

• Reading Debug Output

•• >> Diagnosing Common Problems <<>> Diagnosing Common Problems <<

• Appendix

This session is based on z/OS OpenSSH 5.0p1,
unless otherwise noted [OpenSSH 1.2 HOS1120]

25

Diagnosing Common Problems

• A few common issues often encountered:

• Confusion between Host Keys and User Keys

• StrictModes preventing connections

• Performance issues with ssh-rand-helper

Key Confusion

• Public/Private Keypairs

• Generated using ssh-keygen.
• Public Key

• A public key is one of two keys used in public-key encryption
(the other being a private key). The user releases a copy of
this key to the public to allow anyone to use it for encrypting
messages to be sent to the user and for decrypting messages
received from the user.

• Private Key

• The user keeps the private key secret and uses it to encrypt
outgoing messages and decrypt incoming messages.

• The permissions for the private key should be set so that only
the owner has read/write access.

26

Key Confusion

• Types of authentication

• Server authentication

• Occurs early on during an ssh connection (prior to user authentication).

• This prevents systems from pretending to be another system (spoofing),

and assures the remote system is the desired system.

• Authenticating the server has to be done before you send any

confidential data to it. In particular, if the user authentication involves a

password, the password must not be sent to an unauthenticated server.

• The remote server provides a Public Key referred to as a Host Key (the
server keeps the private key secret). This can be retrieved using

ssh-keyscan or stored during an client connection.

Key Confusion

• Server authentication

• Host Key

• Public portion of a public/private key pair.

• This is stored in the client user’s ~/.ssh/known_hosts or client

system’s /etc/ssh/ssh_known_hosts file.

• When connecting with the corresponding server, the client

offers this key and the server will match it with it’s private

portion of the key.

• If the server changes its keypair and the stored host key no

longer matches, the client will be notified (batch jobs will likely

fail if this case occurs).

27

Key Confusion

• Types of authentication

• User authentication

• Several methods including password and public key

• Public Key authentication

• This is exactly the same method that is used to authenticate the

server, but now the user is trying to prove its identity and the server is

verifying it.

• The login attempt is accepted if the user proves that he has the

private key and the public key is in the remote system user’s

authorization list (~/.ssh/authorized_keys on the server).

• Typically the keypair is generated on the client system and the public

portion of the key is copied (either using sftp and a password, or FTP, or
possibly even copy/paste, etc) to the remote system.

• It is then stored in the user’s authorized_keys file on the remote

system.

StrictModes Issues

• When the server has “StrictModes yes” set, user pubkey
authentication may fail

• The client will not receive any indication why the connection
failed (even in debug mode).

• The server debug trace will indicate the public key was
rejected:

debug1: temporarily_use_uid: 0/512 (e=0/512)

debug1: trying public key file /userhome/.ssh/authorized_keys

debug1: restore_uid: 0/512

debug3: auth_log: authenticated 0, valid 1, failures 1, max 6, half 3, method publickey

Failed publickey for ctware from 9.00.00.17 port 30582 ssh2

debug3: mm_answer_keyallowed: key 25DE4078 is disallowed

28

StrictModes Issues

• If trying to establish an interactive session, this would still fall
through and try to authenticate using password.

• If you’re certain the pubkey pair was created and configured
properly, verify the server is using StrictModes.

• An easy test to determine if the connection is failing because of

StrictModes, would be to change the server setting to ‘no’

• Might not be feasible on a production system.

StrictModes Issues

• If you determine the connection is failing because of
StrictModes, SSHD may believe access to your
files/directories may be too insecure.

• Here are some of the files/directories SSHD tests and

permissions tested and verified to work:

File Permissions

User's home directory 755

User's authorized_keys file 644

User's known_hosts file 600

User's private key files 600

User's .ssh directory 700

29

Performance Issues

• The open source method to generate random numbers (ssh-rand-
helper utility) uses various shell commands (listed in
/etc/ssh/ssh_prng_cmds) and collects pieces of the output to be
combined together to create a random number.

• On z/OS the execution of this utility may not be as responsive
as other platforms.

• You may encounter SEC6/FF02 abends or see SIGINTs during client
execution.

• Solutions:
• Will use /dev/random automatically if ICSF hardware is in place.
• Check if CEE.SCEELPA is in the LPA list

• Note: APAR OA37278 includes support to use ICSF hardware for
additional purposes beyond RNG.

Session Agenda

• OpenSSH Review

• Debug Facilities

• Collecting Debug Documentation

• Reading Debug Output

• Diagnosing Common Problems

•• >> Appendix <<>> Appendix <<

This session is based on z/OS OpenSSH 5.0p1,
unless otherwise noted [OpenSSH 1.2 HOS1120]

30

59

Appendix

• See the updated “IBM Ported Tools for z/OS: OpenSSH
User’s Guide” for more information
(Order Number: SA23-2246-01)

• Website References

• IBM Ported Tools for z/OS:
http://www.ibm.com/systems/z/os/zos/features/unix/ported/

• IBM Ported Tools for z/OS: OpenSSH:
http://www.ibm.com/systems/z/os/zos/features/unix/ported/openssh/

• OpenSSH: http://www.openssh.org/

• OpenSSL: http://www.openssl.org/

60

Appendix

• ICSF Reference Guides:

• z/OS Cryptographic Services ICSF Overview
(Order Number: SA22-7519-13)

• z/OS Cryptographic Services ICSF Administrator’s Guide
(Order Number: SA22-7521-14)

• z/OS Cryptographic Services ICSF System Programmer’s Guide
(Order Number: SA22-7520-14)

• z/OS Cryptographic Services ICSF Application Programmer’s Guide
(Order Number: SA22-7522-13)

• z/OS Cryptographic Services Writing PKCS #11 Applications
(Order Number: SA23-2231-02)

• Other Reference Guides:

• Program Directory for IBM Ported Tools for z/OS
(Order Number: GI10-0769-06)

31

System z Social Media

• System z official Twitter handle:

• @ibm_system_z

• Top Facebook pages related to System z:

• Systemz Mainframe
• IBM System z on Campus
• IBM Mainframe Professionals
• Millennial Mainframer

• Top LinkedIn Groups related to System z:

• Mainframe Experts Network
• Mainframe
• IBM Mainframe
• System z Advocates
• Cloud Mainframe Computing

• YouTube

• IBM System z

• Leading Blogs related to System z:

• Evangelizing Mainframe (Destination z
blog)

• Mainframe Performance Topics
• Common Sense
• Enterprise Class Innovation: System z

perspectives
• Mainframe
• MainframeZone
• Smarter Computing Blog
• Millennial Mainframer

