
Buffering, Record Level Sharing, and
Performance Basics for VSAM Data
Sets

Session 12999

Presented by
Michael E. Friske

Expectations From This Session

• You will be given some general rules of thumb for
making VSAM perform well.

• You will be given an overview of many of the things to
look for when you suspect a VSAM data set is not
performing well.

• This session will not make you a VSAM performance
expert, but it will put you on the way to becoming one.

Things to Remember

• Every data set is different
• What makes one data set perform really well may cause

another data set to perform very poorly
• You have to understand the data and how it will be used

to make good performance recommendations
• Is the data set being processed sequentially, skip

sequentially, or randomly?
• Will the insert activity be light or heavy?
• Are records being inserted evenly throughout the data set,

or are inserts concentrated in one area of the data set?
• Will records increase in size when they are updated?

Eliminate I/O, Improve Performance

• The best way to improve performance is to eliminate I/O
• Allocate more buffers
• Decrease index level
• Use striping for sequential processing that is I/O bound
• Use Hiperbatch for jobs that all read the same VSAM data

set (does not support Extended Format data sets)

Types of VSAM Buffering

• Non-Shared Resources (NSR)
• Local Shared Resources (LSR)
• Global Share Resources (GSR)
• Record Level Sharing (RLS)

Batch Defaults for VSAM

• NSR buffering
• Two DATA buffers and one INDEX buffer

VSAM Buffering

• NSR Buffering – Best for sequential and skip-sequential
processing

• LSR Buffering – Best for direct processing or when
multiple tasks within the same address space are using
the same data set

• RLS Buffering – Best for data sets being accessed by
multiple address spaces running multiple systems

VSAM Buffering in CICS

• The buffering used is specified in the File Control Table
(FCT)

• When LSR buffering is used, a buffer pool is used that
matches the CI size for the DATA and INDEX component

• If a buffer pool does not exist for that CI size, the next size
available will be used

Let the System Determine the Optimum
Type of Buffering & Number of Buffers

• Each job may process a data set differently
• When coding BUFNI and BUFND in JCL or using Batch

LSR, JCL changes may be required if the application
program changes the way it processes a data set or
changes the record size

• Use System Managed Buffering or an equivalent product
to determine the best type of buffering to use and the
optimum number of buffers

• Competing products include
• CA / Hyper-Buf from CA
• Performance Essentials from Rocket Software / Mainstar
• Veloci-Raptor from Dino Software
• Mainview Batch Optimizer from BMC

System Managed Buffering

• Replaces Batch LSR (BLSR)
• Is only available for Extended Format data sets
• Can be implemented via a DATACLAS definition or using

the AMP JCL parameter
• JCL keywords that support System Managed Buffering

• AMP=‘ACCBIAS=USER|SYSTEM|DO|DW|SO|SW’
• AMP=‘SMBDFR=Y|N’
• AMP=‘SMBHWT=nn’
• AMP=‘SMBVSP=nnK|M’

Invoking System Managed Buffering

• Use a DATACLAS that Record Access Bias = SYSTEM
• Specify AMP=‘ACCBIAS=SYSTEM’
• System Managed Buffering can only be used for Extended

Format data sets

ACCBIAS for Sequential

• SO – Sequential Optimize: More data buffers will be
allocated to support sequential access, and NSR
buffering will be used for this technique. Approximately
500KB of virtual storage will be used for buffers.

• SW – Sequential Weighted: The number of buffers will be
optimized for sequential processing, but additional index
buffers will be allocated for some direct processing. NSR
buffering will be used, and the buffers will require about
100KB of virtual storage.

ACCBIAS for Direct

• DW – Direct Weighted: More index buffers will be
allocated, but some data buffers will be reserved for
sequential processing. NSR buffering will also be used
for this technique and will require 100KB of virtual
storage.

• DO – Direct Optimize: The virtual storage requirement
will depend on the size of the data set. By default, SMB
will attempt to allocate enough buffers to hold 20% of the
data component and the entire index component.

ACCBIAS for Create

• CO – Create Optimize: This buffering technique is only
used for loading a VSAM data set that is defined with the
SPEED option. The High-Used RBA must be zero (0) at
open time. A maximum of approximately 2MB of virtual
storage will be used for this technique.

• CR – Create Optimize for Recovery: This buffering
technique is only used for loading a VSAM data set that is
defined with the RECOVERY option. Again, the High-
Used RBA must be zero (0) at open time. A maximum of
approximately 1MB of virtual storage will be used for this
technique.

Unable to Get Enough Virtual Storage When
ACCBIAS=DO

• Reduce the numbers of buffers by 50% from the optimum
amount for the data components and retry.

• Reduce the number of DATA buffers to the minimum and
retry. The minimum size is 1 MB.

• Reduce the number of INDEX buffers to the minimum and
retry. The minimum is the amount of virtual storage to
contain the entire index set plus 20% of the sequence set
records.

• If none of the retries above is successful, change to
ACCBIAS=DW.

Adjusting Virtual Storage Usage

• Message IEC161I 001(8,36)-087 indicates there is not
enough virtual storage to obtain all of the buffers SMB
requests

• Virtual storage can be limited for some data sets by
specifying AMP=SMBVSP=nnK|M

Optimization Technique Selected

 SEQ BIAS in
STORCLAS

DIR BIAS in
STORCLAS

SEQ & DIR
BIAS in

STORCLAS

No BIAS
Specified in
STORCLAS

MACRF=SEQ

(this is the default)

SO SW SO SO

MACRF=(SEQ,SKP) SO SW SW SW

MACRF=DIR DW DO DO DO

MACRF=(DIR,SEQ) or
MACRF=(DIR,SKP) or
MACRF=(DIR,SEQ,SKP)

SW DW DW DW

SMB Load Mode Options

• Optimization when the HURBA=0 and the data set is
opened in LOAD mode
• Create Optimize (CO)
• Create Optimize Recovery (CR)

• These options cannot be specified by the user

Additional Tuning Options When
ACCBIAS=DO

• SMBDFR=Y|N
• Default for SHR(1,3) & SHR(2,3) is SMBDFR=Y
• Default for all other share options is SMBDFR=N

• SMBVSP=nK|nM
• SMBHWT=n

• Default is SMBHWT=0
• The “n” is a weighted value between 0 - 99

Controlling Whether Below the Line or
Above the Line Storage Is Used

• AMP=‘RMODE31=’
• ALL
• BUFF – Buffers only
• CB – Control blocks only
• NONE

Specifying the Optimum Number of Buffers

• System Managed Buffering (SMB) selects the correct
number of buffers

• Only adjust the selection if the application is not correctly
indicating how it intends to use the data set

• Do not limit the REGION for the job
• Load the VSAM control blocks and the buffers above the

line if the application program is storage constrained
below the line

VSAM Record Level Sharing

 VSAM Record Level Sharing is a function
that allows VSAM data sets to be fully shared
with data integrity among multiple user
across multiple systems.

CICS VSAM Sharing Without RLS

CPU 1 CPU 2 CPU 3

VSAM Data
Set

AOR 1 AOR 2 AOR 3

FOR 1

Single Point of Failure When Using FORs

CPU 1 CPU 2 CPU 3

VSAM Data
Set

AOR 1 AOR 2 AOR 3

FOR 1 X

CICS Sharing With RLS

CPU 1 CPU 2 CPU 3

VSAM Data
Set

AOR 1 AOR 2 AOR 3

SMSVAM SMSVAM SMSVAM

Coupling
Facility 1

Coupling
Facility 2

Advantages of Using VSAM RLS
 Increases data availability

• No Single Point of Failure (SPOF)
• Data remains available during both planned and unplanned

outages
 Improves data integrity

• No more “dirty reads” if another application is updating the data
set

• All users are aware of the HARBA and HURBA
• Locks are held in the event of a CICS failure

 Eliminates the processor constraint for a single FOR
 Provides flexibility in balancing workloads
 Provides the base for Transactional VSAM

Programming Considerations for RLS

 In general, existing programs can use VSAM RLS without
modifications

 Programs should be coded to handle a LOCKED condition
 Unsupported assemblers and compilers do not contain the

necessary support for VSAM RLS
 Batch programs that access data sets in RLS mode must be

compiled with an LE supported compiler
 All COBOL programs used to access VSAM data sets in RLS

mode should use the second status area to obtain the VSAM
FEEDBACK return code (not just File Status value)

SHAREOPTIONS for Data Sets Opened in
RLS Mode

• The SHAREOPTIONS parameter is ignored for data
sets opened in RLS mode.

• When a data set is opened in RLS mode, other jobs will
be prevented from opening the data set in non-RLS
mode unless the data set is defined with
SHAREOPTIONS(2,x). In this case, the READ integrity
will not be guaranteed for the non-RLS user.

Using RLS in Batch

• Batch does not perform sync points, so locks are not
released after a record is updated until the job step ends.

• Batch jobs do not perform any time of logging for VSAM
data sets, so back out and recovery are not possible

• IBM provides an RLS add on called Transactional VSAM
(TVS) that creates sync points within the batch job step
and logging

• Transactional VSAM provides the capability for batch jobs
to update VSAM data sets while those same data sets are
being updated by CICS

Consistent READ for Batch Jobs

• RLS=NRI – No Read Integrity
• RLS=CR – Consistent Read
• RLS=CRE – Consistent Read Explicit (Valid only for an

application that supports commit and back out)

OTHER PERFORMANCE
CONSIDERATIONS

Buffering has a large impact on the performance of a VSAM data
set, but there are other things that can influence VSAM
performance.

Control Interval Size

• For sequential processing, large Control Interval sizes
provide better performance

• For direct processing, small Control Interval sizes provide
better performance

• For mixed access (online and batch for example), a
compromise may be required

FREESPACE

• Use FREESPACE to reduce the number of times VSAM
has to perform a CI or a CA split

• Code CI free space percentage to be a multiple of the
average record length

• Do not code FREESPACE across the whole data set if
inserts will not be distributed across the data set

• Do not code too much FREESPACE to avoid wasting
both disk and buffer space

VSAM Striping

• Improves throughput for sequential, I/O bound
applications

• Spreads control intervals in a control area across multiple
devices

• Does not adversely impact the performance of random
I/O applications

VSAM Striping Layout

http://booksvr.fmr.com:8000/bookmgr/pictures/dgt2d410.P12.gif

CI/CA Layout for Striped Data Sets

http://booksvr.fmr.com:8000/bookmgr/pictures/dgt2d410.P11.gif

Layering for Striped Data Sets

http://booksvr.fmr.com:8000/bookmgr/pictures/dgt2d410.P10.gif

The Affect of SMS Compression on
VSAM Performance

• SMS compression is only available for KSDSs
• SMS compression can reduce the number of EXCPs and

the device connect time when reading and writing to a
VSAM data set, but generally at a higher CPU cost

• SMS compression is optimized for READ I/O’s, so it is
better suited for data sets that have a higher READ to
WRITE ratio

• The benefits are not as great for data sets with small
records, with very large keys in relation to the record size,
or with keys that do not start at offset zero

Determining How a Data Set Is Used
• SMF Type 42 Subtype 6 records contain data set

level I/O statistics
• Cut on the SMF interval and at data set CLOSE

• SMF Type 64 records contain VSAM close statistics
• Cut when a VSAM data set is successfully closed
• When an abend occurs, an SMF type 64 record will not

be cut
• SMF Type 42 Subtype 15 – 19 records RLS statistics
• Talk to the application programmer

Other Sources of Information About How
a Data Set Is Used

• Some products provide additional information
• Statistics showing the number of sequential reads, sequential

writes, direct reads, and direct writes
• Analysis of a data set showing how the records are stored,

how well the keys compress, how the CI’s and CA’s are
utilized, where the free space is, and much more

Summary

• Buffering makes the biggest difference in how a VSAM
data sets performs

• System Managed Buffering (or a competitive product)
should be used to automate buffer optimization

• RLS can be beneficial for data sets accessed by multiple
regions across multiple systems

• Some factors about how a data set is defined can
influence the performance of a VSAM data set

	Buffering, Record Level Sharing, and Performance Basics for VSAM Data Sets
	Expectations From This Session
	Things to Remember
	Eliminate I/O, Improve Performance
	Types of VSAM Buffering
	Batch Defaults for VSAM
	VSAM Buffering
	VSAM Buffering in CICS
	Let the System Determine the Optimum Type of Buffering & Number of Buffers
	System Managed Buffering
	Invoking System Managed Buffering
	ACCBIAS for Sequential
	ACCBIAS for Direct
	ACCBIAS for Create
	Unable to Get Enough Virtual Storage When ACCBIAS=DO
	Adjusting Virtual Storage Usage
	Optimization Technique Selected
	SMB Load Mode Options
	Additional Tuning Options When ACCBIAS=DO
	Controlling Whether Below the Line or Above the Line Storage Is Used
	Specifying the Optimum Number of Buffers
	VSAM Record Level Sharing
	CICS VSAM Sharing Without RLS
	Single Point of Failure When Using FORs
	CICS Sharing With RLS
	Advantages of Using VSAM RLS
	Programming Considerations for RLS
	SHAREOPTIONS for Data Sets Opened in RLS Mode
	Using RLS in Batch
	Consistent READ for Batch Jobs
	Other Performance considerations
	Control Interval Size
	FREESPACE
	�VSAM Striping
	VSAM Striping Layout
	CI/CA Layout for Striped Data Sets
	Layering for Striped Data Sets
	The Affect of SMS Compression on VSAM Performance
	Determining How a Data Set Is Used
	Other Sources of Information About How a Data Set Is Used
	Summary

