

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

A X* Bi ad eCent or *	DB2* DFSBS	DFSORT Damino*	iB≣≉ IBE eServer	Language Environment* NVS	Red books* REXX	System Storage System x*	System z10 Business Class Tivoli≉	z10 EC zEnterprise≉
Booklanager*	DFS#Sd as	D\$6000	iBM logo≉	Paralisi Syspicx*	RMF	System z	WebSpher e*	zSeries≉
0105*	DFSHS how	DS8000*	ins –	Product Pec*	ServerPac*	System 29	z10	
Dat aPower*	DFSBSrmm	F1C0##	InfinBand	RACF*	SYSREAX	System z10	z10 BC	

* Registered trademarks of IBM Corporation

The following are trademarks or registered trademarks of other companies.

The tollowing are trademarks or registered trademarks of other companies. Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks of vademarks of Adobe Systems Incorporated in the United States, and/or other countries. IT Intrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of Government Commerce. Intel, Intel logo, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Korsoft Corporation in the United States, other countries. Windows Server and the Windows logo are trademarks of the Microsoft group of countries.

VINCUMMS Surver and the Vinnows logo are trademarks or the Microsoft group of countries. ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office. UNIX is a registered trademark of The Open Group in the United States and other countries. Java and all Java based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates. Cell Broadband Engine is a trademark of Computer Entertainment, Inc. in the United States, other countries, other other is of both and is used under license therefrom. Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other countries.

* Other product and service names might be trademarks of IBM or other companies.

Note: Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput Rate and use of provides and the results are provided and processed. Therefore, no assurance can be given Rate (ITR) ratio based on mew parts, or new and serviceable used parts. Regardless, our warranty terms apply. Rel customer examples cited or described in this presentation sep reserved as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environment and performance characteristics will way depending on individual customer configurations and configuration and non-IBM products are assigned to home any difference on the products or their published announcements. IBM has not tested theore products and canon confirms the performance, compatibility, or and exclusion through provides on the capabilities of non-IBM products build be addressed to the supplies of hoose products. Questions on the capabilities of non-IBM products and the evolute processore devolution and the results are abayed to hom-IBM products are elig

2 Complete your sessions evaluation online at SHARE.org/SanFranciscoEval

© 2012, 2013 IBM Corporation SHARE •••• in San Francisco 2013

SHARE

The purpose of this session is to provide a brief overview, usage, invocation and examples of various cool tasks you can perform using IBM's Flagship product DFSORT's ICETOOL. You will learn about ICETOOL's JCL and control statements while writing a large "main" ICETOOL job that uses many of the ICETOOL operators, as well as several additional smaller ICETOOL jobs that illustrate specific points.

ICETOOL is a versatile data set processing and reporting utility that provides an easy-to-use batch front-end for DFSORT. ICETOOL combines new features with previously available DFSORT features to perform complex sorting, copying, merging, reporting and analytical tasks using multiple data sets in a single job step. ICETOOL can be called directly or from a program. ICETOOL allows operator statements (and comments) to be supplied in a data set or in a parameter list passed by a calling program. For each operator supplied in the parameter list, ICETOOL puts information in the parameter list pertaining to that operation, thus allowing the calling program to use the information derived by ICETOOL. This presentation introduces you to ICETOOL's 17 "operators", which allow you to do a wide variety of tasks.

ICETOOL also produces messages and return codes describing the results of each operation and any errors detected. Although you generally do not need to look at the DFSORT messages produced as a result of an ICETOOL run, they are available in a separate data set if you need them. ICETOOL sets a return code for each operation it performs. The return codes are:

0 - Successful completion. No errors were detected.

4 - Successful completion. DFSORT detected one or more warning conditions, or RC4 was used for COUNT and the criteria was met.

8 - Unsuccessful completion. RC8 was used for COUNT and the criteria was met.

12 - Unsuccessful completion. ICETOOL detected one or more errors, or RC12 was used (or defaulted) for COUNT and the criteria was met.

16 - Unsuccessful completion. DFSORT detected one or more errors.

20 - Message data set error. The TOOLMSG DD statement was not present or the TOOLMSG data set was not opened.

24 - Unsupported operating system. This operating system is not supported by this release of DFSORT.

You will learn about ICETOOL's JCL and control statements in the next few slides.

z/OS DFSORT: Getting Started manual can be found at http://www.ibm.com/support/docview.wss?rs=114&uid=isg3T7000080

The JCL statements that are required as a result of the specified operator statements.

- The TOOLMSG statement defines the output data set for ICETOOL messages.
- The DFSMSG or SSMSG statement defines the output data set for DFSORT messages.
- TOOLIN is where you create ICETOOL statements using operators.
- XXXXCNTL is where you place sort control statements, XXXX can be anything, but CNTL is required.

EXEC PGM=ICETOOL - to use ICETOOL directly.

TOOLMSG - ICETOOL message data set. This data set has the same attributes as the DFSORT SYSOUT data set.

DFSMSG - DFSORT message data set. This data set has the same attributes as the DFSORT SYSOUT data set.

TOOLIN - ICETOOL statements. This data set has the same attributes as the DFSORT SYSIN data set.

Additional JCL - as required for operators you specify

The 17 ICETOOL operators listed below can be used to perform a variety of functions. **COPY** Copies a data set to one or more output data sets.

COUNT Prints a message containing the count of records in a data set. COUNT can also be used to create an output data set containing text and the count, or to set RC=12, RC=8, RC=4, or RC=0 based on meeting criteria for the number of records in a data set (for example, empty, not empty, less than, equal to, or greater than 5000 records, and so on). **DATASORT** Sorts data records between header and trailer records in a data set to an output data set.

DEFAULTS Prints the DFSORT installation defaults in a separate list data set. **DISPLAY** Prints the values and characters of specific numeric and character fields in a separate list data set. Simple, tailored or sectioned reports can be produced. **MERGE** Merges one or more data sets to one or more output data sets.

MODE Three modes are available, which can be set or reset for groups of operators:

•STOP mode (the default) stops subsequent operations if an error is detected.

•CONTINUE mode continues with subsequent operations if an error is detected.

•SCAN mode allows ICETOOL statement checking without actually performing any operations.

OCCUR Prints each unique value for specified numeric or character fields and how many times it occurs in a separate list data set. Simple or tailored reports can be produced. The values printed can be limited to those for which the value count meets specified criteria (for example, only duplicate values or only non-duplicate values).

RANGE Prints a message containing the count of values in a specified range for a specified numeric field in a data set.

RESIZE Creates a larger record from multiple shorter records, or creates multiple shorter records from a larger record, that is, resizes fixed length records.

SELECT Selects records from a data set for inclusion in an output data set based on meeting criteria for the number of times specified numeric or character field values occur (for example, only duplicate values or only non-duplicate values). Records that are not selected can be saved in a separate output data set.

SORT Sorts a data set to one or more output data sets.

SPLICE Splices together specified fields from records that have the same specified numeric or character field values (that is, duplicate values), but different information. Specified fields from two or more records can be combined to create an output record. The fields to be spliced can originate from records in different data sets, so you can use SPLICE to do various "join" and "match" operations.

STATS Prints messages containing the minimum, maximum, average, and total for specified numeric fields in a data set.

SUBSET Selects records from a data set based on keeping or removing header records, relative records or trailer records. Records that are not selected can be saved in a separate output data set.

UNIQUE Prints a message containing the count of unique values for a specified numeric or character field.

VERIFY Examines specified decimal fields in a data set and prints a message identifying each invalid value found for each field.

Each ICETOOL operator statement describes a task you want ICETOOL to perform. Any number of operators can be specified and in any order.

The above listed is just a partial list of the cool tricks you can do with ICETOOL. There are several ways to exploit this powerful tool called ICETOOL. By using various combinations of the 17 ICETOOL operators, you can easily create applications that perform many complex tasks.

Essentially we are using ICETOOL to tell DFSORT to SORT from the DD (BKS) to the DD's (DAPUBS and PRPUBS) using control DD SPUB(our control statements). Please note that the first 4 characters of the control DD can be anything, the last 4 'CNTL' are required. You reference the control DD in the USING operand using whatever 4 characters you provide, in this example 'SPUB'.

Input data : s744428.	SORT.SAM	PIN	SHAR Tebalgr-Constant - Re
	+8+-	9+0	+2
* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
GUNTHER'S GERMAN DICTIONARY	WILLIS	GUNTHER	WETH
COMPLETE SPANISH DICTIONARY	ROBERTS	ANGEL	VALD
ANOTHER ITALIAN DICTIONARY	UNDER	JOAN	COR
FRENCH TO ENGLISH DICTIONARY	JONES	JACK	FERN
GUIDE TO COLLEGE LIFE	LAMB	CHARLENE	WETH
THE ANIMAL KINGDOM	YOUNG	KEVIN	COR BIOL 80522B
A SMALLER WORLD: MICROBES	BEESLY	GEORGE	FERNBIOL 80522B
DNA: BLUEPRINT FOR YOU	HAVERS	ILSA	FERNBIOL 80523I
CELLS AND HOW THEY WORK	JETTS	PETER	VALDBIOL 80523I
KNOW YOUR CONSUMER	ZANE	JENNIFER	COR BUSIN70251M
ANTICIPATING THE MARKET	ALLEN	CLYDE	WETHBUSIN70124A
ZEN BUSINESS	WILLIAMS	KATIE	VALDBUSIN70255B
THE ART OF TAKEOVERS	HUNT	ROBERT	FERNBUSIN70255B
THE TOY STORE TEST	LITTLE	MARIE	COR COMP 00205V
NOVEL IDEAS	PETERS	SETH	VALDENGL 10054F
POLITICS AND HISTORY	TOMPSOM	KEN	FERNHIST 50521W
CIVILIZATION SINCE ROME FELL	PIERCE	NICOLE	WETHHIST 50420W
REBIRTH FROM ITALY	FISH	JOHN	WETHHIST 50632E
FREUD'S THEORIES	GOOLE	APRIL	VALDPSYCH30975P
MAP OF THE HUMAN BRAIN	WINTER	POLLY	COR PSYCH30016P
***********	* * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
omplete your sessions evaluation online at SHARE.org/SanFran	ciscoEval	2012, 2013 IBM Corpo	oration SHARE

Sample Input data

Output Data in datasets PF	RPUBS and DAPUBS	S HARE heney: -tearine - teari
	01	
*****	****	
CELLS AND HOW THEY WORK	VALD	
COMPLETE SPANISH DICTIONARY	VALD	
EDITING SOFTWARE MANUALS	VALD	
FREUD'S THEORIES	VALD	
INTRODUCTION TO BIOLOGY	VALD	
NOVEL IDEAS	VALD	
SHORT STORIES AND TALL TALES	VALD	
STRATEGIC MARKETING	VALD	
VIDEO GAME DESIGN	VALD	
ZEN BUSINESS	VALD	
ANTICIPATING THE MARKET	WETH	
CIVILIZATION SINCE ROME FELL	WETH	
COMPUTERS: AN INTRODUCTION	WETH	
EIGHTEENTH CENTURY EUROPE	WETH	
GUIDE TO COLLEGE LIFE	WETH	
GUNTHER'S GERMAN DICTIONARY	WETH	
REBIRTH FROM ITALY	WETH	
SYSTEM PROGRAMMING	WETH	
THE INDUSTRIAL REVOLUTION	WETH	
***********	* * * * * * * * *	
** Only Portion of the data is shown to empha	asize how the data is sorted	
5Complete your sessions evaluation online at SHARE.org/SanFrancisc	© 2012, 2013 IBM Corporation	SHARE
		2013

This is how the output looks like based on what was specified in SPUBCNTL. We are including records with character data equal to VALD or WETH at column 106. We are Sorting the records in Ascending order on 2 fields and we are writing out these records in ascending order.

***********	**************************************	op of Data ****	
Los Angeles San Francisco	CAUU3Bģ CAUU3E âb c		
Fort Collins	CO002B f		
Sacramento	CA002TâÊ%%		
Sunnyvale	CA001H		
Denver	CO003Cq%ð		
Boulder	CO003Bf%		
Morgan Hill	CA001E		
Vail	CO001I@		
San Jose	CA002A*<		
San Diego	CA002B*		
Aspen	CO002{Ø		
* * * * * * * * * * * * * * *	**************************************	tom of Data **	

Sample Input data for the stats operator.

The Output from STATS Operator	S H A R E Interpreter stud
<pre>* STATISTICS FROM ALL BRANCHES STATS FROM(ALL) ON(18,4,ZD) ON(28,6,PD) ON(22,6,PD) DFSORT CALL 0001 FOR COPY FROM ALL TO E35 EXIT COMPLETED DFSORD COUNT: 000000000000012</pre>	
STATISTICS FOR (18,4,ZD) : MINIMUM: +000000000015, MAXIMUM: +0000000000035 AVERAGE: +0000000000024, TOTAL : +0000000000298 STATISTICS FOR (28,6,PD) : : :	
AVERAGE: +000000000042/2, MAXIMUM. +000000000000000000000000000000000000	
OPERATION RETURN CODE: 00	
18Complete your sessions evaluation online at SHARE.org/SanFranciscoEval © 2012, 2013 IBM Corporation	SHARE in San Francisco 2013

As you can see the STATS operator provides a MINIMUM, MAXIMUM, AVERAGE, and TOTAL for each field of the ON operand.

Now we are taking a look at the RANGE operator in an effort to get a little more granular. We are going to use the California branches to find out how many branches have profit between -1500 and 8000.

Output for Counting Values in a Bange
RANGE FROM(CADASD) ON(28,6,PD) HIGHER(-1500) LOWER(+8000)
└→ Upper limit for range
► Lower limit for range
► Profit
→ ddname of
* CALIFORNIA BRANCHES PROFIT ANALYSIS
RANGE FROM(CADASD) ON(28,6,PD) HIGHER(-1500) LOWER(+8000)
1006971 0 DECODE CAII 0009 EOO CODY EDOM CADACD TO E35 EVITCOMDIFTED
ICE6281 0 RECORD COUNT: 000000000000007
ICE631I 0 NUMBER OF VALUES IN RANGE FOR (28,6,PD) : 0000000000003
ICE602I 0 OPERATION RETURN CODE: 00

20Complete your sessions evaluation online at SHARE.org/SanFranciscoEval
2013

The output from the RANGE operator is presented in the TOOLMSG dataset. From the above output we see that there is a total of 7 California branches and of those branches, 3 are within the RANGE we specified.

Now we are going to add some bells and whistles using the DISPLAY Operator.

We are going to add a DATE, TITLE, and page number.

We are then going to add some HEADERs so our report looks nice.

We are going to collect some statistics and perform some calculations.

This is a breakdown of the TOOLIN statements.

•	۰.		٠													
		٠														
		٠														

SHARE

SHARE in San Francisco 2013

Tailored Report Output

CITY 	PROFIT	EMPLOYEES
Aspen	5200	20
Boulder	7351	32
Denver	6288	33
Fort Collins	-2863	22
Vail	5027	19
TOTAL	21003	126
AVERAGE	4200	25
LOWEST	-2863	19

23Complete your sessions evaluation online at SHARE.org/SanFranciscoEval

© 2012, 2013 IBM Corporation

d is used to represent a decimal digit (0-9)

w is used to represent a leading sign that will be blank for a positive value or - for a negative value

 ${\boldsymbol x}$ is used to represent a trailing sign that will be blank for a positive value or - for a negative value

y is used to represent a leading sign that will be blank for a positive value or (for a negative value

z is used to represent a trailing sign that will be blank for a positive value or) for a negative value

The various edit mask patterns are shown in Table 74 in DFSORT Application Programming Guide.

	s Example		S H Technology - C
Add this Ed Changing ON	it Pattern Mask (28,6,PD) to ON(28,6,PD, <mark>E1</mark>)	
01/14/13	COLORADO BRANCHES REPORT	- 1 -	1
CITY	PROFIT	EMPLOYEES	
Aspen	 5,200	20	
Boulder	7,351	32	
	6 288	33	
Denver	0,200		
Denver Fort Collins Vail	(2,863) 5,027	22 19	
Denver Fort Collins Vail	(2,863) 5,027	22 19	
Denver Fort Collins Vail TOTAL AVERAGE	(2,863) 5,027 21,003 4,200	22 19 126 25	

So by adding the E1 EDIT MASK the negative values are now encapsulated in () and commas have been added to make the numbers more readable.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
			_
eading Zeros			SHARE Technology - Connections - Read
By default, leading zero	os are not displayed wh	en you use an edit ma	sk, but you
can change that by add HEADER ('No leading	ling LZ	LZ)') ON (28.6.PD.)	E1)
HEADER('Leading zo	eros', '(with LZ)')	ON (28, 6, PD, E1, LZ)	/
No leading zeros	Leading zeros		
(WILHOUL LZ)	(WIUN LZ)		
(4,278)	(00,000,004,278)		
6,832	00,000,006,832		
(2,863)	(00,000,002,863)		
8,276	00,000,008,276		
(978)	(00,000,000,978)		
6,288	00,000,006,288		
7,351	00,000,007,351		
3,271	00,000,003,271		
5,027	00,000,005,027		
8,264	00,000,008,264		
8,275	00,000,008,275		
5,200	00,000,005,200		
lete your sessions evaluation online at SI	HARE org/SanFranciscoEval	© 2012, 2013 IBM Corporation	SHARE
see your bessiene evaluation ontine at or			*••• In San Franci 2013

This example shows the use of the LZ Edit Mask.

There may be times when Edit MASKS are not particularly useful for unsigned numeric data such as telephone numbers, Social Security numbers, dates, time-of-day, etc. We have Edit patterns for our rescue. For example, 0123456789 is shown as (012)-345-6789 with ON(21,10,ZD,E'(999)-999-9999'). If you have an 8-byte ZD date in the form *mmddyyyy* in positions 41-48, you can display it as *mm/dd/yyyy* using ON(41,8,ZD,E'99/99/9999').

An 8-byte value of 03122004 is displayed as 03/12/2004.

For example, you may want the reports have totals rounded to the nearest million or total byte count in Mega/Tera bytes rather than showing the values in bytes. DISPLAY operator has a Division built into it. It specifies division of the numeric data for this field before formatting. x indicates the division factor to be used. The resulting values are rounded down to the nearest integer. Statistics (TOTAL, MAXIMUM, MINIMUM, AVERAGE, BTOTAL, BMAXIMUM, BMINIMUM, BAVERAGE) and column widths reflect the divided numbers For the example in this slide, we collected statistics on the profit field and then divided that by 1000000 which shows the profit or loss in millions.

You can add floating characters to your numeric fields and add leading and trailing characters to your numeric and character fields as follows:

- **F'string'** a floating string to appear to the left of the first non-blank character of the formatted numeric data
- L'string' a leading string to appear at the beginning of the character or numeric data column
- T'string' a trailing string to appear at the end of the character or numeric data column
- In this case we are adding a \$ on the left and trailing ** on the right.

Using the BREAK operand of DISPLAY, you can create reports divided into sections

By a character or numeric break field on which you have previously sorted

Format items with BREAK(p,m,f,formatting) in the same way you can use them with ON(p,m,f,formatting)

Use break title (BTITLE operand) and statistics for the individual sections (BTOTAL, BAVERAGE, BMAXIMUM and BMINIMUM operands)

For this example, we will use the data set with books from publishers VALD and WETH, sorted by publisher and title, that we created previously. To print a report with sections by publisher showing the title and price fields with a title line, field headings, break title, break averages and totals, and overall averages and totals.

cuoned neport Outp	out	Technology
BOOKS FOR INDIVIDUAL PUBLISHERS	- 1 -	
PUBLISHER: VALD		
TITLE OF BOOK	PRICE OF BOOK	
CELLS AND HOW THEY WORK	\$24.95	
ZEN BUSINESS	\$12.00	
AVERAGE FOR THIS PUBLISHER	\$17.91	
TOTAL FOR THIS PUBLISHER	\$179.14	
BOOKS FOR INDIVIDUAL PUBLISHERS	- 2 -	
PUBLISHER: WETH		
TITLE OF BOOK	PRICE OF BOOK	
ANTICIPATING THE MARKET	\$20.00	
THE INDUSTRIAL REVOLUTION	\$7.95	
AVERAGE FOR THIS PUBLISHER	\$18.53	
TOTAL FOR THIS DUDITCHED	\$166 77	

The output would be like shown above. I put everything into a single slide so that you can see the complete output in a single slide. In this case the output shows the books in stock for the publisher VALD, and provides an average price and the sum of the inventory. In this case the output shows the books in stock for the publisher WETH, and provides an average price and the sum of the inventory. This output shows the average for both publishers and the sum of the inventory.

OCCURS report is similar to DISPLAY report

ALLDUPS - only list duplicate values

NODUPS - only list non-duplicate values

EQUAL - only list values that occur a specified number of times

HIGHER - only list values that occur more than a specified number of times

LOWER - only list values that occur less than a specified number of times

ON(VALCNT) can be used to print the number of times each field value occurs.

ON(VLEN) can be used for the record length of variable length records.

For this example, we will use the data set with books from publishers VALD and WETH, sorted by publisher and title, that we created previously. To print a report with sections by publisher showing the title and price fields with a title line, field headings, break title, break averages and totals, and overall averages and totals.

Books	from Publis	hers 11.01.1	3	
Publis	her Books U	sed		
COR		7		
FERN		4		
VALD		5		
WETH		4		

This shows the number of occurrences for each publisher.

You can use ICETOOL'S SELECT operator to create an output data set with records selected according to how many times different ON field values occur, sorted by those ON field values. As with the OCCUR operator, values that occur only once are called non-duplicate values, and values that occur more than once are called duplicate values.

FIRST - keep only the first record for each value (that is, records with nonduplicate values, and the first record for duplicate values)

LAST - keep only the last record for each value (that is, records with nonduplicate values, and the last record for duplicate values)

FIRSTDUP - only keep the first record for duplicate values

LASTDUP - only keep the last record for duplicate values

ALLDUPS - only keep records with duplicate values

NODUPS - only keep records with non-duplicate values

EQUAL - only keep records with values that occur a specified number of times

HIGHER - only keep records with values that occur more than a specified number of times

LOWER - only keep records with values that occur less than a specified number of times

Records by	SHAR Technology - Cannet lans - I					
* Course name * and only one SELECT FRO!	and author's last name for court book M(<u>BKIN)</u> TO(<u>DUP</u>) DISCARD(<u>NO</u>	ies with more than one book DUP) ddname of nodup output data set				
	→ ddname of	dup output data set				
	ddname of input data s	et				
ON(120,25,CH) ALLDUPS USING(CTL1)					
	→ Firs	four chars of DFSORT control data set				
	 Criteria for selecting 	records				
└ → (Course name	NoDups	NoDups			
AllDups		11000000				
		ADVANCED MARKETING	LORCH			
INTRO TO COMPUTERS	CHATTERJEE	BIOLOGY I	GREENBERG			
	CHATTERJEE	DATA MANAGEMENT	SMITH			
INTRO TO COMPUTERS						
INTRO TO COMPUTERS INTRO TO COMPUTERS	CHATTERJEE	EUROPEAN HISTORY	BISCARDI			
INTRO TO COMPUTERS INTRO TO COMPUTERS MODERN POETRY	CHATTERJEE FRIEDMAN	EUROPEAN HISTORY FICTION WRITING	BISCARDI BUCK			
INTRO TO COMPUTERS INTRO TO COMPUTERS MODERN POETRY MODERN POETRY	CHATTERJEE FRIEDMAN FRIEDMAN	EUROPEAN HISTORY FICTION WRITING MARKETING	BISCARDI BUCK MAXWELL			
INTRO TO COMPUTERS INTRO TO COMPUTERS MODERN POETRY MODERN POETRY WORLD HISTORY	CHATTERJEE FRIEDMAN FRIEDMAN GOODGOLD	EUROPEAN HISTORY FICTION WRITING MARKETING PSYCHOANALYSIS	BISCARDI BUCK MAXWELL NAKATSU			
INTRO TO COMPUTERS INTRO TO COMPUTERS MODERN POETRY MODERN POETRY WORLD HISTORY WORLD HISTORY	CHATTERJEE FRIEDMAN FRIEDMAN GOODGOLD WILLERTON	EUROPEAN HISTORY FICTION WRITING MARKETING PSYCHOANALYSIS PSYCHOLOGY I	BISCARDI BUCK MAXWELL NAKATSU ZABOSKI			
INTRO TO COMPUTERS INTRO TO COMPUTERS MODERN POETRY MODERN POETRY WORLD HISTORY WORLD HISTORY	CHATTERJEE FRIEDMAN FRIEDMAN GOODGOLD WILLERTON	EUROPEAN HISTORY FICTION WRITING MARKETING PSYCHOANALYSIS PSYCHOLOGY I TECHINCAL EDITING	BISCARDI BUCK MAXWELL NAKATSU ZABOSKI MADRID			

These two publishers have more than 4 books in the inventory.

Sometimes you may want to split a large record into smaller records or combine many small records into one large record. You can use ICETOOL's RESIZE operator to build short records from large records or vice versa.

FROM(indd) - would be the input dataset

TO(outdd) - would be the output dataset

TOLEN(n) - Specifies the record length you want ICETOOL to use for the resized output records. n can be 1 to 32760. n must not be equal to the input record length.

Creat	t ing Sma s say we have		ds from	Large	record		SHARI Technique Canadian - Rea
Let's	s say we have		ds from	Large	record		recenteredy - Connections - Net
Let's reco	say we have	on input file					
	ius:	an input file	with RECFN	∕I=FB and	LRECL=52 that h	as these	;
*SEC *SEC	-+1+ CTION 001**S CTION 005**S	2+- ECTION 002* ECTION 006*	**SECTION 0	4 03**SECI 007**SECI	+5 ION 004* ION 008*		
//т	'OOT.TN DD *						
R	RESIZE FROM	I(INPUT) I	O (OUTPUT)	TOLEN	(13)		
//* We hav	want to split ve RECFM=Fl	each 52-byte 3 and LRECI	e record into L=13 and co	four 13-b ntain thes	yte records. The c se records:	output da	ita set will
SI	ECTION 001						
SI	ECTION 002						
SI	ECTION 003						
SI	ECTION 004						
SI	ECTION 005						
SI	ECTION 006						
*SI *CI	ECIION UU7*						
^ SI	PCITON 008.						•••
mplete your	sessions evaluation	online at SHARE.org	/SanFranciscoEval		© 2012, 2013 IBM Corpo	ration	SHARE

As you can see we took 2 records each with a length of 52 bytes and created 8 records each with 13 bytes length.

Now that you have seen how a large record is broken into small record, lets do the reverse. As you can see all we need is to change the TOLEN field to 52 and voila we created 2 records combining four thirteen byte records into a single record. This might come handy when you want combine all the continuation messages (ex: DSNT501I or DSNT501I) from your syslog. Remember that RESIZE only works on fixed records.

DFSORT and ICETOOL obtain the symbols to be used from the data set specified in a SYMNAMES DD statement. Create the SYMNAMES data set you want to use with RECFM=FB and LRECL=80 in the same way you would create a data set containing DFSORT JCL and control statements. Then use an editor, such as ISPF EDIT, to write the SYMNAMES statements defining your symbols.

This is the symbol you will use for the Title field. A symbol can be 1 to 50 characters consisting of uppercase letters(A-Z), lowercase letters (a-z), numbers (0-9), the number sign (#), the dollar sign (\$), the commercial at sign (@), the underscore(_), and the hyphen (-). However, the first character must not be a number. Title, TITLE, and title are three different symbols.

You will notice that the SYMBOLS can be used in either the TOOLIN on Control statement area.

The SYMNAMES DD statement specifies the SYMNAMES data set to be used for this application. The SYMNOUT DD statement specifies a data set in which you want DFSORT to list your original SYMNAMES statements and the symbol table constructed from them. You can omit the SYMNOUT data set if you don't want to see that information.

You can use symbols wherever decimal constants, character constants, hexadecimal constants or bit constants can appear in DFSORT control statements and ICETOOL operators.

