

Best Practices for ICF Catalog

Session 12970

Stephen Branch – IBM Corporation Janet Sun – Rocket Software

Agenda

- Catalog Management
- Catalog Backup and Recovery
- Catalog Diagnostics
- Buffering Basics
- Catalog Caching
- Catalog Sharing
- Catalog Tuning
- Final Thoughts

Catalog Management

Defining a Catalog

- Use IDCAMS DEFINE USERCATALOG
- Cannot span volumes
- Cannot be defined as a striped data set
- Can only be an Extended Format data set if at z/OS 1.12 or higher, allows extended addressability (>4GB)
- Allocate in cylinders
 - Results in maximum possible CA size of 1 cyl
- Specify secondary space value > 1 cyl
 - To prevent each CA split from requiring another extent

Defining a Catalog (continued)

- Recommend Data CISIZE of 4KB
- Use a minimum Index CISIZE of 3584 if using a 4KB Data CISIZE
 - Don't take the default
- Start with STRNO(3)
 - Default is 2
- Don't code BUFFERSPACE
 - Use BUFND and BUFNI instead
- Take the defaults for SHAREOPTIONS and RECORDSIZE

Types of Entries in a Master Catalog

- System related data sets
 - SYS1 and other data sets needed at IPL time
 - Page data sets
 - IODF
- User catalog connector records
 - Created with IDCAMS IMPORT CONNECT
- Alias records
 - Created with IDCAMS DEFINE ALIAS
 - An alias name defined in the master catalog can be used to reference a user catalog
- Keep everything else out!
- Catalog management must read every record when
 6 Complete your session of the alias in memory search tables

Defining a VVDS

- Always explicitly DEFINE VVDSs!
 - Default is TRACKS(10 10) usually too small
 - Since z/OS 1.7 a system default can be set
 - Default is not preserved across an IPL
 - F CATALOG, VVDSSPACE(prim, sec) not in Cylinders
- Plan ahead and review the section in Managing Catalogs "Estimating Space Requirements for the VVDS"
- Allocate in CYLINDERS
 - To provide enough space
 - EAV compatibility can extend into cylinder managed storage

Catalog Backup and Recovery

Rule #1: Back up as often as you can

- How often is enough? It depends...
 - At least once a day for all catalogs
 - More often for volatile catalogs where you are creating lots of SMF records — indicating heavy data set DEFINEs, DELETEs, and allocation extensions
 - More often for critical catalogs ones that would present a major problem if recovery isn't fast
 - Less often for non-volatile catalogs

Rule #2: Verify all BCSs are included

- When was the last time you audited your backup job to see the list of catalogs backed up?
- Obtain a list of connected catalogs in all master catalogs

```
LISTCAT UCAT

LISTING FROM CATALOG -- CATALOG.MASTER.CAT

USERCATALOG --- CAT.ICF.USER1

USERCATALOG --- CAT.ICF.USER2
...
```

 Compare the list to your catalog backup job, and ensure that all are backed up

Rule #3: Double check the backups

- Establish a regular method to check catalog backup return codes
- Ensure you run EXAMINE INDEXTEST on each catalog
 and then check the output!
- Consider duplexing your backups and create a third copy for your disaster recovery (DR) site

Rule #4: Verify that you can recover

- Can you locate your backups? If duplexed, catalog each in a different user catalog
- Can you locate your SMF data? How many systems are sharing the catalog? What catalog is it cataloged in?
- Test, test, test if a problem occurs and you can't recover, your goose is …

BCS Forward Recovery

SMF Records Are the Only Way

- For BCS forward recovery, SMF record types required:
 - Type 61 Data set define
 - Type 65 Data set delete
 - Type 66 Data set alter
- These records, written between the time of backup and restore, identify all new data sets created, deleted, and extended
- You must have something, and you must know how to use it!
- You should practice BCS forward recovery

ICFRU

Used for BCS Forward Recovery

- IBM field developed product
- Incorporated into z/OS DFSMS 1.7
- Takes IDCAMS EXPORT copy of the BCS and SMF records from all sharing systems as input
- Creates a new EXPORT format backup which is used as input to IDCAMS IMPORT to rebuild the catalog

ICFRU

Components of ICFRU

- CRURRSV Record Selection and Validation
 - Processes dumped SMF data sets
 - Extracts appropriate records
- CRURRAP Record Analysis and Processing
 - Processes the extracted and sorted SMF records, together with an EXPORT copy of the catalog
 - Produces a new EXPORT format data set to be imported to build a new catalog

Catalog Recovery or Maintenance

Locking Catalogs

- When performing certain maintenance or recovering a catalog, it is a good idea to LOCK the catalog to prevent undesired access
 - Use IDCAMS ALTER LOCK command
- Be sure to UNLOCK the catalog as soon as maintenance is complete
- Be aware: If you lock a shared master catalog from another system, make sure it is unlocked as soon as possible
 - If the master catalog is locked, the system cannot be IPLed!

Catalog Diagnostics

Finding Catalog Problems

Using Access Method Services (IDCAMS)

- EXAMINE INDEXTEST ensures that sequential and key direct access is accurate
- EXAMINE DATATEST reads all data Cls to ensure structural integrity
- DIAGNOSE ICFCATALOG (without compare) checks information integrity within each BCS record (inside-the-BCS only)
- DIAGNOSE VVDS (without compare) checks information integrity within each VVDS record (inside-the-VVDS only)
- DIAGNOSE is a tool that you use to see synchronization problems between the BCS and VVDS record structure

Fixing Problems

If EXAMINE Identified the Problem with a KSDS

- If it is not a BCS.
 - Can delete data set and recover from recent backup
 - Can unload a non-BCS KSDS data set by reading data component directly as an ESDS, sorting data, and then loading into new KSDS
- This does not work for a BCS!
- If a BCS index component is damaged:
 - May be able to use IDCAMS REPRO NOMERGECAT to copy catalog records to a new, empty catalog
 - FROMKEY and TOKEY can be used to get around bad records in the catalog
 - Repair can be accomplished with IBM Tivoli Advanced Catalog Management for z/OS
 - Severe damage requires recovery from backup

Fixing Catalog Problems

If DIAGNOSE Identified the Problem

- May indicate an incomplete catalog entry
- If it is an entry in a BCS, delete the catalog record and attempt to recatalog

DELETE xxx NOSCRATCH
DEFINE xxx ... RECATALOG

If the truename exists without the associated cluster records:

DELETE XXX TRUENAME

Fixing Catalog Problems

If DIAGNOSE Identified the Problem (continued)

If it is an entry in a VVDS:

DELETE xxx VVR **DELETE XXX NVR**

- It may be possible to recatalog the data set DEFINE CLUSTER(NAME(xxx) ... RECATALOG)
- If missing some portions from the volume, then it must be deleted
 - >IDCAMS cannot recreate the data

Buffering Basics

Buffering Basics

Data and Index Buffers

- The unit of transfer between DASD and storage is a Control Interval (CI)
 - A larger data CI size would favor sequential processing
 - A smaller CI size would favor direct processing
- Extra data buffers improve sequential processing
- Extra index buffers improve direct processing
- Separate data and index buffers
- Most accesses of a BCS are direct
- A data CI size (CISZ) of 4096 provides a compromise between minimizing data transfer time and reducing the occurrence of spanned records

Default NSR Buffering

Improved Buffering

Key Direct Processing

- Specify BUFNI= all of the Index Set + 1 for the Sequence Set
- From a LISTCAT:
 - BUFNI = TI (HURBA / CASZ) + 1
 where: TI is total number of index records
 CASZ is CISZ * CI/CA
- Set BUFND = 2

CASZ=CISZ x CI/CA

DATAHSM.MCDS.DATA	CAS		
ATTRIBUTES			
KEYLEN44	AVGLRECL200	BUFSPACE10,240	CISIZE4,096
RKP0	MAXLRECL2,040	CA SIZE737,280	CI/CA180
SHR(3,3) RECOVERY	NOERASE NOWRITECHECK	NOIMBED NOREUSE	NONSPANNED
STATISTICS			
REC TOTAL849,244	CI SPLITS145,018	EXCPS7,298,906	UPDATE/OUTPUT FLAGON
REC DELETED3,084,171	CA SPLITS776	EXTENTS1	
REC INSERTED3,170,297	FREESPACE CI%0	LAST UPDATED:	
REC UPDATED8,645,711	FREESPACE CA%0	15 OCT 200007:39	
REC RETRIEVED-16,245,476	APPROX FREE CI'S-410,487	DUENI TI	1111DDA / 0407 4
ALLOCATION		201111 11	HURBA / CASZ + 1
SPACE TYPECYLINDER	HI ALLO RBA-2,131,476,480	\mid BUFNI = 1,315 - (9	41,506,560 / (4096*180) + 1
SPACE PRI2,891	HI USED RBA941,506,560	=1,	,315 - 1,277 + 1
SPACE SEC0	APPROX FREE CA'S1,614		= 39
INDEXHSM.MCDS.INDEX	HURBA		
ATTRIBUTES	TIONDA		
KEYLEN44	RECORD SIZE2,041	CA SIZE43,008	CISIZE2,048
RKP0	—		CI/CA21
STATISTICS			
REC TOTAL1,315	SEQ SET SPLITS776	EXCPS2,928,653	INDEX:
REC DELETEDN/A	IND SET SPLITS12	EXTENTS1	LEVELS3
REC INSERTEDN/A	APPROX FREE CI'S1,708	LAST UPDATED:	ENTRIES/SECT13
REC UPDATEDN/A		15 OCT 200007:39	SEQ SET RBA0
REC RETRIEVEDN/A			HI LEVEL RBA260,096
Complete your sessions evaluation onlin	e at SHARE.org/SanFranciscoEval		*SHARE *•••• in San Francisco

NSR Key Direct Read Buffer Timings

Data Buffers	Index Buffers	EXCPs	CPU time	Elapsed time
2 (default)	1 (default)	199,000	13.62	4
30	1	199,000	13.60	4
2	3	118,000	8.46	2.4
2	39	99,376	7.27	2.0
2	50	99,376	7.42	2.0

Source: VSAM Demystified Redbook, SG24-6105, chapter 2

STRNO, BUFNI and BUFND

- STRNO Specifies the number of concurrent read requests for a BCS
 - Default is 2
 - Recommended to define catalogs with STRNO(3)
 - Use RMF to watch for enqueues on the SYSZRPLW.bcsname resource and alter STRNO as needed

STRNO, BUFNI and BUFND (continued)

- BUFNI Specifies the number of index buffers
 - The default is STRNO+2
 - Improve performance by specifying enough index buffers to contain the entire index set plus a sequence set control interval for each string
- BUFND Specifies the number of data buffers
 - The default is BUFND = STRNO + 1
 - This value is usually adequate

Catalog Caching

Caching Basics

Types of Caching for Catalogs

- Two kinds of cache exclusively for catalogs
 - In-storage catalog (ISC) cache
 - Catalog data space cache (CDSC)
- A single catalog can be cached in either ISC or CDSC not both at the same time
- Records cached in ISC or CDSC
 - Master catalog all records accessed sequentially or by key (except for alias records)
 - User catalog only records accessed by key
- Breakeven point is hit rate of 20%
 - Where the overhead of maintaining the cache becomes less than the cost of doing the I/O to the catalog

Catalog Data Space Cache

CDSC Caching – Recommended!

- Records reside in a VLF managed data space
- Catalogs are defined in the COFVLFxx PARMLIB member
- Catalogs are not limited to a set amount of storage
- When the data space is full, the least recently used record is removed
- When a change is detected, only the changed records are released
- Entire CDSC space for a BCS is invalidated only if excessive changes occur
- Reverts to ISC when turned off

Catalog Data Space Cache

Specifying CDSC

In SYS1.PARMLIB(COFVLFxx)

CLASS NAME(IGGCAS) EMAJ(BCS1) EMAJ(BCS2)

. . .

MAXVIRT(4096|nnnn)

- Where 'nnnn' is the number of 4K blocks of virtual storage to be used for caching catalogs
 - The minimum value is 256 (1 MB)
 - The default value is 4096 (16 MB)
- Allow 15 blocks (60 KB) per catalog

Catalog Sharing

Catalog Sharing

Sharing Catalogs

- A shared catalog is one that is eligible to be used by more than one system
- A catalog is shared if: SHAREOPTIONS (3 4) (this is the default) and

It resides on a shared DASD volume

 Catalog address control structures are refreshed when updates are made to the catalog from any system

Catalog Sharing

Sharing Catalogs (continued)

- Sharing requires checking for changes before using cached records
 - To ensure that the ISC or CDSC contains current information.
 - To ensure that the control blocks for the catalog are updated in the event the catalog has been extended or otherwise altered from another system
 - This checking maintains data integrity
 - This checking affects performance because the VVR for a shared catalog must be read before using the cached version of the record

Catalog Sharing

Key Points

- Convert the resource SYSIGGV2 to a SYSTEMS enqueue
 - Failing to do so could break catalogs
- Convert the resource SYSZVVDS to a SYSTEMS enqueue

Catalog Sharing Protocols

VVDS Mode

- Information necessary to communicate changes to other systems sharing the catalog is stored in a special 'integrity VVR' in the VVDS of the volume the catalog is defined on
- I/O to the VVDS is required to store and retrieve this information

ECS Mode

- Information that describes changes to a shared catalog is stored in the Coupling Facility (CF)
- The I/O to the VVDS that is required in VVDS mode is eliminated
- The SYSZVVDS RESERVE is avoided

Enhanced Catalog Sharing

Using Enhanced Catalog Sharing (ECS) Mode

- Substantial performance benefit for catalogs shared between systems in a sysplex
- Must include the ECS structure in the Coupling Facility Resource Manager (CFRM) policy
 - Policy name is SYSIGGCAS_ECS
- Must define one or more catalogs with the ECSHARING attribute
 - Use IDCAMS DEFINE or ALTER commands to set this attribute
 - Makes a catalog eligible for sharing with the ECS protocol

Enhanced Catalog Sharing

Using Enhanced Catalog Sharing (ECS) Mode (continued)

- ECS protocol will only be used:
 - If there is an active connection to the ECS cache structure
 - If ECS mode has been activated by the MODIFY CATALOG, ECSHR(AUTOADD) command
- Control catalogs using ECS with
 - MODIFY CATALOG ECSHR(REMOVE, catname)
 - Does not remove the ECSHARING attribute from the catalog, but removes the catalog from ECS mode
 - MODIFY CATALOG ECSHR(ENABLE, catname)

Enhanced Catalog Sharing

Restrictions on Usage

- A catalog cannot be shared using both the ECS mode and VVDS mode protocols at the same time
- Maximum of 1024 catalogs can be shared using ECS from a single system
- All systems sharing a catalog in ECS mode must be using the same Coupling Facility and be in the same GRS complex
- Attempting to use a catalog which is ECS active from a system outside the sysplex could break the catalog

Catalog Tuning

Creating a Balanced Catalog Environment

Most z/OS Systems:

- Have hundreds of thousands to millions of data sets cataloged
- Typically have 25 to 100 catalogs on a system
- Do the math:
 - Assume you have 1 million cataloged data sets and 25 catalogs (a fairly common ratio)
 - If the spread of data sets across catalogs is even, that works out to 40,000 data sets in each catalog
 - Therefore, if any one of the 25 catalogs suffers an outage, access to 40,000 data sets is lost until the catalog is recovered

Creating a Balanced Catalog Environment

The Problem

- Data sets are rarely distributed evenly across catalogs
- Most frequently, just a handful of catalogs contain a high percentage of the system's application data sets
- If one of those catalogs suffers an outage, access to a far higher number of data sets will be lost

The Solution

- Analyze your z/OS environment to determine if your data sets are concentrated in a few user catalogs, and assess the risk to your critical business functions
- If they are concentrated, initiate a project to spread your cataloged data sets across more of your user catalogs

Using Space Efficiently

Recommendations:

- Specify FREESPACE(0 0)
 - Most BCSs will have unevenly distributed record insertion activity
 - Evenly distributed free space is of very little value
- Don't worry about splits
 - Splits, both CI and CA, are the best technique available to handle this uneven distribution
 - To allow splits to obtain free space where it's needed, the best approach is to leave them alone once they've occurred
- Reorganize catalogs as infrequently as you can
 - Reorganization removes all of the free space that has been imbedded within the CAs, requiring the splits to occur again

Reorganizing Catalogs

When Should a Catalog Be Reorganized?

- Recommended only when:
 - The catalog is approaching maximum extents
 - There is not enough room on the volume where the catalog resides to allow more extents to be taken
 - An attribute of the catalog needs to be changed
- Options for reorganizing a catalog:
 - IDCAMS EXPORT followed by IMPORT can be used to reorganize a catalog
 - Tivoli Advanced Catalog Management for z/OS can be used to reorganize a catalog without taking applications out of service

Final Thoughts

Summary Best Practices

Recommendations for ICF Catalogs

- Always apply current maintenance
 - Just applying HIPER is not good enough, but RSU is!
 - Failure to install fixes can result in broken catalogs/VSAM data sets or incorrect behavior
- Remove IMBED and REPLICATE when they are found
 - These keywords can impair performance and use more DASD space
 - z/OS 1.11 Health Check opens all Catalogs in the system!
- Look into the use of CA Reclaim when at z/OS 1.12 or higher
 - Be aware: Disabled by default on a system level, but is enabled by default for all KSDSs without having to redefine the data set
 - Test before implementing
 - Consider use for VSAM data sets with many empty CAs

For More Information

- z/OS DFSMS Access Method Services for Catalogs SC26-7394
- > z/OS DFSMS: Managing Catalogs SC26-7409
- z/OS DFSMS Using Data Sets SC26-7410
- VSAM Demystified IBM Redbook SG24-6105
- Enhanced Catalog Sharing and Management IBM Redbook SG24-5594
- ➤ ICF Catalog Backup and Recovery: A Practical Guide IBM Redbook SG24-5644

Q & A

Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States and/or other countries:

IBM[®], Tivoli[®], z/OS[®], DFSMSdfp[™]

The following terms are trademarks of Rocket Software, Incorporated in the United States and/or other countries:

Rocket[®]

Other company, product, and service names may be trademarks or service marks of others.

Copyright ©2013 IBM Corporation. All Rights Reserved.

Copyright ©2013 Rocket Software, Inc. All Rights Reserved.

