DB2 for z/OS With EMC Storage Tiering: FAST VP

Paul Pendle
EMC Corporation

February 6, 2013
Session Number: 12945
Agenda

• The drivers for tiered storage
 • Technology changes
 • Workload skew

• FAST VP
 • Storage elements
 • Operating parameters
 • Lab testing and results

• Operational/host considerations

• Summary
Drivers Towards Storage Tiering

- Massive data growth
- Faster and faster processors
- Faster and faster channels
- Budgets are flat or decreasing
- Decline of the hard drive
- Arrival of SSD
 - Extremely high price and performance!
- Arrival of SATA
 - Extremely low price and performance!
The RPM Story

Revolutions per minute

1999 2002 2013
IOPS Density Trend for Disk Drives

IOPS Density = IOPS capability / Size GB

SSD

SATA

Complete your sessions evaluation online at SHARE.org/SanFranciscoEval
IOPS Comparisons of Drive Technology

I/O operations per second

SSD FC SATA

IOPS
Data Life Cycle

Time

Frequency of access

Creation

Disposition
Types of Workload Skew

- **Persistent**
 - To a large extent, historical activity is a good predictor of future activity
 - Good candidates for static tiering

- **Non-persistent**
 - Activity is mostly randomly skewed
 - Hot data today may not be hot tomorrow

- **No skew (at full-volume level)**
 - TPF, DB2 LUW DPF, Teradata
Workload Skew by Volume

Device Activity Report

IOPS

SSD

FC/SAS

SATA
The Static Tiering Conundrum

- How do you know what database objects to place on each tier?????
 - Largely, access patterns to an object change over time
 - The most frequently accessed objects are in the DB2 buffer pool or in the storage controller cache.
 - The biggest objects are not good choices
- What about DB2 logs?
- High write table spaces?
- Sequentially accessed table spaces?
- The whole table space? Partition? Part of a table space?
Sub-Volume Skewing

Typically, only parts of a volume are consistently “hot”
FAST VP: Automated Storage Tiering

- FAST VP—Fully Automated Storage Tiering Virtual Pools
- FAST VP is a policy-based system that automatically promotes and demotes data across storage tiers to achieve performance objectives and cost targets
- Gets the right data, to the right place, at the right time
Evolution of FAST

Traditional

FAST

FAST VP
Tiered storage use case

- 240 x 300GB 15K FC Disks
- 120 x 400GB 10K FC Disks
- 8 x 200GB EFD
- 24 x 1TB SATA

Acquisition $ (2012)

17% Lower Storage Costs
+ reduce maintenance & SW costs

45% More Disk IOPS
+ more aligned with workloads

32% Less Power & Cooling
+ more efficient use of space

37% Fewer Disk Drives
152 EFD+FC+SATA vs. 240 FC

Complete your sessions evaluation online at SHARE.org/SanFranciscoEval
FAST VP Elements

Symmetrix Tiers

- R53_EFD_200GB
 200 GB EFD
 RAID 5 (3+1)

- R1_FC_450GB
 450 GB 15K FC
 RAID 1

- R614_SATA_1TB
 1TB SATA
 RAID 6 (14+2)

FAST Policies

- Optimization
 100%
 100%
 100%

- Custom
 10%
 20%
 70%

Storage Groups

- DB2 PROD1
- DB2 PROD2

Complete your sessions evaluation online at SHARE.org/SanFranciscoEval
Symmetrix Tiers

- Tiers combine a drive technology and a RAID protection type
- Virtual Pool tiers
 - Contain between 1 and 4 thin pools
 - Thin pools must consist of same drive technology and RAID protection type
 - Pools cannot be shared across multiple tiers
FAST Policies

- FAST Policies manage data placement and movement across Symmetrix Tiers for one or more Storage Groups
- Each Policy can contain up to three Symmetrix Tiers
 - Policies define the upper usage limit of each tier
- Each tier usage rule defines the maximum capacity of a storage group that can be moved to that tier
 - Each tier usage rule may be between 1% and 100%
 - Combined tier usage rules must total at least 100%, but may be greater than 100%
- Symmetrix Tiers may be shared amongst multiple FAST Policies
FAST Storage Groups

- Storage Groups logically group together devices for common management
- A Storage Group can have at most one policy associated with it
- Storage Groups may contain multiple device types
 - Associated FAST Policy will only operate on the devices that match the FAST policy type
- Devices may be “pinned” to prevent FAST movement
 - Performance statistics will continue to be collected for pinned devices
 - Statistics included when generating a new performance movement policy
Time Windows

- **Performance Window**
 - Defines the times of the day, and the days of the week during which performance data is collected
 - Allows for “quiet” periods, or irregular workloads to be excluded from analysis

- **Data Movement Window**
 - Defines the times of the day, and the days of the week during which data movements will automatically be performed
Create FAST Policy
FAST Policies with New Policy Listed

EMC Unisphere for VMAX V1.5.0.6

Storage Policies

<table>
<thead>
<tr>
<th>Policy Name</th>
<th>Tier 1</th>
<th>Tier 1 %</th>
<th>Tier 2</th>
<th>Tier 2 %</th>
<th>Tier 3</th>
<th>Tier 3 %</th>
<th>Tier 4</th>
<th>Tier 4 %</th>
<th># Associated Storage Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB2 FASTVP</td>
<td>xOS_SD_R3</td>
<td>10</td>
<td>xOS_FC_2M</td>
<td>20</td>
<td>xOS_AT_R6</td>
<td>70</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FBA_Initial</td>
<td>Jim_EFDR53</td>
<td>3</td>
<td>Jim_FCR1</td>
<td>100</td>
<td>Jim_SATAR614</td>
<td>100</td>
<td>N/A</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>FBA_LOG</td>
<td>Jim_EFDR53</td>
<td>3</td>
<td>multipool</td>
<td>75</td>
<td>Jim_SATAR614</td>
<td>100</td>
<td>N/A</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Gold</td>
<td>Jim_EFDR53</td>
<td>3</td>
<td>Jim_FCR1</td>
<td>20</td>
<td>Jim_SATAR614</td>
<td>100</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>paul_test</td>
<td>xOS_SD_R3</td>
<td>50</td>
<td>xOS_FC_2M</td>
<td>50</td>
<td>xOS_AT_R3</td>
<td>100</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SAP</td>
<td>Jim_EFDR53</td>
<td>2</td>
<td>Jim_FCR1</td>
<td>27</td>
<td>Jim_SATAR614</td>
<td>100</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>test</td>
<td>multipool</td>
<td>100</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>zos_bronze</td>
<td>xOS_FC_2M</td>
<td>65</td>
<td>xOS_AT_R3</td>
<td>35</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>zos_gold</td>
<td>xOS_SD_R3</td>
<td>25</td>
<td>xOS_FC_2M</td>
<td>100</td>
<td>N/A</td>
<td>0</td>
<td>N/A</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>zos_OPT</td>
<td>xOS_SD_R3</td>
<td>100</td>
<td>xOS_FC_2M</td>
<td>100</td>
<td>xOS_AT_R6</td>
<td>100</td>
<td>N/A</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>zos_silver</td>
<td>xOS_SD_R3</td>
<td>1</td>
<td>xOS_FC_2M</td>
<td>79</td>
<td>xOS_AT_R3</td>
<td>20</td>
<td>N/A</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Create New Time Window
FAST VP Implementation

Enginuity
- Performance Data Collection
- Intelligent Tiering Algorithm
- Execute Data Movement

FAST Controller
- Analyze Performance Data
- Allocation Compliance Algorithm
Data Movement

- Data chunks are moved using 6.8MB chunks
- Performance-based
 - Promotions due to high I/O rates
 - Demotions to free up space for promotions
- Compliance-based
Sub-volume Tiering

<table>
<thead>
<tr>
<th>Chunk1</th>
<th>Chunk2</th>
<th>Chunk3</th>
<th>Chunk#</th>
<th>Chunk4</th>
<th>Chunk#</th>
<th>Chunk5</th>
<th>Chunk#</th>
<th>Chunk6</th>
<th>Chunk7</th>
<th>Chunk#</th>
<th>Chunk8</th>
<th>Chunk9</th>
<th>Chunk10</th>
<th>Chunk11</th>
<th>Chunk#</th>
<th>Chunk12</th>
<th>Chunk#</th>
<th>Chunk13</th>
</tr>
</thead>
</table>

TABLE SPACE

- SSD
- FC/SAS
- SATA
Sequential Tablespace Scan

- Long Seek (costly)
- Rotational delay (costly)
- Read
- Read
- Read ...
FAST VP TESTING WITH DB2
What was tested

- DB2 V10
- Symmetrix VMAX SE (single Engine)
- 2x4Gb Channels
- 4x200GB Enterprise Flash drives
- 32x300GB 15K FC drives
- 10% SSD in FAST VP policy
DB2 Workload

- 26 4GB partitions on 26 MOD 9s
- Highly random OLTP workload driven by 32 batch jobs
- 4x200GB Enterprise Flash drives
- 32x300GB 15K FC drives
- 507GB DB2 subsystem
- FAST VP policy set to 10% EFD use
Policy display before workload

Details: Storage Group: ZOSI_0455_DB2 SG

- Name: ZOSI_0455_DB2 SG
- FAST Policy: zos_gold
- FAST Priority: 2
- Total Capacity (GB): 507.5
- Host Name: N/A
- Volumes: 64
- Pending Views: 0

Related Objects:
- Contains: Volumes - 64
- Associated With: FAST Policy - 1

FAST Compliance Report:

<table>
<thead>
<tr>
<th>Tier</th>
<th>Protection</th>
<th>Technology</th>
<th>Max SG Demand (%)</th>
<th>Limit (GB)</th>
<th>Fast SG Used (GB)</th>
<th>Growth (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>z0S_SD_R3</td>
<td>RAID-5 (3+1)</td>
<td>EFD</td>
<td>10</td>
<td>+50.75</td>
<td>0</td>
<td>+50.75</td>
</tr>
<tr>
<td>z0S_FC_2M</td>
<td>RAID-1</td>
<td>FC</td>
<td>100</td>
<td>+507.48</td>
<td>+507.95</td>
<td>-0.48</td>
</tr>
</tbody>
</table>

Complete your sessions evaluation online at SHARE.org/SanFranciscoEval
IOPS Measured: Unisphere for VMAX Performance View

- Workload starts
- 10% of data on SSD
- FAST moves data
Policy display after workload
HOST CONSIDERATIONS
Automation at all Layers

SMS & HSM

+ FAST VP
HSM and FAST VP Intersect

- FAST VP
 - Performance Management
 - Capacity Management
- HSM
 - Availability Management
SMS Storage Groups

- **Gold**
 - 100%
 - 100%
 - 0%

- **Custom**
 - 10%
 - 100%
 - 100%

- **Test**
 - 0%
 - 20%
 - 100%

- **DB2 PROD1**
- **DB2 PROD2**
- **DB2 PROD3**
- **DB2 TEST1**
- **DB2 TEST2**

Symmetrix Tiers

- **R53_EFD_200GB**
 - 200 GB EFD
 - RAID 5 (3+1)

- **R1_FC_450GB**
 - 450 GB 15K FC
 - RAID 1

- **R614_SATA_1TB**
 - 1 TB SATA
 - RAID 6 (14+2)
Operational Considerations

- Storage tiering interactions with z/OS
- SMS
 - Performance-based allocations
 - DIRECT MSR Values (what do they mean now?)
- Thrashing
 - DB2 REORGs
 - HRECALLs
 - Dataset moves
 - Volume restore
FAST VP with Remote Replication Integration

SITE A

SRDF REPLICAITION

SITE B
Operational Considerations (contd)

• How to manage charge back
• How to influence decisions in the performance engine
• How to determine where everything is/was
Benefits of Storage Tiering

- Autonomic/automatic operation
- Optimized performance
- Reduced cost (power and cooling)
- Reduced footprint
- Better capacity utilization
- Ease of management
DB2 for z/OS With EMC Storage Tiering: FAST VP

Paul Pendle
EMC Corporation

February 6, 2013
Session Number: 12945