/ WY #sHaAREorg ﬁ"
g

IEWBIND and IEWBFDAT —
Learning to Use the Binder APIs
Hands-on Lab Handout

Barry Lichtenstein@us.ibm.com

February 2013
Session# 12929

‘. L] I.
L]
- SHARE
®s . «* in San Francisco
2013

STARTD: Start dialo

STARTD: Start dialog

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

STARTD begins a dialog with the binder, establigttine processing environment and initializing the
necessary control blocks. You specify the ddnamethe data sets to be accessed, how errors are to
be handled, and the global binder options.

STARTD returns a dialog token that is included wéter calls for the same dialog.
The syntax of the STARTD call is:

[symbol] IEWBIND EUNC=STARTD
VERSION=version]
RETCODE=retcode]
RSNCODE=rsncode]
DIALOG =dialog
[LEILES=filelist]
EXITS=exitlist]
[L.OPTIONS=optionlist]
PARMS=parms]
ENVARS=envars]

FUNC=STARTD
Specifies that a dialog is opened and initialized.

VERSION=1|2|3]4|5|6|7
Specifies the version of the parameter list to $edu The default value is VERSION=1.
Notes:

1. If VERSION=L1 is specified for the STARTD call, PARB/tannot be specified as a
macro keyword. The parameter list ends with the OBT parameter (with the high-
order bit set). This exception is for Version 1yonl

2. ENVARS cannot be specified if VERSION is less tifen

RETCODE-=retcode — RX-type address or register (2-12)
Specifies the location of a fullword integer theto receive the return code returned by the
binder.

RSNCODE=rsncode — RX-type address or register (2-12)
Specifies the location of a 4-byte hexadecimahgtthat is to receive the reason code returned
by the binder.

DIALOG= dialog — RX-type address or register (2-12)
Specifies the location of an 8-byte area wherédthder places the dialog token. This token
must not be modified.

EILES=filelist — RX-type address or register (2-12)
Specifies the address of a list containing oneydtreach binder file for which a ddname or
file name is provided. You code some or all of éhiie names in the list and provide a
ddname or filename for each:

File name

Description
CALLIB

Automatic call library
MODLIB

Target program library
PRINT

Listing data set for messages produced by the LMAR, and XREF options
TERM

Terminal data set for messages issued during bimbeessing
SIDEFILE

Data set to contain the side file of a DLL module.

Theddnames specified for PRINT and TERM can designate z/ OSXJ8ystem Services

files. CALLIB can designate a z/OS UNIX System Sees directory and a z/OS UNIX
System Services archive file. MODLIB can desigre®#OS UNIX System Services directory.
SIDEFILE can designate a z/OS UNIX System Serviiesctory or a z/OS UNIX System
Services file.

Entries for all files on this list will accept a&% UNIX pathname in place of a ddname. Path
names must begin with a slaghdr a period and a slash)(

EXITS=exitlist — RX-type address or register (2-12)
Specifies the address of a list of user exit navies.can specify the following user exits in
this list:

MESSAGE exit
Specifies an entry into the calling program thaerees control immediately prior to the
binder issuing a message. See Message exit.
SAVE exit
Specifies an entry into the calling program thaerees control if the binder is about to
reject a primary name or an alias name or aftet@mpt to save a member or alias
name. The save operation might have succeededett.f8ee Save exit.
Note:
This exit is not invoked if the target is a z/OS IMN\System Services file.
INTFVAL exit
The Interface Validation Exit (INTFVAL) allows yowxit routine to examine
descriptive data for both caller and called at emdhkrnal reference. The exit can
perform audits such as examining parameter passingentions, the number of
parameters, data types, and environments. It czepathe interface, rename the
reference, or leave the interface unresolved. Seeface validation exit.

See_User exits for additional information on wigtinser exit routines.

OPTIONS=optionlist — RX-type address or register (2-12)
Specifies the location of an options list that @ims the address of binder options to be
initialized during the STARTD call. Any option the&in be set by SETO can be initialized by
STARTD. See Setting options with the regular bindiBi for a list of allowable options.

Pagel of 4

http://publib.boulder.ibm.com/infocenter/zos/v1itbdic/com.ibm.zos.r13.ieab200/stari... 1/27/201:

STARTD: Start dialo

However, the EXITS option listed in the table may be specified as part of the OPTIONS
parameter; use the EXITS or PARMS parameter on SITAR specify user exits.
Note:
The negative option format (for example, NORENTHag allowed. Use the
corresponding keyword with a value. For example:

DC CL8'REUS'
DC AL4 (6) ,C'SERIAL'

PARMS=parms — RX-type address or register (2-12)
Specifies the location of a varying character gtttmt contains a list of option specifications
separated by commas. The STARTD FILES, EXITS an@lORS lists have precedence over
the STARTD PARMS string in the STARTD call. SeetfBetoptions with the binder API for
more information.

ENVARS=envars — RX-type address or register
Specifies the address of a list of 31-bit pointBch pointer in the list contains the address of
a character string that is an environment variahléye form ofname=value, to be passed to
the specified program. Each character string musivéth zeros. Note that this is the same as
passing the external variabiwiron. See Environment variables for more information.

Passing lists to the binder

Any list passed to the binder must conform to adaad format, consisting of a fullword count of the
number of entries followed by the entries. Eachdrgry consists of an 8-byte name, a fullword
containing the length of the value string, and @B)ointer to the value string. The list speation

is provided in Table 28.

Table 28. Binder list structure

Field Name Field Type Offset Length Description

LIST_COUNT Integer 0 4 Number of 16-byte entries
in the list

LIST_ENTRY Structure 4,20,... 16 Defines one list entry

ENTRY_NAME Character 0 8 File, exit, or option name

ENTRY_LENGTH Integer 8 4 Length of the value string

ENTRY_ADDRESS Pointer 12 4 Address of the value string

Note:

ENTRY_NAME, ENTRY_LENGTH, and ENTRY_ADDRESS are egted for each entry in
the list up to the number specified in LIST_COUNT.

You code the data pointed to by ENTRY_ADDRESS adicay to the list type:
File list

Code one entry for each file name:

ENTRY_NAME:
‘CALLIB * ,'MODLIB * , and so on. See list of file names in FILES patame
description in STARTD: Start dialog.
ENTRY_LENGTH:
The byte length of the corresponding ddname.
ENTRY_ADDRESS:
The address of the string containing the ddname.

Each file name specified in the FILES parametehefSTARTDialog API must correspond to a
currently defined ddname. Your data sets can beargweallocated. Although you can use any valid
ddname for a given FILE name, the following ddnamesrecommended. Their allocation
requirements are listed below:

FILE name

Recommended ddname
CALLIB

SYSLIB
MODLIB

SYSLMOD
PRINT

SYSPRINT

RM

SYSTERM
SIDEFILE
SYSDEFSD

The SYSLIB Data Set (the CALLIB file)

This DD statement describes the automatic calfiprwhich must reside on a direct access storage
device. This is a required data set if you wargrtable autocall processing while you bind your
modules through the use of the BINDWorkmod API ¢8ke the CALLIB parameter in the BINDW
API).

The data set must be a library and the DD statemest not specify a member name. You can
concatenate any combination of object module libsaand program libraries for the call library. If
object module libraries are used, the call libream also contain any control statements other than
INCLUDE, LIBRARY, and NAME. If this DD statement spifies a PATH parameter, it must
specify a directory.

Table 29 shows the the SYSLIB data set attributéich vary depending on the input data type.

Table 29. SYSLIB data set DCB parameters

LRECL BLKSIZE RECFM
80 80 F, FS, OBJ, XOBJ, control statements, and GOFF
80 32720 (maximum size) FB, FBS OBJ, XOBJ, contrateshents, and GOFF

Page2 of 4

http://publib.boulder.ibm.com/infocenter/zos/v1itbdic/com.ibm.zos.r13.ieab200/stari... 1/27/201:

STARTD: Start dialo

LRECL BLKSIZE RECFM

84+ 32720 (maximum size) V, VB, GOFF object modules
n/a 32720 (maximum size) U, load modules

n/a 4096 U, program objects

The SYSLMOD data set (the MODLIB file)

It is the target library for your SAVEWorkmod AP4lts when ACCESS=BIND ¢your
CREATEWorkmod API call. That is, SYSLMOD is thetiry that contains youround modules. A
such, it must be a partitioned data set, a PDSE,z6D¢ UNIX System Services fil

Although a member name can be specified on the $AGD DD statement, it isised only if a nam

is not specified on the SAVEWorkmod SNAME paramefSee SAVEW: Save workmod.)
Therefore, a member name should not be specifigolifexpect to save more that one member in a
binder dialog. For additional information on alltioa requirements for SYSLMOD, see SYSLMOD
DD statement iiz/OS MV< Program Management: U’'s Guide and Referer.

The SYSPRINT data set (the print file

The binder prints diagnostic messages to this skttarhe binder uses a logical record length of 121
and a record format of FBA and allows the syste determine an appropriate block s

Table 3(shows the data set requirement: SYSPRINT

Table 30. SYSPRINT DCB parameters

LRECL BLKSIZE RECFM

121 121 FA

121 32670 (maximum size) FBA

125 VA or VBA

The SYSTERM data set (the TERM file

SYSTERM defines a data set for error and warningsages that supplements the SYSPRINT data
set. It is always optional. SYSTERM output considtsnessages that are written to both the
SYSTERM and SYSPRINT data sets, and used mainly for diagnostic purpos

Table 3:shows the data set requirement: SYSTERM

Table 31. SYSTERM DCB parameters
LRECL BLKSIZE RECFM
80 32720 (maximum size) FB

The SYSDEFSD data set (the SIDEFILE file

When a module (call it module A) is enabled for ayric linking through tt DYNAM(DLL) binder
option, a complementary file can be generated talgog with it. Module A becomes a DLL, and the
complementary file becomes #igle file. The side file is saved in the data set repredenyehe
SYSDEFSD ddname. The side file contains the extaymabols of DLL A, known asxports. These
external symbols can be referenced by other DLIdsaaa known asmports to these modules. If
module A does not export a symbols, no side file is generated for it. Thislaspto any DLL

SYSDEFSD can be a sequential data set, a PDS, &E,RD& z/0OS UNIX System Services file. If it
is a sequential data set, the generated sidefditenultiple DLLs are appended one after another,
provided that the DISP=MOD parameter is suppliethe@SYSDEFSD ddname specification. If
SYSDEFSD is a PDS or a PDSE, the side file is sageal member with the same name as the DLL
to which it belongs. Refer to the processing noteth@fSAVEW API for addition: information

The SYSDEFSD DD statement is optional. However,mihe ddname is abse the binder issues
warning message if at bind time a program genegatpsrt records and the DYNAM(DLL) binder
option has been specifit

Exit list

ENTRY_NAME:

'MESSAGE ' ,'INTFVAL' ,0or'SAVE '
ENTRY_LENGTH:

12

ENTRY_ADDRESS:
The location of a threword area containing three addresses. Se message list addresses
Message exit, the save list addresses in Savamdithe interface validation list addresses in
Interface validation exi for the contents of the three addres

Option list

ENTRY_NAME:
The option keyword (for exampl&,|ST * ,'MAP ' ,'CALLERID'). Option
keywords cannot be truncated and negative optianaat be specified (NOLIST, NOPRINT,
and so on). If INTENT=ACCESS, these keywords areafiowed: ALIGN2, CALL,
CALLIB, EDIT, LET, MAP, OVLY, RES TEST, XCAL, and XREF

ENTRY_LENGTH:
The length of the option value as a characterggtitrcan be zerc

ENTRY_ADDRESS:

http://publib.boulder.ibom.com/infocenter/zos/v1itb@ic/com

.ibm.zos.r13.ieab200/star...

Page3 of 4

1/27/201.:

STARTD: Start dialo

The address of the character string encoded wéttogiion's value. The address can be zero.
The maximum length of the option value string i§ Bytes. Use commas and parentheses if a
sublist is required.

Return and reason codes

The common binder API reason codes are shown iteTab

Return Code Reason Code Explanation

00 00000000 Normal completion.

04 83000112 The binder encountered an unsupportéshdptthe OPTIONS
file. The option is ignored.

04 83000204 The binder was unable to open the traizesegt during
initialization. Processing continues without trace.

08 83000108 An option value is missing or containgaalid setting.

08 83000111 An OPTIONS option was encountered irofii®ns file. The
option is ignored.

08 83000200 The binder was unable to open the PRET skt during
initialization. Processing continues without PRINT.

08 83000201 One or more invalid options were passe8TARTD. Those
options were not set, but processing continues.

12 83000203 The binder was unable to open the TERM iz during
initialization. Processing stops.

08 83000205 The current time was not available frioendperating system.

Time and date information in printed listings afRI records
will be incorrect.

08 83000206 The binder was unable to open the SYSTH&HK!set because
its DDNAME was not specified in the FILES parameiér
STARTD. Processing continues without SYSTERM.

12 83000207 The binder was unable to open the SYSPR#ta set because
its DDNAME was not specified in the FILES parametér
STARTD. Processing continues without SYSPRINT.

Environment variables

When the binder APl is used by a program runniniipéz/OS UNIX subsystem, the environ
parameter may be used to pass the C/C++ runtinigblarof that name to the binder, in order to give
the binder access to the array of environment blasa If a user sets binder environment variables
(those documented below) in the UNIX shell, thighis only way the binder can get access to them.
For further information about the C runtime 'ennireariable, refer to z/OS XL C/C++ Run-Time

Library Reference.

Although it is not recommended, you may also carmstyour own ‘envars' parameter using the same
format as that of the C runtime variable. In thase, 'envars' must be the address of an array of
pointers. Each pointer is the address of a nulhiieated string representing an individual
environment variable in the form 'keywondstue'. The last array entry must be a null pointer.

The following UNIX shell environment variables aszognized by the binder. They are specified in
the form:

export NAME= val ue
where NAME is the name of the environment variable.

IEWBIND_PRINT
the pathname or ddname to be used for SYSPRINT.

IEWBIND_TERM
the pathname or ddname to be used for SYSTERM.

IEWBIND_OPTIONS
the binder option string. These will be appendedgtiions passed explicitly through the
STARTD API call (and will take precedence). There additional environment variables
defined for the binder diagnostic data sets. SeéBimder Serviceability Aids" chapter_inz/OS

MVS Program Management: User's Guide and Referéamore information on passing
them on STARTD.

Parameter list

If your program does not use the IEWBIND macrogcpléhe address of the STARTD parameter list
in general purpose register 1.

Table 32. STARTD parameter list
PARMLIST DS OF

DC A(STARTD) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(DIALOG) Dialog token

DC A(FILELIST) File list

DC A(EXITLIST) Exit list

DC A(OPTLIST) Option list

DC A(PARMSTR) Parameters

DC A(ENVARS) Environment Variables
STARTD DC HO1' STARTD function code

DC H'ver si on' Interface version number

Note:
X'80000000" must be added to the last parametenétsion 1, that will be OPTLIST. For other
versions it may be either PARMSTR or (beginningwiersion 6) ENVARS.

Paged of 4

http://publib.boulder.ibm.com/infocenter/zos/v1itbdic/com.ibm.zos.r13.ieab200/stari... 1/27/201:

CREATEW: Create workmc Pagel of 2

CREATEW: Create workmod

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

CREATEW initializes a workmod and initializes thedule options to the defaults for the dialog.
CREATEW also specifies the processing intent tieé¢mines the functions that can be performed
on the workmod.

The syntax of the CREATEW call is:

[symbol] IEWBIND FUNC=CREATEW
[.VERSION=version]
[LRETCODE-=retcode]
[.[RSNCODE=rsncode]
WORKMOD =workmod
DIALOG =dialog
JINTENT ={BIND |ACCESS}

FUNC=CREATEW
Specifies that a workmod is created and initialized
VERSION=1|2|3|4|5|6]|7
Specifies the version of the parameter list to $exdu The default value is VERSION=1.
RETCODE=retcode — RX-type address or register (2-12)
Specifies the location of a fullword integer thato receive the return code returned by the
binder.
RSNCODE=sncode — RX-type address or register (2-12)
Specifies the location of a 4-byte hexadecimahgtthat is to receive the reason code returned
by the binder.
WORKMOD= workmod — RX-type address or register (2-12)
Specifies the location of an 8-byte area that iteive the workmod token for this request.
DIALOG= dialog — RX-type address or register (2-12)
Specifies the location of an 8-byte area that anata dialog token for which the workmod is
requested. The dialog token is obtained using T&RI D call and must not be modified.
INTENT={BIND | ACCESS}
Specifies the range of binder services that camedpeested for this workmod. The values are
as follows:

BIND
Specifies that the processing intent for this warkins bind. The workmod will be
bound and all binder functions can be requested.

ACCESS
Specifies that the processing intent for this wookins access. The workmod will not
be bound, and no services that alter the sizewctste of the program module can be
requested. See Processing intents for a list ofcger that are not allowable.

The value for INTENT can be abbreviatedgasr A.

Processing notes

None.

http://publib.boulder.ibm.com/infocenter/zos/v1ib®ic/com.ibm.zos.r13.ieab200/cre... 1/27/201:

CREATEW: Create workmc Page2 of 2

Return and reason codes

The common binder API reason codes are shown iteTaab

Return Code Reason Code Explanation
00 00000000 Normal completion. Workmod and workmdaktocreated.

Parameter list

If your program does not use the IEWBIND macrogcplthe address of the CREATEW parameter
list in general purpose register 1.

Table 9. CREATEW parameter list
PARMLISTDS OF

DC A(CREATEW) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(DIALOG) Dialog token
DC A(WORKMOD) Workmod token
DC A Processing intent and end-of-list indicator
(INTENT+X'80000000")
CREATEW DC H'10 CREATEW function code
DC H'version' Interface version number
INTENT DC CLIA Processing intent
'A' = Access
'‘B' = Bind

http://publib.boulder.ibm.com/infocenter/zos/v1ib®ic/com.ibm.zos.r13.ieab200/cre... 1/27/201:

__iew_openW(- Open workmo Pagel of 1

__iew_openW() - Open workmod

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

The __iew_openW() creates a context(_IEWAPIContert) initializes all of the parameters in the cahte
and loads IEWBIND into memory. If successful, tltext is created and returned to user for all
subsequent API calls.

This is a ‘C' function equivalent to binder APl SRAD and CREATEW.

Format

#include <__iew_api.h>

_IEWAPIContext *__iew_openW(_IEWTargetRelease __rel ease,
_IEWInten t__intent,
IEWList * file_list,
IEWList * exit_list,
const cha r*__parms,
unsigned int*__return_code,
unsigned int*__reason_code);

Parameters Descriptions

__release
target release can be one of the following:

+ IEW_ZOSV1R9
+ _IEW_ZOSV1R10
+ _IEW_ZOSV1R11
+ _IEW_ZOSV1R12
+ _IEW_ZOSV1R13

Note:
It is recommended that you define the featurertestro IEW_TARGET_RELEASE prior to
the #include <__iew_api.h>, and that _|IEW_TARGETLEESE be used for __release. This
definition ensures that structure mappings in <w_gpi.h> are consistent with the data
returned by the other API access functions.

__intent

processing intent can be one of the following:
* _IEW_ACCESS
* _IEW_BIND

Note:
_IEW_ACCESS is more efficient but only allows thegram to be inspected or copied. This
can be changed later by __iew_resetW().

__file_list

file list is created by __iew_create_list().
__exit_list

exit list is created by __iew_create_list().
__parms

parameters - list of binder option.
__return_code

return code is passed back from STARTD or CREATEW.
__reason_code

reason code is passed back from STARTD or CREATEW

Returned Value

If successful, __iew_openW() returns API context.
If unsuccessful, __iew_openW() returns NULL.

Note:
The returned value is the same as the code retisnacdsubsequent __iew_get_return_code().

Utilities Functions

__iew_create_list()

http://publib.boulder.ibm.com/infocenter/zos/v1ib@ic/com.ibm.zos.r13.ieab200/iea.... 1/27/201:

__lew_fd_startNamer- Starting a session with a DD name or Pagel of 1

__ilew fd_startName() - Starting a session with a DD
name or path

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Begin inspecting a program object identified eitbga path name or by a DDname and member
name.

Format

#include <__iew_api.h>

int__iew_fd_startName(_IEWFDContext *__context,
const char * dd_or_path,
const char * __member);

Parameters Descriptions

context
FD context is created and returned by calling __ fewopen() and is used throughout the open
session.
__dd_or_path
DD name or path name.
__member
member name.

Returned Value

If successful, __iew fd_startName() returns 0.
If unsuccessful, __iew_fd_startName() returns nomze

Note:
The returned value is the same as the code retimnadsubsequent __iew fd_get return_code

0-
Utilities Functions

__iew_fd_get reason_code()
__iew_fd_get_return_code()

http://publib.boulder.ibm.com/infocenter/zos/v1ib@ic/com.ibm.zos.r13.ieab200/iea.... 1/27/201:

SJ- Starting a session with a DD name or

Pagel of 1

SJ - Starting a session with a DD name or path

z/OS MVS Program Management: Advanced Facilities

SA22-7644-14

The calling application identifies the program abjeither directly by a UNIX path name or
indirectly by the name of a DD statement which td&s either a UNIX path or one or more
partitioned data sets. The application may alseigeoa member name.

Table 36. SJ parameter list

Parameter Usage

1 in
2 in/out
3 in

4 (optional) in

Sample assembler code

CALL (15),(SJIL,MTOKEN,UNIXDD),VL

Format
structure
binary word

vstring

vstring

Content
'SJ', X'0001"
mtoken

Must contain zero when the service is called. The
service will supply a value if the service is
successful.

DD name or path

If the string data begins with a slash or a periad
followed by a slash it is treated as a path,
otherwise as a DD name.

Member name or path extension

If parameter 3 is a DD name defining a PDSE or
concatenation this is a member name and is
required.

If parameter 3 is either a path or a DD name
defining a path, this parameter is optional and|is
appended to the path name if present.

* Note: 4th optional parameter omitted here

SJiIL DC C'sJ,X'0001

MTOKEN DC F0

Replaced by the servic e

UNIXDD DC H'5','UPATH' Name of a DD statement ,
*

which in turn has PATH

http://publib.boulder.ibm.com/infocenter/zos/v1ib®ic/com.ibm.zos.r13.ieab200/sjdd... 1/27/201:

Binder name list (version

Binder name list (version 7)

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Please note that the version 7 binder name lisebhfs been slightly changed from the versionféebu

Figure 49. Format for binder name list entries

Field Field Off Leng De
Name Type set
IEWBBNL Binder Name

BNLH_BUFFER_ID Char 0 8 Bufferiden
BNLH_BUFFER_LENG Binary 8 4 Lengthoft
includin

BNLH_VERSION Binary 12 1 Version ide

*** RESERVED *** Binary 13 3 Reserved, m
BNLH_ENTRY_LENG Binary 16 4 Lengthofe
BNLH_ENTRY_COUNT Binary 20 4 Number of e
*** RESERVED *** Binary 24 8 Reserved, i
BNLH_ENTRY_ORIGIN 32 First namel

1 BNL_ENTRY Namelist En
2 BNL_CLS_LENGTH Binary 0 4 Class segme
3 BNL_SECT_CU Binary 0 4 Compile uni
BNL_BIND_FLAGS Bit 4 1 Bind Attrib
1. ... Generated
B No data p
I Varying |
S Descripti
U Class has
e L Fill char
....... 1 Class val
BNL_LOAD FLAGS Bit 5 1 Loadability
1. ... Read Only
XX e Time of |
.00. Class is
.01. ... A DEFER |
10. ... A NOLOAD
O R Sharable
U Moveable
...... XX Binding M
...... 00 CAT(caten
...... 01 MERGE(mer
BNL_NAME_CHARS Binary 6 2 Lengthofn
BNL_NAME_PTR Pointer 8 4 Pointer to

name

BNL_ELEM_COUNT Binary 12 4 Number of e
or section

BNL_SEGM_ID Binary 16 2 SegmentID

BNL_ATTR Bit 18 1

BNL_ALIGN Bit 5 Alignment

00011 Doubleword

00100 Quadword

01100 Page (4K)

BNL_RMODE Bit 3 Residence

001 Rmode 24

011 Rmode ANY

100 Rmode 64

BNL_NAMESPACE
x'01' = catenate class
x'02' = pseudoregisters (merge class)

x'03' = parts (merge class)
BNL_SEGM_OFF Binary 20 4 Class offse
(NTYPE=CLA

Binary 19 1 Namespace (

Notes:
1. This entry is valid for output only.

2. BNL_SECT_CU is at the same offset as BNL_CLS LENGTH

http://publib.boulder.ibm.com/infocenter/zos/v1ib@ic/com.ibm.zos.r13.ieab200/iea....

scription

List buffer, Version 7
tifier "IEWBBNL"

he buffer,

g the header

ntifier

ust be zeros

ach entry in the list
ntries in the buffer
nitialize to zeros

ist entry

try

nt length (NTYPE=CLASS only)
t number (NTYPE=SECTION only)
utes(NTYPE=CLASS only)

by Binder

resent

ength records

ve data (non-text)

initial data

acter specified

idation error

(NTYPE=CLASS only)

oad

initially loaded
oad class
class

(AdCon free)

ethod

ated text)

ged parts)

ame

class or section
lements in class
(NTYPE = CLASS only)

(NTYPE = CLASS only)

mode (NTYPE = CLASS only)

NTYPE = CLASS only)

t from start of segment
SS only)

Pagel of 1

1/27/201.:

GETN: Get name

GETN: Get names

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

GETN returns the names of each section or clag®imorkmod, a count of the total number of
sections or classes, and the compile unit (CU) reimfor each section. The names returned also
include names generated by the binder to repregsiMatte code sections, unnamed common,
SEGTAB and ENTAB sections for overlay programs, any other sections created by the binder.
GETN can only be performed on a bound workmod.

The syntax of the GETN call is:

[symbol] IEWBIND FUNC=GETN
[.VERSION=version]
[LRETCODE-=retcode]
[LRSNCODE=rsncode]
WORKMOD =workmod
[LAREA =buffer]
CURSOR=cursor
COUNT=count
TCOUNT =tcount
[LNTYPE={SECTION |CLASS}]

FUNC=GETN
Specifies that a count of the number of sectioresworkmod and, optionally, the names of
each section, be returned to a specified location.
VERSION=1|2|3|4|5|6|7
Specifies the version of the parameter list to $eduThe default value is VERSION=1.
Note:
This version must match the version you specifinwhe IEWBUFF macro when you
define the buffer passed on this call.
RETCODE-=retcode — RX-type address or register (2-12)
Specifies the location of a fullword integer thato receive the return code returned by the
binder.
RSNCODE=rsncode — RX-type address or register (2-12)
Specifies the location of a 4-byte hexadecimahgtthat is to receive the reason code returned
by the binder.
WORKMOD= workmod — RX-type address or register (2-12)
Specifies the location of an 8-byte area that doatéhe workmod token for this request.
AREA=Dbuffer — RX-type address or register (2-12)
Specifies the location of a buffer to receive thenes. This buffer must be in the format for
section names (TYPE=NAME). See IEWBUFF - Binder ABffers interface assembler
macro for generating and mapping data areas ardeBiPI buffer formats for information
on buffer definition.

Section names will be moved until either the buidilled or all names have been moved.
This keyword is optional. If it is not specifiedhlyg the number of section names in the
workmod will be returned.

CURSOR=cursor — RX-type address or register (2-12)
Specifies the location of a fullword integer thahtains the position relative to the start of the
list of names where the binder should begin prasgsSpecifying a zero for this argument
causes the binder to begin processing at the biegiwf the list. Offsets are specified in
records and are relative to the start of theTike cursor value is modified before returning to
the caller.

COUNT=count — RX-type address or register (2-12)
Specifies the location of a fullword integer in wthithe binder will indicate the number of
names actually returned in the buffer.

TCOUNT=tcount — RX-type address or register (2-12)
Specifies the location of a fullword integer in whithe binder will indicate the total name
count. TCOUNT indicates the total number of sedionclasses in the workmod, not just
those returned in the buffer.

NTYPE={SECTION | CLASS}

http://publib.boulder.ibm.com/infocenter/zos/v1ib@ic/com.ibm.zos.r13.ieab200/gett...

Pagel of 2

1/27/201.:

GETN: Get name

Specifies the type of names to be returned andtedUBECTION causes the names of all
sections in the workmod, including special sectidgade returned. In addition, the compile
unit CU numbers are provided for buffer versiorr digher.CLASS causes the names of all
classes in the workmod containing data to be retiiriihe value for NTYPE can be
abbreviated aS or C. SECTION is the default.

Processing notes

The CURSOR value identifies an index into the retgek data beginning with O for the first name list
entry. The name list buffer formats defined in RinéP| buffer formats contain an entry length field
in their headers. Multiplying the cursor value hg entry length provides a byte offset into theadat
CURSOR is both an input and output parameter. @utito the service, the cursor specifies the first
item to return. On exit from the service, it is apetl to the index of the next sequential name list
entry if not all entries have yet been retrieved.

Return and reason codes

The common binder API reason codes are shown iteTab

Return Code Reason Code Explanation

00 00000000 Normal completion.

04 83000800 An end-of-data condition was detectetheSgata might have
been returned in buffer. There is no message agsdaiith this
condition.

04 83000801 No section names exist. No data wasnedur

08 83000750 The buffer is not large enough for ooené No data is
returned.

04 83000810 Cursor is negative or beyond the endeo$pecified item. No
data was returned.

12 83000102 Workmod is unbound. GETN request rejected

Parameter list

If your program does not use the IEWBIND macrocplthe address of the GETN parameter list in
general purpose register 1.

Table 16. GETN parameter list
PARMLISTDS OF

DC A(GETN) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(BUFFER) Data buffer

DC A(CURSOR) Starting position

DC A(COUNT) Data count

DC A(TCOUNT) Total count

DC A Name type to return and end-of-list indicator

(NTYPE+X'800000000")

GETN DC H'60' GETN Function code

DC H'version' Interface version number
NTYPE DC CL1'C 'C' =class; 'S' = section

http://publib.boulder.ibm.com/infocenter/zos/v1ib@ic/com.ibm.zos.r13.ieab200/gett...

Page2 of 2

1/27/201.:

__iew_getN(}- Get name Pagel of 1

__iew_getN() - Get names

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Returns a list of section or class names withinptfogram together with information about the
sections or classes.

Format

#include <__iew_api.h>

int__iew_getD(_IEWAPIContext *__context,
_IEWNameType ___nametype,
unsigned int *__total cou nt,
_IEWNamelListEntry ** _ na me_entry);

Parameters Descriptions

context

API context is created and returned by calling w_iepenW() and is used throughout the open
session.

__hametype
name type could be one of the following: IEW_SEGNIor |IEW_CLASS.

__total_count
total number of sections or classes in the workmod.

__hame_entry
returned buffer - binder name list.

Returned Value

If successful, __iew_getN() returns > 0 (count, benof entries returned in the buffer).

If unsuccessful, __iew_getN() returns 0.

Utilities Functions

__iew_eod()
__iew_get_reason_code()
__iew_get_return_code()
__iew_get_cursor()
__iew_set_cursor()

http://publib.boulder.ibm.com/infocenter/zos/v1ib@ic/com.ibm.zos.r13.ieab200/iea.... 1/27/201:

__iew_fd_getN() - Get names Pagelof 1

__ilew_fd_getN() - Get names

z/OS MV S Program Management: Advanced Facilities
SA22-7644-14

Returns alist of section or class names within the program together with information about the
sections or classes.

Format

#include <__iew api.h>
int _iew fd _get N(_I EWFDCont ext *__context,
_I EV\NaneType __ nanet ype,
_| EWNaneLi stEntry ** _ nane_entry);

Parameters Descriptions

context
FD context is created and returned by calling __iew_fd open() and is used throughout the open
session.
__hametype
nametypecanbe |IEW_SECTION or |IEW_CLASS
__hame_entry
returned buffer - binder name list.

Returned Value

If successful, __iew_fd_getN() returns> 0 (count, number of entries returned in the buffer).

If unsuccessful, __iew_fd_getN() returnsO.

Utilities Functions

__iew_fd_eod()

__iew_fd get reason_code()
__iew_fd get return_code()
__iew_fd_get_cursor()
__iew_fd_set_cursor()

http://publib.boul der.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2... 1/27/2013

GN - Getting Names of sections or clas Pagel of 1

GN - Getting Names of sections or classes

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

This is often the first Get service requested, bseat provides the names of sections or classes
within the program object, thus providing infornaatirequired for the GD or GE service calls. If this
service is called with no buffer it returns, in ¢munt field, the number of classes or sectiorthén
program object.

Table 42. GN parameter list

Parameter Usage Format Content
1 in structure 'GN', X'0001"
2 in binary word mtoken
3 in character ntype: C for class or S for section

May be upper or lower case.

4 (optional) in/out vstring buffer

Must be an NAME buffer formatted by
IEWBUFF or as defined in Binder API buffer
formats.

5 in/out binary word cursor - in items

The item size depends on the buffer type and
buffer version used.

6 out binary word count - in items

Sample assembler code

CALL (15),(GNIL,MTOKEN,TYPE,BUFF,CURS,CNT),VL
GNIL DC C'GN',X'0001
MTOKEN DS F As set at Start call
TYPE DC C'C To return class names finfo
CURS DC FO Start with first clas S
CNT DS F Number of classes ret urned
BUFF IEWBUFF FUNC=MAPBUF,TYPE=NAME,VERSION=6,SIZE=B
* i.e. a buffer big enough to hold 50 classes.
* (Class names are never too long.)

http://publib.boulder.ibm.com/infocenter/zos/v1ib®ic/com.ibm.zos.r13.ieab200/gnse... 1/27/201:

ESD entry (version !

ESD entry (version 5)

z/0OS MVS Program Management: Advanced Facilities
SA22-7644-14

Figure 44. Format for ESD entries

Field Field Off Leng De
Name Type set
IEWBESD Binder ESD

ESDH_BUFFER_ID Char 0 8 Bufferiden

ESDH_BUFFER_LENG Binary 8 4 Lengthoft
includin

ESDH_VERSION Binary 12 1 Version ide

** RESERVED *** Binary 13 3 Reserved, m

ESDH_ENTRY_LENG Binary 16 4 Lengthofe

ESDH_ENTRY_COUNT Binary 20 4 Number of e

** RESERVED *** Binary 24 8 Reserved

ESDH_ENTRY_ORIGIN 32 FirstESD e
ESD_ENTRY ESD entry
ESD_TYPE Char 0 2 ESD Type

c Null Entry

C'sb’ Control Sec

C'LD' Label Defin

CER’ External Re

CPR' Part Refere

C'PD’ Part Defini

CED’ Element Def
ESD_TYPE_QUAL Char 2 2 ESD Type Qu

c (no qualifi

C'sD’ Section Def

cCcw™m Common (SD)

C'sT Segment Tab

CET' Entry Table

C'PC Unnamed Sec

C'PR’ Part Refere

C'PD’ Part Defini

CER’ External Re

C'WX' Weak Refere
ESD_NAME_SPACE Binary 4 1 Name Space

X'00' Class and

X'01' Labels an

X'02' Pseudoreg

X'03' Parts(PR,

X'04'-x'07' Reserved
ESD_SCOPE Char 5 1 Scope of Na

v Not appli

'St Section (

‘™' Module (T

ER
L Library (
X Symbol ca
EX

ESD_NAME Name 6 6 Symbolrepr

ESD_NAME_CHARS Binary 6 2 length of
ESD_NAME_PTR Pointer 8 4 pointert

Field Field Off Leng De
Name Type set

ESD_SYMBOL_ATTR Binary 12 1 Symbol attr
ON =str
OFF = wea
ON = this
ON = Symb
ON = symb
WLl ON = symb

1. Environme

11 ** Reserv
ESD_FILL_CHAR Char 13 1 Valueto fi

1 ESD_RES_SECTION Name 14 6 Name of con
ESD_RESIDENT_CHARS Binary 14 2 length of
ESD_RESIDENT_PTR Pointer 16 4 pointert

ESD_LENG Binary 20 4 Length of d
(ED, PD, PR
ESD_ALIGN Binary 24 1 Alignments
language pr
Alignment o
within clas
X'00' Byte alig
X1 Halfword
X'02' Fullword
X'03' Doublewor
X'04' Quadword (
X'oc' 4K page (
ESD_USABILITY Binary 25 1 Reusability
X'00* Unspecifi
X1 Nonreusab
X'02' Reusable
X'03' Reentrant
X'04' Refreshab
Field Field Off Leng De
Name Type set
ESD_AMODE Bit 26 1 Addressing
label (SD,
X'00' Unspecifi
X'01' AMODE 24
X'02' AMODE 31
X'03' AMODE ANY
X'04' AMODE MIN
X'05' Unused, r

http://publib.boulder.ibm.com/infocenter/zos/v1itb@ic/com.ibm.zos.r13.ieab200/iea....

scription

buffer, Version 5
tifier "IEWBESD"
he buffer,

g the header
ntifier (Constant 2)
ust be zeros

ach entry

ntries in the buffer

ntry

tion
ition
ference
nce
tion
inition

alifier
cation)
inition (SD)

tion (SD)

nce (PR, PD)

tion (PR, PD)

ference (ER)

nce (ER)

for symbols

section names (SD, ED)
d references (LD, ER)
isters (PR, PD)

PD) in merge classes

me
cable

Types SD/private,ST,ET)
ypes SD/CSECT,LD,
/weak,CM,PR,DS,PD)
Type ER/strong)

n be IMPORTED or
PORTED.

esented by ESD record
name in bytes

0 hame string

scription

ibutes

ong ref or def.

k ref or def.

symbol can be renamed

ol is a descriptor

ol is a C++ mangled name

ol uses XPLINK linkage
conventions

nt exists

ed **

Il with

taining section

name in bytes

0 name string

efined element

pecification from
ocessor. Indicates

f section contribution
s segment (ED, PD, PR)
nment (PD, PR)
(PD, PR)

(PD, PR)

d (PD, PR, ED)

PR, PD, ED)

ED)

of Section (SD)

ed

le

le

scription

Mode for Section or
LD)

ed

(24 or 31)

eserved

Pagel of 2

1/27/201.:

ESD entry (version !

X'06' AMODE 64
ESD_RMODE Bit 27 1 Residence M
(ED)
Xo1' RMODE 24
X'03' RMODE ANY
X'04' RMODE 64
Binary 28 2 Record form
H1' Byte stre
H>1' Fixed len
ESD_LOAD_FLAGS Bit 30 1 Load Attrib
Read-only
Do not lo
Moveable
Shareable
Deferred
111 Reserved
ESD_BIND_FLAGS Bit 31 1 Bind Attrib
. Binder ge
No class
Variable
Descripti
ON = clas
ON =fill
Class has
** Reserv
t 32 1 Bind contro
Removable
** Reserv
Binding m
CAT (Ca
MRG (Me
** Rese
Bit 33 1 Generalatt
Compiled
Compiled
** Reser
Error se
- I-leve
- W-leve
- E-leve
- S-leve
** Reser
** Reser

2
2
2

1.

1

WL
1

Bi

PRrEPRRPR

Field Field Off Leng De
Name Type set

ESD_XATTR_CLASS Name 34 6 Extended at
(LD, ER)
ESD_XATTR_CLASS_CHARS
Binary 34 2 length of
ESD_XATTR_CLASS_PTR
Pointer 36 4 pointer t
ESD_XATTR_OFFSET Binary 40 4 Extended at
(LD, ER)
2 ESD_SEGMENT Binary 44 2 Overlay seg
2 ESD_REGION Binary 46 2 Overlay reg
ESD_SIGNATURE Char 48 8 Interface s
2 ESD_AUTOCALL Binary 56 1 Autocall sp
1. ... ** Reserv
1. Entry in
an alias.
L XX XXXX ** Reserv
2 ESD_STATUS Bit 57 1 Resolution
1. ... Symbol is
Processed
INCLUDE a
Member no
Resolved
NOCALL or
No strong
Special ¢
2 ESD_TGT_SECTION Name 58 6 Targetsect
ESD_TARGET_CHARS Binary 58 2 length of
ESD_TARGET_PTR Pointer 60 4 pointer t
*** RESERVED ** Char 64 2 Reserved
ESD_RES_CLASS Name 66 6 Name of con
(LD, PD) or
ESD_RES_CLASS_CHARS
Binary 66 2 length of
ESD_RES_CLASS_PTR
Pointer 68 4 pointer t
3 ESD_ELEM_OFFSET Binary 72 4 Offset with
(LD, ER)
2 ESD_CLASS_OFFSET Binary 76 4 Offset with
(ED, LD, PD
*** RESERVED ** Char 80 2 Reserved
ESD_ADA_CHARS Binary 82 2 Environment
ESD_ADA_PTR Pointer 84 4 Pointer to
*** RESERVED ** Char 88 4 Reserved
ESD_PRIORITY Binary 92 4 Binding pri

Notes:
1. This entry is ignored on input to the binder.
2. Recalculated by the binder.

3. Calculated on the ED and ER records, required itgpud.

4. Valid for SDs only.

http://publib.boulder.ibm.com/infocenter/zos/v1itb@ic/com.ibm.zos.r13.ieab200/iea....

ode for class element

(24 or 31)
ESD_RECORD_FMT

at for class (ED)

am

gth records

utes (ED)

ad with module

utes

nerated (SD, ED, LD)
data available (ED)
length records (ED)

ve data (not text) (ED)
s contains part initializers (ED)
character has been specified (ED)
padding

ed **

| information

class(ED)

ed **

ethod (ED)

tenated text)

rged parts)

rved **

ributes

as system LE

as lightweight LE

ved **

verity for dups (PD, LD)
|

|

|

|

ved **

ved **

scription

tributes class

name in bytes

0 hame string
tributes element offset

ment number (SD)
ion number (SD)
ignature

ecification (ER)

ed **

LPA. If ON, name is

ed **
status (ER)
resolved

by autocall
ttempted

t found

outside module
NEVERCALL
references

all library

ion (ER)

name in bytes
0 name string

taining class
target class (ER)

name in bytes

0 hame string
in class element

in class segment

name length (LD)
name of environment (LD)

ority

Page2 of 2

1/27/201.:

GETE: Get ESD da

GETE: Get ESD data

z/0OS MVS Program Management: Advanced Facilities
SA22-7644-14

GETE returns data from ESD items. GETE must be osealbound workmod. Four optional
parameters allow you to specify selection critésrethe ESD items to be returned: section name,
ESD record type, offset in the section or modufe] symbol name. Only ESD records that meet all
of the selection criteria will be returned. Mulgpdelection criteria can be specified to retriexacty
the records you need.

The syntax of the GETE call is:

[symbol] IEWBIND FUNC=GETE
VERSION=version]
RETCODE =retcode]
RSNCODE=rsncode]
WORKMOD =workmod
SECTION=section]
RECTYPE=rectype]
CLASS=class]

{ OFFSET=offset | SYMBOL =symbol}]
AREA=buffer
CURSOR=cursor
COUNT=count

EUNC=GETE
Requests that data from ESD items in a workmocthened to a specified location.
VERSION=1|2|3[4|5|6|7
Specifies the version of the parameter list to $eduThe default value is VERSION=1.
Note:
If VERSION=1 is specified for the GETE call, CLA®8nnot be specified as a macro
keyword. The parameter list ends with the COUNTapeter (with the high-order bit
set). This exception is for Version 1 only.
RETCODE-=retcode — RX-type address or register (2-12)
Specifies the location of a fullword integer theta receive the return code returned by the
binder.
RSNCODE-=rsncode — RX-type address or register (2-12)
Specifies the location of a 4-byte hexadecimahgtthat is to receive the reason code returned
by the binder.
WORKMOD= workmod — RX-type address or register (2-12)
Specifies the location of an 8-byte area that dostédne workmod token for this request.
SECTION=section — RX-type address or register (2-12)
Specifies the location of a 16-byte varying chagastring that contains the name of the
section to be processed. This argument can be bériks to indicate blank common area.
Sections will be retrieved in the same order thaytwere included in the workmod.

The default value is all sections. If this paramétespecified, only the indicated section is
searched.

RECTYPE-=rectype — RX-type address or register (2-12)
Specifies the location of a varying character gttimat contains a list of the ESD record types
to be returned. If you do not specify this argumatitrecord types are returned.

Record types must be identified by one- or two-abtar codes, separated by commas and
enclosed in parentheses. Embedded blanks arelowedl Valid record types are:

SD
Section definition
ED
Element definition
LD
Label definition
PD
Part definition
PR
Part reference
ER
External reference
CM
Common
ST
Segment table
ET
Entry table
DS
Dummy section definition
CM
Common section definition
ET
ENTAB
ST
SEGTAB
PC
Private code section definition
WX

Weak external reference
In addition, you can use a generic code to referenare than one ESD type:

S
Section definition records (SD, CM, ST, ET, PC, &%)

Unresolved external references (ER, ESD_STATUS=saived)

CLASS=class— RX-type address or register (2-12)
Specifies the location of a 16-byte varying chamastring containing the name of the text
class referenced by the ESD record to be selelteldss has not been specified, ESD records
are returned without regard to class.

OFFSET=offset — RX-type address or register (2-12)
Specifies the location of a fullword integer thantains the offset within the specified section.
If a section name has not been specified, a maxftdet is assumed. If you specify OFFSET
you cannot specify SYMBOL but must specify CLASS.

SYMBOL=xsymbol — RX-type address or register (2-12)
Specifies the location of a varying character gttt contains a symbol to be used as a
selection criterion. If you specify SYMBOL you catrspecify OFFSET.

If neitherOFESET nor SYMBOL is provided, processing begins at the start oftéra.

AREA=buffer — RX-type address or register (2-12)

http://publib.boulder.ibm.com/infocenter/zos/v1itb@ic/com.ibm.zos.r13.ieab200/get....

Pagel of 2

1/27/201.:

GETE: Get ESD da

Specifies the location of a buffer to receive théad This buffer must be allocated and
initialized in ESD format. See IEWBUFF - Binder ABiffers interface assembler macro for
generating and mapping data areas for informatiohuffer handling.

CURSOR=cursor — RX-type address or register (2-12)
Specifies the location of a fullword integer thadicates the position within the section or
module where the binder should begin processingcigfing a zero for this argument causes
the binder to begin processing at the first ESDye@ffsets are specified in records and are
relative to the start of the selected ESD item(s).

COUNT=count — RX-type address or register (2-12)
Specifies the location of a fullword integer in ehithe binder will store the number of entries
it has returned.

Processing notes

The binder returns ESD records that meet the setectiteria specified on the call:

.

If SECTION is specified, only that section of th8Ewill be searched. All sections is the
default.
If RECTYPE is specified, only ESD records of thpetg appearing in the supplied list are
returned.
If OFFSET is specified and rectype="S", the ESDbrddor the control section (or common
area) containing the specified offset, is returfoedbuffer version 1. The SD record mapping
in other buffer versions does not contain an oféset no records will be returned. If OFFSET
is specified and rectype="LD", then all LD ESD redmfor the symbols defined at or before
that location (within the containing section) v returned.
If SYMBOL is specified, all ESD records of the typespecified with that symbol name are
returned. If CLASS is specified, only ESD recordattdefine locations in that class are
returned. Some records, such as SD and ER, aessotiated with any class and are never
returned if class is specified.
Note:
Processing of the ESD records returned by a GETBhauld not make assumptions about the
order of the returned ESD records. For exampleh puscessing should not assume that LD
type ESD records are returned in the order of thfésets in the section.

.

The CURSOR value identifies an index into the retee ESD data beginning with O for the first
ESD. The ESD buffer formats defined in Binder ABffbr formats contain an entry length field in
their headers. Multiplying the cursor value by émery length provides a byte offset into the data.
CURSOR is an input and output parameter. On inpthée service, the cursor specifies the first
record to return. On exit from the service, it jxlated to the index of the next sequential EStf n
all data has yet been retrieved.

The binder will typically return multiple entries & single call, depending on the size of the buffe
Data is reformatted, if necessary, to conform touérsion identified in the caller's buffer. The
COUNT parameter is set to the number of recordsadlgtreturned in the buffer.

The ESD buffer formats defined in Binder API buffermats contain a record length field in their
headers giving the length of each ESD record. fhisides a way for the caller to index through the
returned records or to access a specific recotfaeimeturned data buffer.

In some cases where OFFSET is specified and tlzeneser list is version 6 or less, return code 0
and reason code 0 will be returned on an end-af-clatdition. The version 7 API call will always

return return code 4 and reason code 83000800 endxof-data condition, while the COUNT may
be non-zero indicating that data was returned.

Return and reason codes

The common binder API reason codes are shown iteTab

Return Code Reason Code Explanation

00 00000000 Normal completion.

04 83000705 The specified symbol could not be locatélde workmod. No
data is returned in the buffer.

04 83000800 An end-of-data condition was detectetheStiata might have
been returned in buffer. There is no message agedabvith this
condition.

04 83000801 The requested item was not found in tr&mod, or was
empty, or no records met the specified criteriadsta returned.

04 83000812 The specified offset was negative or heyoe end of the
designated item or module. No data is returnetierbuffer.

12 83000101 OFFSET and SYMBOL have both been spdciRequest
rejected.

12 83000102 Workmod is unbound. GETE request rejected

Parameter list
If your program does not use the IEWBIND macrocpléhe address of the GETE parameter list in
general purpose register 1.

Table 15. GETE parameter list
PARMLIST DS OF

DC A(GETE) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(SECTION) Section name
DC A(RECTYPE) ESD record type(s)
DC A(OFFSET) Offset in module or section. If not a selection
criterion, set to -1.
DC A(SYMBOL) Symbol name
DC A(BUFFER) Data buffer
DC A(CURSOR) Starting position
DC A(COUNT) Data count
DC A(CLASS) Text class
GETE DC H62 GETE function code
DC H'ersion' Interface version number

RECTYPE DC H7,CL7'(SD,CM)' Sample varying string

Note:
X'80000000" must be added to either the COUNT patantfor Version 1) or the CLASS
parameter (for Version 2 or higher).

http://publib.boulder.ibm.com/infocenter/zos/v1itb@ic/com.ibm.zos.r13.ieab200/get....

Page2 of 2

1/27/201.:

__iew_getE(- Get ESD dat Pagel of 1

__iew _getE() - Get ESD data

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Returns external symbol dictionary information stde by various criteria.

Format

#include <__iew_api.h>
int__iew_getE(_IEWAPIContext *__context,

const char *__sect, const char * _class,
const char *__sym, const c har *__rec_type
int*_ offset,

_IEWESDERNtry ** __esd_entr y);

Parameters Descriptions

context

API context is created and returned by calling w_iepenW() and is used throughout the open
session.

__sect
section name.

__class
class name. See class under Understanding binogramnming concepts for details.

__sym

symbol name. See “External symbol dictionary" ia@ter 2 of Program Management User's
Guide and Reference for detalils.
__rec_type
ESD record type.
__offset
offset in module or section
__esd_entry
returned buffer - ESD entry

Returned Value

If successful, __iew_getE() returns > 0 (count, banof entries returned in the buffer).

If unsuccessful, __iew_getE() returns 0.

Utilities Functions

__iew_api_name_to_str()
__iew_eod()
__iew_get_reason_code()
__iew_get_return_code()
__iew_get_cursor()
__iew_set_cursor()

http://publib.boulder.ibm.com/infocenter/zos/v1ib@ic/com.ibm.zos.r13.ieab200/iea.... 1/27/201:

__iew_fd_getE(- Get ESD dat Pagel of 1

__iew _fd_getE() - Get ESD data

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Returns external symbol dictionary information stdd by class and/or section to which it refers.

Format

#include <__iew_api.h>

int__iew_fd_getE(_IEWFDContext * __context,
const char *__sect, ¢ onst char *__class,
_IEWESDEntry ** __esd _entry);

Parameters Descriptions

context

FD context is created and returned by calling __ fewopen() and is used throughout the open
session.

__sect
section name.

__class
class name.

__esd_entry
returned buffer - ESD entry.

Returned Value

If successful, __iew_fd_getE() returns > O (comninber of entries returned in the buffer).

If unsuccessful, __iew_fd_getE() returns 0.

Utilities Functions

__iew_api_name_to_str()
__iew_fd_eod()
__iew_fd_get_reason_code()
__iew_fd_get_return_code()
__iew_fd_get _cursor()
__iew_fd_set_cursor()

http://publib.boulder.ibm.com/infocenter/zos/v1ib@ic/com.ibm.zos.r13.ieab200/iea.... 1/27/201:

GE - Getting External Symbol Dictionary d. Pagel of 1

GE - Getting External Symbol Dictionary data

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

This service is a specialized variant of GD, usecktrieve only one class, B_ESD. This can be a
confusing class, though, because ESD records arediy elements in a second class and may point
to elements in a third class. For example, an ESB describe an adcon in class C_CODE that refers
to an address in class B_TEXT. Using the 'GD' serybu would only be able to indicate that you
were interested in class B_ESD, and would havettiere all ESDs to locate the specific ones you
were interested in. The 'GE' service allows théec#d screen ESDs returned, limiting the output to
those owned by a specified class. The calling apptin can also ask for ESDs in a specific section.

Table 41. GE parameter list

Parameter Usage Format Content
1 in structure '‘GE', X'0001'
2 in binary word mtoken

3 (optional) in vstring class

4 (optional) in vstring section
5 infout structure buffer

Must be formatted by IEWBUFF or as defined|in
Binder API buffer formats, and appropriate to the
class requested.

6 in/out binary word cursor - in items

The item size depends on the buffer type and
buffer version used.

7 out binary word count - in items

Sample assembler code

CALL (15),(GEIL,MTOKEN,CLASS,,BUFF,CURS,C NT),VL
GEIL DC C'GE',X'0001
MTOKEN DS F As set at Start call
CLASS DC H'6',C'C_CODE'Limit ESDs returned
CURS DC FO Start with first ESD
CNT DS F Number of ESDs return ed
BUFF IEWBUFF FUNC=MAPBUF,TYPE=ESD,VERSION=6,SIZE=50
* i.e. a buffer big enough to hold 50 ESDs,
* assuming the names are not too long.

http://publib.boulder.ibm.com/infocenter/zos/v1ib@ic/com.ibm.zos.r13.ieab200/ges... 1/27/201:

Text data buffer (version Pagel of 1

Text data buffer (version 1)

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Figure 32. Format for TXT entries

Field Field Off Leng Desc ription
Name Type set
IEWBTXT Binder Text buffer, Version 1

TXTH_BUFFER_ID Char 0 8 Bufferiden tifier "IEWBTXT"

TXTH_BUFFER_LENG Binary 8 4 Lengthoft he buffer,
includin g the header

TXTH_VERSION Binary 12 1 Version ide ntifier

*** RESERVED *** Binary 13 3 Reserved, m ust be zeros

TXTH_ENTRY_LENG Binary 16 4 Lengthofe ntries (always 1)

TXTH_ENTRY_COUNT Binary 20 4 Number of e
buffer

*** RESERVED *** Binary 24 8 Reserved, i

TXT_ARRAY Undef. 32 var Program Tex
1to 2**
on valu

http://publib.boulder.ibm.com/infocenter/zos/v1ib@ic/com.ibm.zos.r13.ieab200/iea....

ntries (bytes) in the

nitialize to zeros

t (length varies from

31-1 bytes, depending

e in TXTH_ENTRY_COUNT)

1/27/201.:

GETD: Get dat

GETD: Get data

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

GETD returns data from items in a workmod. The galaf theCLASS andSECTION parameters
determine which item is returned SECTION is omitted, all sections are returned as a singie
This service can only be performed on a bound wockm

The syntax of the GETD call is:

[symbol] IEWBIND EUNC=GETD
[LVERSION=version]
[LRETCODE-=retcode]
[LRSNCODE=rsncode]
WORKMOD =workmod
CLASS=class
[LSECTION=section]
AREA=buffer
CURSOR=cursor
COUNT=count
[LRELOC=reloc]

FUNC=GETD
Requests that data from items in a workmod bemetuto a specified location.
VERSION=1|2|3|4|5|6|7
Specifies the version of the parameter list to $eduThe default value is VERSION=1.
RETCODE-=retcode — RX-type address or register (2-12)
Specifies the location of a fullword integer th&to receive the return code returned by the
binder.
RSNCODE-=rsncode — RX-type address or register (2-12)
Specifies the location of a 4-byte hexadecimahgtthat is to receive the reason code returned
by the binder.
WORKMOD= workmod — RX-type address or register (2-12)
Specifies the location of an 8-byte area that dostne workmod token for this request.
CLASS=class— RX-type address or register (2-12)
Specifies the location of a 16-byte varying chaastring containing a class name. The class
name might have been defined by the binder, a dempr an end user. See Understanding
binder programming concepts for binder class naBeBMAR is also accepted as a class
name, although it is not an actual class in a indekmod.
SECTION=section — RX-type address or register (2-12)
Specifies the location of a varying character gttt contains the name of the section to be
processed. If omitted, this defaults to a concatenaf all sections in the specified class. If
the processing intent is bind, the sections arerediby virtual address. If the processing
intent is access, they are returned in the saner tndt they were included in the workmod.
AREA=buffer — RX-type address or register (2-12)
Specifies the location of a buffer to receive taéad The binder returns data until either this
buffer is filled or the specified items have beemgpletely moved. See IEWBUFF - Binder
API buffers interface assembler macro for genegadind mapping data areas for information
on buffer handling.
CURSOR=cursor — RX-type address or register (2-12)
Specifies the location of a fullword integer thahtains the position within the item(s) where
the binder should begin processing. Specifyingra f@r the argument causes the binder to
begin processing at the start of the item. Thearwralue is specified in bytes for items in the
TEXT class, in records for all other classes. Thlei@ is relative to the start of the item. The
cursor value is modified before returning to thieca
COUNT=count — RX-type address or register (2-12)
Specifies the location of a fullword that is toeae the number of bytes of TEXT or the
number of entries returned by the binder.
RELOC=reloc
Specifies a base address to be used for relocatmncan only use this parameter with
VERSION=6 or higher. You will need to know the load segtrfenthe data you are
requesting. You can map text classes into load saggusing GETN:eloc is a single 8-byte
address. The relocation address will relocate doerss in the returned text buffer as though
the program segments had been loaded at the desigaddress. If you do not use the
RELOC parameter, it should set to zero.

Processing notes

The CURSOR value identifies an index into the retee: data beginning with O for the first data
item. Each of the buffer formats defined in Bindét buffer formatscontains an entry length field in

http://publib.boulder.ibm.com/infocenter/zos/v1itb®ic/com.ibm.zos.r13.ieab200/gett..

Pagel of 2

1/27/201.:

GETD: Get dat

its header. Multiplying the cursor value by thergméngth provides a byte offset into the data.eNot
that CUI, LIB, PMAR, and text data is always trebses having entry length 1. The CURSOR value
is both an input and output parameter. On inptiiécservice, the cursor specifies the first item to
return. On exit from the service, it is updateémoappropriate value for continued sequential
retrieval if not all data has yet been retrieveat. text data, this may or may not be the next bytier
the last one returned, because pad bytes betwegonseand uninitialized data areas within sections
may have been skipped. Any data skipped shouldebéed by the calling application as containing
the fill character (normally X'00').

On the next GETD request, the binder begins prawgsehere the last request left off.

If you interrupt a series of successive GETD caitsj should reset the value of the cursor before
continuing. Otherwise, the cursor value might belid and the results of a GETD request are
unpredictable.

If a section name is not passed on a GETD API iation for a text class and the target is an overlay

module, the cursor is interpreted as an offsettimtomodule and laid out sequentially in segment
order, using the alignment as specified in theabjeodules.

Return and reason codes

The common binder API reason codes are shown ifeTab

Return Code Reason Code Explanation
00 00000000 Normal completion.
04 83000800 Normal completion. Some data might haes beturned in the

buffer, and an end-of-data condition was encoudtéFkere is
no message associated with this condition.

04 83000801 The requested item did not exist or istgnNo data has been
returned.

08 83000750 The buffer is not large enough for ogend No data is
returned.

08 83000813 The buffer version is not compatible whiga module content.
No data is returned.

08 83002349 Not all adcons were successfully reldcatkis condition could

occur because relocation addresses for all the esgignvere not
passed, or because the adcon length was insuffici@ontain
the address.

12 83002379 Binder encountered a bad cursor for 8aBARTINIT and
processing has been stopped.

12 83000102 Workmod was in an unbound state. GETDestgcould not be
processed.

12 83002375 The class was not a text class.

Parameter list
If your program does not use the IEWBIND macrocplthe address of the GETD parameter list in
general purpose register 1.

Table 14. GETD parameter list
PARMLIST DS OF

DC A(GETD) Function code

DC A(RETCODE) Return code

DC A(RSNCODE) Reason code

DC A(WORKMOD) Workmod token

DC A(CLASS) Class name

DC A(SECTION) Section name

DC A(BUFFER) Data buffer

DC A(CURSOR) Starting position

DC A Data count and end-of-list indicator

(COUNT+X'80000000')

DC A(RELOC) Relocation address
GETD DC H'61' GETD function code

DC H'versi on' Interface version number

http://publib.boulder.ibm.com/infocenter/zos/v1ib@ic/com.ibm.zos.r13.ieab200/getc...

Page2 of 2

1/27/201.:

__iew_getD(}- Get dat Pagel of 1

__lew_getD() - Get data

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Returns data associated with a specified classdptidnally section) in the program.

Format

#include <__iew_api.h>

int__iew_getD(_IEWAPIContext *___context,
const char *__ class, cons tchar* __ sect,
long long * __reloc,
void ** __ data_entry);

Parameters Descriptions

context

API context is created and returned by calling w_iepenW() and is used throughout the open
session.

__class
class name.

__sect
section name.

__reloc
relocation address.

__data_entry
returned buffer - based on class name.

Returned Value

If successful, __iew_getD() returns a number greagmn zero representing the number of data items
or bytes returned in the buffer.

If unsuccessful, __iew_getD() returns 0.

Utilities Functions

__iew_api_name_to_str()
__iew_eod()
__iew_get_reason_code()
__iew_get_return_code()
__iew_get_cursor()
__iew_set_cursor()

http://publib.boulder.ibm.com/infocenter/zos/v1ib@ic/com.ibm.zos.r13.ieab200/iea.... 1/27/201:

__iew_fd_getD() - Get data Pagelof 1

__iew fd_getD() - Get data

z/OS MV S Program Management: Advanced Facilities
SA22-7644-14

Return data associated with a specified class (and optionally section) in the program.

Format

#include <__iew api.h>

int __iew fd_getD(_I EWFDCont ext *__context,
const char *__class, const char * __sect,
long long *__reloc,
void ** data_entry);

Parameters Descriptions

context
FD context is created and returned by calling __iew_fd open() and is used throughout the open
Session.
__class
class name.
_sect
section name.
__reloc
relocation address.
__data_entry
returned buffer - based on class.

Returned Value

If successful, __iew_fd getD() returns> 0 (count, could be number of bytes of TEXT (if class=sTEXT) or
number of entries returned in the buffer).

If unsuccessful, _iew_fd_getD() returns 0.

Utilities Functions

__iew_api_name_to_str()
__iew_fd_eod()

__iew_fd get reason_code()
__iew_fd _get_return_code()
__iew_fd_get_cursor()
__iew_fd set_cursor()

http://publib.boul der.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2... 1/27/2013

GD - Getting Data from any cle Pagel of 1

GD - Getting Data from any class

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

This service is often used to access program lbextcan also be used to retrieve data from other
compiler-defined or binder-defined classes. Tha dan optionally be limited to that associated with
a particular section.

One special feature for program text is that thdreskes within the text can be relocated in theesam
way that the loader would do, relative to a spedistarting address.

Note that many programs are built with multiplettelasses. The GD service is not able to combine
data from different classes in a single call, dreldursor used for positioning is always relativéhe
beginning of the specified class (or section contion within the class if the optional section
parameter is provided). Typically the calling apation views program text as continuous across
classes within a loadable segment. The applicagonadjust for this by using the class startingeiff
within the segment as returned by the GN servichérBNL_SEGM_OFF field.

Table 40. GD parameter list

Parameter Usage Format Content
1 in structure 'GD', X'0001'
2 in binary word mtoken
3 in vstring class
4 (optional) in vstring section
5 in/out structure buffer

Must be formatted by IEWBUFF or as definedin
Binder API buffer formats, and appropriate to the
class requested.

6 infout binary word cursor - in items

The item size depends on the buffer type and
buffer version used.

For text data, this might not be returned as the
next location after the last text byte returned,
because pad bytes between sections and
uninitialized data areas within sections may have
been skipped. Any data skipped should be treated
by the caller as containing the fill character
(normally X'00".

7 out binary word count - in items
8 (optional) in 64-bit address relocation value

An assumed address for the start of the class, to
be used for address constant relocation.

Sample assembler code

CALL (15),(GDIL,MTOKEN,CLASS, BUFF,CURS,C NT),VL
GDIL DC C'GD',X'0001'
MTOKEN DS F As set at Start call
CLASS DC H'6',C'B_TEXT' One particular text ¢ lass
CURS DC F0O Start at beginning of text
CNT DS F Number of bytes retur ned
* (since text item size is 1)
BUFF IEWBUFF FUNC=MAPBUF,TYPE=TEXT,BYTES=8192
* Note default to V1, but text buffer hasn't changed

http://publib.boulder.ibm.com/infocenter/zos/v1ib@ic/com.ibm.zos.r13.ieab200/gdc... 1/27/201:

CUI entry (version 6)

CUI entry (version 6)

z/OS MV S Program Management: Advanced Facilities
SA22-7644-14

Figure 46. Format for CUI entries

Field Field Off Leng De
Name Type set
IEWBCUI Binder CUI

CUIH_BUFFER_ID Char 0 8 Bufferiden
CUIH_BUFFER_LENG Binary 8 4 Lengthoft
CUIH_VERSION Binary 12 1 Version ide

** RESERVED *** Binary 13 3 Reserved, m
CUIH_ENTRY_LENG Binary 16 4 Lengthofe
CUIH_ENTRY_COUNT Binary 20 4 Number of e
** RESERVED *** Binary 24 8 Reserved, i

CUIH_ENTRY_ORIGIN 32 First compi
CUI_ENTRY Compile Uni
CUl_CU Binary 0 4 Compile uni

CUI_SOURCE_CU Binary 4 4 Source of c
** RESERVED *** Binary 8 2 Reserved, m
CUI_MEMBER_LEN Binary 10 2 Length of m
CUI_MEMBER_PTR Pointer 12 4 Pointer to
** RESERVED *** Binary 16 2 Reserved, m
CUI_PATH_LEN Binary 18 2 Length of p
CUI_PATH_PTR Pointer 20 4 Pointer to
** RESERVED *** Binary 24 2 Reserved, m
CUI_DSNAME_LEN Binary 26 2 Lengthofd
CUI_DSNAME_PTR Pointer 28 4 Pointer to
CUI_DDNAME Char 32 8 Ddname

** RESERVED *** Binary 40 2 Reserved, m

CUI_CONCAT Binary 42 1 Concat
CUI_TYPE Binary 43 1 Source type

X'00' Load modu

X'01' Generated

X'02' Generated

X'10' PO1 (PM1)

X'11' Object mo

X'12' Object mo

X'13' Object mo

X'14' Unknown

X'15' Workmod

X'1E' Generated

X'20' PO2 (PM2)

X'30' PO3 (PM3)

X'41' PO4 (PM4)

X'42' z/OS 1.5

X'43' z/IOS 1.7

X'51' PO5 (PM5)

** RESERVED *** Binary 44 4 Reserved, m
** RESERVED *** Binary 48 2 Reserved, m
CUI_C_MEMBER_LEN Binary 50 2 Length of m
CUI_C_MEMBER_PTR Pointer 52 4 Pointer to
** RESERVED *** Binary 56 2 Reserved, m
CUI_C_PATH_LEN Binary 58 2 Length of p
CUI_C_PATH_PTR Pointer 60 4 Pointer to
** RESERVED *** Binary 64 2 Reserved, m
CUI_C_DSNAME_LEN Binary 66 2 Lengthofd
CUI_C_DSNAME_PTR Pointer 68 4 Pointerto
** RESERVED *** Char 72 3 Reserved, m

CUI_C_TYPE Binary 75 1 Source type
CUI_C_SEQ Binary 76 4 CU sequence
Notes:

scription

buffer, Version 6

tifier "IEWBCUI"

he buffer, including the header
ntifier

ust be zeros

ntries

ntries (bytes) in the buffer
nitialize to zeros

le unit entry

t Entry

t number

ompile unit number

ust be zero

ember

the member
ust be zero

ath

the path

ust be zero

sname

the dsname

ust be zero

le

by PUTD API version 1

by PUTD API version 2 or higher
format program object

dule (traditional format)

dule (XOBJ format)

dule (GOFF format)

by the binder
format program object
format program object
format program object, z/OS 1.3 compatible
compatible
compatible
format program object, z/OS 1.8 compatible
ust be zero
ust be zero
ember (original)
the member (original)
ust be zero
ath (original)
the path (original)
ust be zero
sname (original)
the dsname
ust be zero
within the object file
number within the object file

1. The header record contains information about the target workmod as awhole. The format is the same as that of the other records.
CUI_CU, CUI_SOURCE_CU and CUI_C_SEQ will always be zero in the header record.

2. Fieldsthat have the comment original refer to the object module used to build the program object the first time. These field contents are
not changed if the program object is rebound. However, thisinformation is available only if the program object is compatible with the
z/OS 1.5 format or higher version. Thus, complete information is returned for nonheader records only if the CUI_TY PE valueis 42 or
greater. CUI_TY PE for program objects in formats compatible with releases earlier than z/OS 1.5. Load modules have CUI_TY PE set to

the format of the target module.

3. Entries for compile units representing sections created by the binder, including section 1, contain no information other than the compile

unit number (CUI_CU) and the type (CUI_TY PE).

http://publib.boul der.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/cuieb.ht...

Pagelof 1

2/2/2013

GETC: Get compile unit i Pagel of 2

GETC: Get compile unit list

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

GETC returns data which is mapped to a new CUldsdtfrmat (Version 6). The
COMPILEUNITLIST parameter determines which data is returned.

The syntax of the GETC call is:

[symbol] IEWBIND FUNC=GETC
VERSION=version
[LRETCODE-=retcode]
[LRSNCODE=rsncode]
WORKMOD =workmod
[LCOMPILEUNITLIST =compileunitlist]]

AREA =buffer
CURSOR-=cursor
COUNT=count
FUNC=GETC
Requests that data from items in a workmod be metiito a specified location.
VERSION=6

Specifies the version of the parameter list to $edu6 or higher).
RETCODE=retcode — RX-type address or register (2-12)
Specifies the location of a fullword integer theatao receive the return code returned by the
binder.
RSNCODE=rsncode — RX-type address or register (2-12)
Specifies the location of a 4-byte field that is¢geive the reason code returned by the binder.
Reason codes are documented as a sequence ofdbiexal digits.
WORKMOD= workmod — RX-type address or register (2-12)
Specifies the location of an 8-byte area that doatthe workmod token for this request.
COMPILEUNITLIST= compileunitlist
Determines which data is returnedCIODMPILEUNITLIST _is specified, one record for each
compile unit in a list of compile units will be tehed. ICOMPILEUNITLIST _is omitted,
one record of each of all compile units will beureted. The header record, the first compile
unit record, is built when the cursor is zero.

The compile unit list is a structure:

Count DC F'5' Listwith 5 entries
List DS b5F Returned by GETN

Note:
compileunitlist must be composed of values returned in BFNL_6_SEIXresulting
from a GETN TYPE=SECTION,VERSION=6 API call.

WhenINTENT=ACCESS is specified in the CREATEW API call, informatiabout the
input module (the target module of the GETC callplaced in the header record. This
information includes the program object version #resource of the input module (data set
name or path name, ddname, and member name).

AREA=buffer — RX-type address or register (2-12)
Specifies the location of a CUI buffer to receikie tlata. The binder returns data until either
this buffer is filled or the specified items haveeb completely moved. See IEWBUFF -
Binder API buffers interface assembler macro faregating and mapping data areas for
information on buffer handling.

CURSOR=cursor — RX-type address or register (2-12)
Specifies the location of a fullword integer thahtains the position within the items where
the binder begins processing. Specifying a zergesthe binder to return the header record,
the first compile unit record. The information i®pided on the DASD location of the
program object. The cursor value is modified befetarning to the caller.

When no compile unit list is provided, the cursoan index into an ordered list of all CUI
entries that can be returned. If the applicatioesdeot modify the cursor during the retrieval
process, multiple calls return all CUI recordshe brder by CU number because the buffer is
full. When a compile unit list is provided, the sar is an index into that application-provided
list. CUI records are returned in the order spedifin the CU list. If the application still does

http://publib.boulder.ibm.com/infocenter/zos/v1ib@ic/com.ibm.zos.r13.ieab200/getc.l... 2/2/201:

GETC: Get compile unit i Page2 of 2

not modify the cursor during the retrieval processltiple calls continue with subsequent
entries in the list because the buffer is full. Efidiata is signalled when the end of the
application-provided list is reached.

COUNT=count — RX-type address or register (2-12)
Specifies the location of a fullword that receities number of CUI records returned by the
binder.

Processing notes

The CURSOR value identifies an offset into the eexjed data beginning with 0. It is both an input
and output parameter. On input to the servicectiisor specifies the first byte to return. On exit
from the service, it is updated to the next bytecfintinued sequential retrieval if not all datas lyat
been retrieved.

For load modules and program object formats atapedability level prior to z/OS V1R5 , a compile
unit is the same as a section. For z/OS V1R5 cadblpahodules, a compile unit corresponds to a
single object module. Each compile unit in a workiimassigned a unique number; however, this
assigned number may change when a module is rebBurttiermore, the compile unit number will
be zero for all binder generated sections (IEWB&iEection 1, for example).

Return and reason codes

The common binder API reason codes are shown iteTab

Return Code Reason Code Explanation

00 00000000 Normal completion. There might be add#ialata that did not
fit in the buffer.

04 83000800 End of data. Some data might have béemeel in the buffer,
but no more is available.

04 83000801 No section names exist. No data wasnedur

04 83000810 Cursor is negative or beyond the enbdeo$pecified item. No
data was returned.

08 83002342 Some of the passed compile unit numlzenedexist in
workmod. Data for the valid compile units is retedn

12 83000102 Workmod was in an unbound state.

Parameter list

If your program does not use the IEWBIND macrogplthe address of the GETC parameter list in
general purpose register 1.

Table 13. GETC parameter list

PARMLIST DS OF
DC A(GETC) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(CULIST) Compile unit list
DC A(BUFFER) Data buffer
DC A(CURSOR) Starting position
DC A Data count
(COUNT+X'80000000")
GETC DC H'64' GETC function code
DC H'6' Interface version number

http://publib.boulder.ibm.com/infocenter/zos/v1ib@ic/com.ibm.zos.r13.ieab200/getc.l... 2/2/201:

__iew_getC(- Get compile unit li Pagel of 1

__iew_getC() - Get compile unit list

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Obtains source information about the program aed:ttimpile units from which it was constructed.

Format

#include <__iew_api.h>
int__iew_getC(_IEWAPIContext *__context,
int__culist(],
_IEWCUIEntry ** __ cui_ent ry);

Parameters Descriptions

context

API context is created and returned by calling w_iepenW() and is used throughout the open
session.

__culist
compile unit list - array of compile units wheretfirst entry is used to specify the total
number of compile unit entries. If the first entsynon zero, then one record for each compile
unit in a list of compile units will be returned the first entry is zero, then one record of each
of all compile units will be returned.

__cui_entry
returned buffer - CUI entry, one record for eacmpie unit in a list of compile units is
returned.

Returned Value

If successful, __iew_getC() returns > 0 (count, banof entries returned in the buffer).

If unsuccessful, __iew_getC() returns 0.

Utilities Functions

__iew_eod()
__iew_get_reason_code()
__iew_get_return_code()
__iew_get_cursor()
__iew_set_cursor()

http://publib.boulder.ibm.com/infocenter/zos/v1ib®ic/com.ibm.zos.r13.ieab200/iea2l... 2/2/201:

__iew_fd_getC(- Get compile unit li Pagel of 1

__iew _fd_getC() - Get compile unit list

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Obtains source information about the program aed:ttimpile units form which it was constructed.
The program object source "header record" retuhyefdst data in the CUI buffer for a program
object in a PDSE will never identify the data sentaining the object.

Format

#include <__iew_api.h>
int__iew fd_getC(_IEWFDContext * __context,
int__ culist(],
_IEWCUIEntry ** __cu i_entry);

Parameters Descriptions

context

FD context is created and returned by calling __fewopen() and is used throughout the open
session.

__culist
compile unit list - array of compile units wheretfirst entry is used to specify the total
number of compile unit entries. If the first enisynon zero, then one record for each compile
unit in a list of compile units will be returned .the first entry is zero, then one record of each
of all compile units will be returned.

__cui_entry
returned buffer - CUI entry, one record for eachpde unit in a list of compile units will be
returned.

Returned Value

If successful, __iew_fd_getC() returns > O (comninber of entries returned in the buffer).

If unsuccessful, __iew fd_getC() returns 0.

Utilities Functions

__iew_fd_eod()
__iew_fd_get reason_code()
__iew_fd_get_return_code()
__iew_fd_get_cursor()
__iew_fd_set_cursor()

http://publib.boulder.ibm.com/infocenter/zos/v1ib®ic/com.ibm.zos.r13.ieab200/iea2l... 2/2/201:

GC - Getting Compile unit informatic

GC - Getting Compile unit information

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Compile unit information is primarily data passedhe binder by compilers, identifying the source

of each program making up the program object beiagected. As an important special case, though,
the first compile unit entry returned when the ouiis specified as zero provides information on the
DASD location of the program object itself. The gram object source "header record” returned by
fast data in the CUI buffer for a program objecaiRDSE will never identify the data set containing
the object.

When no culist is provided, the cursor is an inoit& an ordered list of all CUI entries that can be
returned. If the application does not modify thesow during the retrieval process, multiple calls
return all CUI records in the order by CU numbecéiese the buffer is full. When the culist is
provided, the cursor is an index into that applaraprovided list. CUI records are returned in the
order specified in the culist. If the applicatidiil sloes not modify the cursor during the retrieva
process, multiple calls continue with subsequetriesin the list because the buffer is full. Edd o
data is signalled when the end of the applicatiandded list is reached.

Table 39. GC parameter list

Parameter Usage Format Content
1 in structure 'GC', X'0001'
2 in binary word mtoken

3 (optional) in binary words culist

An array of numbers. The first word is the
number of additional words that follow it. Each
additional word is a compile unit number returned
in BNL_SECT_CU by a 'GN' call.

If no compile unit numbers are passed, the first
(and only) word must be zero.

4 infout structure buffer

Must be a CUI buffer formatted by IEWBUFF or
as defined in Binder API buffer formats.

5 infout binary word cursor

Cursor is an index within the culist or into an
ordered list of all CUI entries.

6 out binary word count

The number of CUI records returned by the

binder.

Sample assembler code

CALL (15),(GCIL,MTOKEN,NULL,BUFF,CURS,CNT),VL
GCIL DC C'GC'X'0001'
MTOKEN DS F As set at Start call
NULL DC F0O Omitted to get all CU' s
CURS DC F0O Start with PO informat ion
CNT DS F Number of records retu rned

BUFF IEWBUFF FUNC=MAPBUFF,TYPE=CUI,VERSION=6,SIZE =2000

http://publib.boulder.ibm.com/infocenter/zos/v1itbdic/com.ibm.zos.r13.ieab200/gccu..

Pagel of 1

2/2/201:

SETO: Set optic

SETO: Set option

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

SETO specifies options for processing and modutéates. Each option is set at either the dialog o
workmod level by providing a token in the call. Toytions that can be specified are listed in Sgttin
options with the regular binder API.

The syntax of the SETO call is:

[symbol] IEWBIND FUNC=SETO
[.VERSION=version]
[[RETCODE=retcode]
[LRSNCODE=rsncode]
[LWORKMOD =workmod]
[,.DIALOG =dialog]
OPTION =option
OPTVAL =optval
[LPARMS=parms]

FUNC=SETO
Specifies that you are requesting specific proogssptions or module attributes for a dialog
or workmod.
VERSION=1|2|3|4|5|6]|7
Specifies the version of the parameter list to $=du The default value is VERSION=1.
Note:
If VERSION=1 is specified for the SETO call, PARMSnnot be specified as a macro
keyword. The parameter list ends with the OPTVALkapaeter (with the high-order bit
set). This exception is for version 1 only.
RETCODE=retcode — RX-type address or register (2-12)
Specifies the location of a fullword integer thato receive the return code returned by the
binder.
RSNCODE-=rsncode — RX-type address or register (2-12)
Specifies the location of a 4-byte hexadecimahgtthat is to receive the reason code returned
by the binder.
WORKMOD= workmod — RX-type address or register (2-12)
Specifies the location of an 8-byte area that doatthe workmod token for this request.
WORKMOD and DIALOG are mutually exclusive. To skétoptions at the workmod level,
provide the WORKMOD token.
DIALOG= dialog — RX-type address or register (2-12)
Specifies the location of an 8-byte area that doatthe appropriate dialog token.
WORKMOD and DIALOG are mutually exclusive. To seetoptions at the dialog level,
provide the DIALOG token.
OPTION=o0ption — RX-type address or register (2-12)
Specifies the location of an 8-byte varying chaastring that contains an option keyword.
Except for CALLIB, all keywords can be truncatedticee characters. See Setting options
with the reqular binder API for a complete listkefywords.
OPTVAL= optval — RX-type address or register (2-12)
Specifies the location of a varying character gttimat contains a value or a list of values for
the specified option.
PARMS=parms — RX-type address or register (2-12)
Specifies the location of a varying character gtthmat contains a list of option specifications
separated by commas.

Processing notes

Option values are coded ealue or (valuel,value2). A list of values is enclosed in parentheses. A
value containing special characters is enclosethigle quotation marks. An imbedded single
quotation mark is coded as two consecutive singt#ation marks. Special characters include all
EBCDIC characters other than upper and lower ciabetics, numerics, national characters (@ #
$), and the underscore. YES and NO values can lrewahted Y and N, respectively.

Options specified for a workmod override any cquosling options specified for that dialog.
Options specified at the dialog level override ¢beresponding system defaults, and apply to all
workmods within the dialog unless overridden. ITBNT=ACCESS, these keywords are not
allowed: ALIGN2, CALL, CALLIB, EDIT, LET, MAP, OVLY, RES, TEST, XCAL, and XREF.

http://publib.boulder.ibm.com/infocenter/zos/v1ibdic/com.ibm.zos.r13.ieab200/set....

Pagel of 2

1/27/201.:

SETO: Set optic Page2 of 2

The options list specified in the PARMS= paramé&ex character string identical to the PARM=
value defined in the "Binder options reference"athaof z/OS MVS Program Management: User’s
Guide and Reference, with the following restricion

« The list is not enclosed with apostrophes or paesgs

« Environmental options cannot be specified on SES&® the list of environmental options in
Setting options with the binder API

¢ The EXITS and OPTIONS options are also not allovneithis list.

The OPTION and OPTVAL operands are used togethepégify a single option and its value.

« None of the environmental options can be specified Setting options with the binder API.

¢ The following invocation options may not be spexifion the OPTION/OPTVAL operands of
SETO because they are really mapped to somethifegetit: EXITS, OPTIONS, REFR,
RENT, and the YES, NO, or default values for REUS.

« The negative option format (for example, NORENT)ds allowed. The corresponding option
with a value must be used (for example, OPTION=REMW VAL=SERIAL).

¢ An option specified using the OPTION and OPTVAL rels overrides any value for that
same option specified within the PARMS operand.

You can specify a zZ/OS UNIX System Services fileresCALLIB parameter value on a SETO call.

Return and reason codes

The common binder API reason codes are shown iteTab

Return Code Reason Code Explanation

00 00000000 Normal completion.

08 83000109 One or more options designated as emvéntal have been
specified on SETO. Option ignored.

12 83000100 Neither dialog token nor workmod tokenevspecified.
Request rejected.

12 83000106 The option specified is invalid for a kvood specified with
INTENT=ACCESS. Request rejected.

12 83000107 Invalid option keyword specified. Requejgcted.

12 83000108 The option value is invalid for the sfiedikeyword. Request
rejected.

12 83000113 An option you specified is valid only fioe STARTD function.

The request is rejected.

Parameter list

If your program does not use the IEWBIND macrogcpléhe address of the SETO parameter list in
general purpose register 1.

Table 27. SETO parameter list
PARMLIST DSOF

DCA(SETO) Function code
DCA(RETCODE) Return code
DCA(RSNCODE) Reason code
DCA(DIALOG) Dialog token
DC A(WORKMOD) Workmod token
DCA(OPTION) Option keyword
DCA(OPTVAL) Option value
DCA(PARMS) Options list

SETO DCH'20' SETO function code
DCH'versi on' Interface version number

Note:
The PARMS parameter is an addition for Version @ A80000000' must be added to either the
OPTION parameter (for Version 1) or the PARMS pagtan

http://publib.boulder.ibm.com/infocenter/zos/v1ib®ic/com.ibm.zos.r13.ieab200/set.... 1/27/201:

__iew_setO(- Set optiol Pagel of 1

__lew_setO() - Set option

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Set binder options to be used for subsequent pingesSee Setting options with the reqular binder
AP for details. Environment options cannot be #jexthere.

Format

#include <__iew_api.h>
int__iew_setO(_IEWAPIContext *__context,
const char *__parms);

Parameters Descriptions

context
API context is created and returned by calling w_iepenW() and is used throughout the open
session.
__parms
list of binder options.

Returned Value

If successful, __iew_setO() returns 0.
If unsuccessful, __iew_setO() returns nonzero.

Note:
The returned value is the same as the code retbynadsubsequent __iew_get_return_code().

Utilities Functions

__iew_get_reason_code()
__iew_get_return_code()

http://publib.boulder.ibm.com/infocenter/zos/v1ib@ic/com.ibm.zos.r13.ieab200/iea.... 1/27/201:

Binder options referen Pagel of 1

Binder options reference

z/OS MVS Program Management: User's Guide and Bader
SA22-7643-11

Guideline: This topic refers to binder processing. These eptiapply equally to linkage editor and
batch loader processing, unless noted otherwiBedoessing and attribute options reference. The
linkage editor and batch loader cannot processrano@bjects.

This section describes the processing and attritjtiens that can be requested. Binder options are
specified in a number of ways. These are broadlgsified as interfaces that pass option strings and
interfaces that have tailored option capabilities.

The following interfaces pass option strings:

* The PARM field of the JCL EXEC statement
The first parameter passed to

° IEWBLINK
o [IEWBLOAD
> IEWBLODI or IEWBLDGO

when using CALL, LINK, ATTACH, or XCTL from anothgrrogram

An options file identified by the OPTIONS option

An options file specified by the DD name IEWPARMS

The SETOPT control statement

Installation option defaults

The PARMS parameter of the IEWBIND FUNC=STARTD &WNC=SETO call.

The following interfaces have tailored option cafitis:

» Arguments passed to the TSO LINK or LOADGO commands

» Arguments passed to the z/OS UNIX System Services@B9, cc, or I[d commands
» The OPTIONS parameter of the IEWBIND FUNC=STARTDI ca

» The OPTION and OPTVAL parameters of the IEWBIND FCASETO call.

Note:
IEWBIND is fully documented in z/OS MVS Program Mayement: Advanced Facilities

Many options have the possible values YES and N@s& options usually have an associated option
that begins wittN or NO. For example, you can specify MAP to produce aut®dap, and

NOMAP to suppress production of a module map. Yaualso specify the MAP option as

MAP =YES or MAP(YES) andMAP =NO or MAP(NO). Table 7 shows the associated negative
option if the option's values aM&ES andNO.

The options you specify, through any means, wheokimg the binder, always override similar data
from included modules. For example, if you speEiARM=RENT, the resultant module is marked
"reentrant” regardless of the reusability of argiuded modules.

If more than one output module is produced by glsibinder instance, the options specified will

apply to all output modules, unless overridden IS8EZOPT control statement, or IEWBIND
FUNC=SETO call.

http://publib.boulder.ibm.com/infocenter/zos/v1ib@ic/com.ibm.zos.r13.ieab100/pml... 1/27/201:

=

B
SHARE

Options precedence rules (low to high)

=

Installation options from IEWBODEF

Primary invocation options, from one of the following:

1. The PARM field of the JCL EXEC statement

2. The first parameter passed to IEWBLINK, IEWBLOAD, etc.
3. The PARMS parameter of IEWBIND FUNC=STARTD

3. The IEWPARMS DD statement — introduced in z/OS V1R11 !
The OPTIONS parameter of IEWBIND FUNC=STARTD

5. IEWBIND_OPTIONS environment variables via the ENVARS parameter of
IEWBIND FUNC=STARTD

6. Dynamic option changes from either:
1. Options set from attributes by an INCLUDE -ATTR control statement or
2. The SETOPT control statement, or

3. The PARMS parameter, followed by the OPTION/OPTVAL parameter, of
IEWBIND FUNC=SETO

N

»

- LE S
-
N
31 complete your sessions evaluation online at SHARE.org/SFEval Copyiighit Ieimiatonial Business Wachilies Culporaion 2013 ..SHARE :
- = 12527 5t A LASHI— you lised thie Bider 1o Assenie e parst ¢ a +® 1N San Francisco

2527- U5 1Not JUSt ALSUL HLAS Uil I SiLSl 0 ASSEINUIZ
-5

__lew_api_name_to_str() - Convert APl name into string Pagelof 1

__iew_api_name_to_str() - Convert APl name into
string

Z/0OS MV S Program Management: Advanced Facilities
SA22-7644-14

Data buffers returned by the binder and fast data APIs often contain pointers to names. Those are
character data, but not stored as C null-delimited strings. Instead they have a separate length field in
the buffer structure. This function returns a C string equival ent to the name returned by the API.

The function also provides specia handling for binder-generated names, which are returned as binary
numbers. The function will convert those to specia displayable strings which will be recognized and
automatically reconverted by the functions in this suite if they are passed back to the APl later.

Format

#include <__iew api.h>

void __iew api_nane_to_str(const char *__ nane,
short _ I|en,
char *_ str);

Parameters Descriptions

__name
input: varying string characters.
len
input: varying string size.
st
output: string.
Note:
Y ou need to allocate storage for string. The length should be the greater of 10 and input

len+1.

Returned Value

None.

http://publib.boul der.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2... 1/31/2013

__iew_create_list(- Create lis Pagel of 1

__lew_create_list() - Create list

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

The binder's lists consist of a fullword countlod number entries followed by the entries. Each lis
entry contains an 8-byte name, a fullword contajrilve length of the value string, and a 31-bit
pointer to the value string. The __iew_create)listgction creates a list of keywords and values in
“binder list format". It is used to support filests and exit lists for the __iew_openW() call. Ehare
two types of lists:

1. Alist of DD names with keywords being any of th@nslard binder DD names as strings, and
values being string replacement names to use éon.th

2. A list of exit routines with keywords being anytbe strings “MESSAGE", “INTFVAL", or
“SAVE", and values being an array of three pointtrs

o exit routine entry point
o application data passes to the exit
° message exit severity (unused, but must be proadexdro, for the other two exits)

Format

#include <__iew api.h>

_IEWist * iewcreate |list(int__size,
char *_ keys[],
void *__values[]);

Parameters Descriptions

__§ize

input: size of the list.
__keys

input: list of keywords.
__values

input: list of values.

Returned Value

If successful, __iew_create_list() returns APL list

If unsuccessful, __iew_create_list() returns null.

http://publib.boulder.ibm.com/infocenter/zos/v1ib®ic/com.ibm.zos.r13.ieab200/iea2l... 2/2/201:

load module vs. program object

Taskoisgy - (ocmhs - Anady

< Loaded Text > < Unloaded Data >
N
6\) CSECT CSECT CSECT SYM IDR RLD ESD
O A B C data data data data
o'z’é
v
Cy < < G
Q Qs S0} z
SS«Y Sy s~k? QS€>
Sen,.
Ctig,,
& A4
SRS
0‘0 GC I
Q ‘on g
&
)
o Sen,.
Ctig,,
C

17 Ccomplete your sessions evaluation online a ‘ FYTINESTNIGHONGT SUSIMEOS AN SS SOTpOTANSTT 20T
12922- 163) Jr“grr\,wr HUASH = You lised (e Edter © Assenrbie' e Pans ® e

IARE

* in San Francisco

What else comes with the binder? =

Binder APIs ...

records l

names ‘

65 Complete your sessions evaluation online at SHaﬂl.I!E.n:nrg,"."":FE'.r:il‘I

1'."

‘SHARE

13

Copyrght inematona Businiess Machunes Curpuraton 2013
t Al

12922- 15 Nt sust ALout BLASM — You Nzed iz Baiuzr o 'Asszinibiz thia Fas!

