
IEWBIND and IEWBFDAT –
Learning to Use the Binder APIs
Hands-on Lab Handout

Barry_Lichtenstein@us.ibm.com

February 2013
Session# 12929

Insert
Custom
Session
QR if
Desired.

STARTD: Start dialog

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

STARTD begins a dialog with the binder, establishing the processing environment and initializing the
necessary control blocks. You specify the ddnames for the data sets to be accessed, how errors are to
be handled, and the global binder options.

STARTD returns a dialog token that is included with later calls for the same dialog.

The syntax of the STARTD call is:

[symbol] IEWBIND FUNC=STARTD
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,DIALOG =dialog
[,FILES=filelist]
[,EXITS=exitlist]
[,OPTIONS=optionlist]
[,PARMS=parms]
[,ENVARS=envars]

FUNC=STARTD
Specifies that a dialog is opened and initialized.

VERSION=1 | 2 | 3 | 4 | 5 | 6 | 7
Specifies the version of the parameter list to be used. The default value is VERSION=1.
Notes:

If VERSION=1 is specified for the STARTD call, PARMS cannot be specified as a
macro keyword. The parameter list ends with the OPTLIST parameter (with the high-
order bit set). This exception is for Version 1 only.

1.

ENVARS cannot be specified if VERSION is less then 6.2.
RETCODE=retcode — RX-type address or register (2-12)

Specifies the location of a fullword integer that is to receive the return code returned by the
binder.

RSNCODE=rsncode — RX-type address or register (2-12)
Specifies the location of a 4-byte hexadecimal string that is to receive the reason code returned
by the binder.

DIALOG= dialog — RX-type address or register (2-12)
Specifies the location of an 8-byte area where the binder places the dialog token. This token
must not be modified.

FILES=filelist — RX-type address or register (2-12)
Specifies the address of a list containing one entry for each binder file for which a ddname or
file name is provided. You code some or all of these file names in the list and provide a
ddname or filename for each:

File name
Description

CALLIB
Automatic call library

MODLIB
Target program library

PRINT
Listing data set for messages produced by the LIST, MAP, and XREF options

TERM
Terminal data set for messages issued during binder processing

SIDEFILE
Data set to contain the side file of a DLL module.

The ddnames specified for PRINT and TERM can designate z/OS UNIX System Services
files. CALLIB can designate a z/OS UNIX System Services directory and a z/OS UNIX
System Services archive file. MODLIB can designate a z/OS UNIX System Services directory.
SIDEFILE can designate a z/OS UNIX System Services directory or a z/OS UNIX System
Services file.

Entries for all files on this list will accept a z/OS UNIX pathname in place of a ddname. Path
names must begin with a slash (/) or a period and a slash (./).

EXITS=exitlist — RX-type address or register (2-12)
Specifies the address of a list of user exit names. You can specify the following user exits in
this list:

MESSAGE exit
Specifies an entry into the calling program that receives control immediately prior to the
binder issuing a message. See Message exit.

SAVE exit
Specifies an entry into the calling program that receives control if the binder is about to
reject a primary name or an alias name or after an attempt to save a member or alias
name. The save operation might have succeeded or failed. See Save exit.
Note:

This exit is not invoked if the target is a z/OS UNIX System Services file.
INTFVAL exit

The Interface Validation Exit (INTFVAL) allows your exit routine to examine
descriptive data for both caller and called at each external reference. The exit can
perform audits such as examining parameter passing conventions, the number of
parameters, data types, and environments. It can accept the interface, rename the
reference, or leave the interface unresolved. See Interface validation exit.

See User exits for additional information on writing user exit routines.

OPTIONS=optionlist — RX-type address or register (2-12)
Specifies the location of an options list that contains the address of binder options to be
initialized during the STARTD call. Any option that can be set by SETO can be initialized by
STARTD. See Setting options with the regular binder API for a list of allowable options.

Page 1 of 4STARTD: Start dialog

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/startd.h...

However, the EXITS option listed in the table may not be specified as part of the OPTIONS
parameter; use the EXITS or PARMS parameter on STARTD to specify user exits.
Note:

The negative option format (for example, NORENT) is not allowed. Use the
corresponding keyword with a value. For example:

 DC CL8'REUS'
 DC AL4 (6) ,C'SERIAL'

PARMS=parms — RX-type address or register (2-12)
Specifies the location of a varying character string that contains a list of option specifications
separated by commas. The STARTD FILES, EXITS and OPTIONS lists have precedence over
the STARTD PARMS string in the STARTD call. See Setting options with the binder API for
more information.

ENVARS=envars — RX-type address or register
Specifies the address of a list of 31-bit pointers. Each pointer in the list contains the address of
a character string that is an environment variable, in the form of name=value, to be passed to
the specified program. Each character string must end with zeros. Note that this is the same as
passing the external variable, environ. See Environment variables for more information.

Passing lists to the binder

Any list passed to the binder must conform to a standard format, consisting of a fullword count of the
number of entries followed by the entries. Each list entry consists of an 8-byte name, a fullword
containing the length of the value string, and a 31-bit pointer to the value string. The list specification
is provided in Table 28.

Field Name Field Type Offset Length Description

LIST_COUNT Integer 0 4 Number of 16-byte entries
in the list

LIST_ENTRY Structure 4,20,... 16 Defines one list entry
ENTRY_NAME Character 0 8 File, exit, or option name
ENTRY_LENGTH Integer 8 4 Length of the value string
ENTRY_ADDRESS Pointer 12 4 Address of the value string
Note:

ENTRY_NAME, ENTRY_LENGTH, and ENTRY_ADDRESS are repeated for each entry in
the list up to the number specified in LIST_COUNT.

Table 28. Binder list structure

You code the data pointed to by ENTRY_ADDRESS according to the list type:

File list

Code one entry for each file name:

ENTRY_NAME:
'CALLIB ' , 'MODLIB ' , and so on. See list of file names in FILES parameter
description in STARTD: Start dialog.

ENTRY_LENGTH:
The byte length of the corresponding ddname.

ENTRY_ADDRESS:
The address of the string containing the ddname.

Each file name specified in the FILES parameter of the STARTDialog API must correspond to a
currently defined ddname. Your data sets can be new or preallocated. Although you can use any valid
ddname for a given FILE name, the following ddnames are recommended. Their allocation
requirements are listed below:

FILE name
Recommended ddname

CALLIB
SYSLIB

MODLIB
SYSLMOD

PRINT
SYSPRINT

TERM
SYSTERM

SIDEFILE
SYSDEFSD

The SYSLIB Data Set (the CALLIB file)

This DD statement describes the automatic call library, which must reside on a direct access storage
device. This is a required data set if you want to enable autocall processing while you bind your
modules through the use of the BINDWorkmod API call (See the CALLIB parameter in the BINDW
API).

The data set must be a library and the DD statement must not specify a member name. You can
concatenate any combination of object module libraries and program libraries for the call library. If
object module libraries are used, the call library can also contain any control statements other than
INCLUDE, LIBRARY, and NAME. If this DD statement specifies a PATH parameter, it must
specify a directory.

Table 29 shows the the SYSLIB data set attributes, which vary depending on the input data type.

LRECL BLKSIZE RECFM

80 80 F, FS, OBJ, XOBJ, control statements, and GOFF
80 32720 (maximum size) FB, FBS OBJ, XOBJ, control statements, and GOFF

Table 29. SYSLIB data set DCB parameters

Page 2 of 4STARTD: Start dialog

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/startd.h...

LRECL BLKSIZE RECFM

84+ 32720 (maximum size) V, VB, GOFF object modules
n/a 32720 (maximum size) U, load modules
n/a 4096 U, program objects

The SYSLMOD data set (the MODLIB file)

It is the target library for your SAVEWorkmod API calls when ACCESS=BIND on your
CREATEWorkmod API call. That is, SYSLMOD is the library that contains your bound modules. As
such, it must be a partitioned data set, a PDSE, or a z/OS UNIX System Services file.

Although a member name can be specified on the SYSLMOD DD statement, it is used only if a name
is not specified on the SAVEWorkmod SNAME parameter. (See SAVEW: Save workmod.)
Therefore, a member name should not be specified if you expect to save more that one member in a
binder dialog. For additional information on allocation requirements for SYSLMOD, see SYSLMOD
DD statement in z/OS MVS Program Management: User’s Guide and Reference.

The SYSPRINT data set (the print file)

The binder prints diagnostic messages to this data set. The binder uses a logical record length of 121
and a record format of FBA and allows the system to determine an appropriate block size.

Table 30 shows the data set requirements for SYSPRINT.

LRECL BLKSIZE RECFM

121 121 FA
121 32670 (maximum size) FBA
125 VA or VBA

Table 30. SYSPRINT DCB parameters

The SYSTERM data set (the TERM file)

SYSTERM defines a data set for error and warning messages that supplements the SYSPRINT data
set. It is always optional. SYSTERM output consists of messages that are written to both the
SYSTERM and SYSPRINT data sets, and it is used mainly for diagnostic purposes.

Table 31 shows the data set requirements for SYSTERM.

LRECL BLKSIZE RECFM

80 32720 (maximum size) FB

Table 31. SYSTERM DCB parameters

The SYSDEFSD data set (the SIDEFILE file)

When a module (call it module A) is enabled for dynamic linking through the DYNAM(DLL) binder
option, a complementary file can be generated to go along with it. Module A becomes a DLL, and the
complementary file becomes its side file. The side file is saved in the data set represented by the
SYSDEFSD ddname. The side file contains the external symbols of DLL A, known as exports. These
external symbols can be referenced by other DLLs and are known as imports to these modules. If
module A does not export any symbols, no side file is generated for it. This applies to any DLL.

SYSDEFSD can be a sequential data set, a PDS, a PDSE, or a z/OS UNIX System Services file. If it
is a sequential data set, the generated side files for multiple DLLs are appended one after another,
provided that the DISP=MOD parameter is supplied in the SYSDEFSD ddname specification. If
SYSDEFSD is a PDS or a PDSE, the side file is saved as a member with the same name as the DLL
to which it belongs. Refer to the processing notes of the SAVEW API for additional information.

The SYSDEFSD DD statement is optional. However, when the ddname is absent, the binder issues a
warning message if at bind time a program generates export records and the DYNAM(DLL) binder
option has been specified.

Exit list

ENTRY_NAME:
'MESSAGE ' , 'INTFVAL ' , or 'SAVE ' .

ENTRY_LENGTH:
12.

ENTRY_ADDRESS:
The location of a three-word area containing three addresses. See the message list addresses in
Message exit, the save list addresses in Save exit and the interface validation list addresses in
Interface validation exit for the contents of the three addresses.

Option list

ENTRY_NAME:
The option keyword (for example, 'LIST ' , 'MAP ' , 'CALLERID'). Option
keywords cannot be truncated and negative options cannot be specified (NOLIST, NOPRINT,
and so on). If INTENT=ACCESS, these keywords are not allowed: ALIGN2, CALL,
CALLIB, EDIT, LET, MAP, OVLY, RES, TEST, XCAL, and XREF.

ENTRY_LENGTH:
The length of the option value as a character string; it can be zero.

ENTRY_ADDRESS:

Page 3 of 4STARTD: Start dialog

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/startd.h...

The address of the character string encoded with the option's value. The address can be zero.
The maximum length of the option value string is 256 bytes. Use commas and parentheses if a
sublist is required.

Return and reason codes

The common binder API reason codes are shown in Table 3.

Return Code Reason Code Explanation

00 00000000 Normal completion.
04 83000112 The binder encountered an unsupported option in the OPTIONS

file. The option is ignored.
04 83000204 The binder was unable to open the trace data set during

initialization. Processing continues without trace.
08 83000108 An option value is missing or contains an invalid setting.
08 83000111 An OPTIONS option was encountered in the options file. The

option is ignored.
08 83000200 The binder was unable to open the PRINT data set during

initialization. Processing continues without PRINT.
08 83000201 One or more invalid options were passed on STARTD. Those

options were not set, but processing continues.
12 83000203 The binder was unable to open the TERM data set during

initialization. Processing stops.
08 83000205 The current time was not available from the operating system.

Time and date information in printed listings and IDR records
will be incorrect.

08 83000206 The binder was unable to open the SYSTERM data set because
its DDNAME was not specified in the FILES parameter of
STARTD. Processing continues without SYSTERM.

12 83000207 The binder was unable to open the SYSPRINT data set because
its DDNAME was not specified in the FILES parameter of
STARTD. Processing continues without SYSPRINT.

Environment variables

When the binder API is used by a program running in the z/OS UNIX subsystem, the environ
parameter may be used to pass the C/C++ runtime variable of that name to the binder, in order to give
the binder access to the array of environment variables. If a user sets binder environment variables
(those documented below) in the UNIX shell, this is the only way the binder can get access to them.
For further information about the C runtime 'environ' variable, refer to z/OS XL C/C++ Run-Time
Library Reference.

Although it is not recommended, you may also construct your own 'envars' parameter using the same
format as that of the C runtime variable. In this case, 'envars' must be the address of an array of
pointers. Each pointer is the address of a null-terminated string representing an individual
environment variable in the form 'keyword=value'. The last array entry must be a null pointer.

The following UNIX shell environment variables are recognized by the binder. They are specified in
the form:

export NAME= value

where NAME is the name of the environment variable.

IEWBIND_PRINT
the pathname or ddname to be used for SYSPRINT.

IEWBIND_TERM
the pathname or ddname to be used for SYSTERM.

IEWBIND_OPTIONS
the binder option string. These will be appended to options passed explicitly through the
STARTD API call (and will take precedence). There are additional environment variables
defined for the binder diagnostic data sets. See the "Binder Serviceability Aids" chapter inz/OS
MVS Program Management: User’s Guide and Reference for more information on passing
them on STARTD.

Parameter list

If your program does not use the IEWBIND macro, place the address of the STARTD parameter list
in general purpose register 1.

PARMLIST DS 0F
DC A(STARTD) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(DIALOG) Dialog token
DC A(FILELIST) File list
DC A(EXITLIST) Exit list
DC A(OPTLIST) Option list
DC A(PARMSTR) Parameters
DC A(ENVARS) Environment Variables

STARTD DC H'01' STARTD function code
DC H'version' Interface version number

Table 32. STARTD parameter list

Note:
X'80000000' must be added to the last parameter. For version 1, that will be OPTLIST. For other
versions it may be either PARMSTR or (beginning with version 6) ENVARS.

Page 4 of 4STARTD: Start dialog

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/startd.h...

CREATEW: Create workmod

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

CREATEW initializes a workmod and initializes the module options to the defaults for the dialog.
CREATEW also specifies the processing intent that determines the functions that can be performed
on the workmod.

The syntax of the CREATEW call is:

[symbol] IEWBIND FUNC=CREATEW
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD =workmod
,DIALOG =dialog
,INTENT ={BIND | ACCESS}

FUNC=CREATEW
Specifies that a workmod is created and initialized.

VERSION=1 | 2 | 3 | 4 | 5 | 6 | 7
Specifies the version of the parameter list to be used. The default value is VERSION=1.

RETCODE=retcode — RX-type address or register (2-12)
Specifies the location of a fullword integer that is to receive the return code returned by the
binder.

RSNCODE=rsncode — RX-type address or register (2-12)
Specifies the location of a 4-byte hexadecimal string that is to receive the reason code returned
by the binder.

WORKMOD= workmod — RX-type address or register (2-12)
Specifies the location of an 8-byte area that is to receive the workmod token for this request.

DIALOG= dialog — RX-type address or register (2-12)
Specifies the location of an 8-byte area that contains a dialog token for which the workmod is
requested. The dialog token is obtained using the STARTD call and must not be modified.

INTENT={BIND | ACCESS}
Specifies the range of binder services that can be requested for this workmod. The values are
as follows:

BIND
Specifies that the processing intent for this workmod is bind. The workmod will be
bound and all binder functions can be requested.

ACCESS
Specifies that the processing intent for this workmod is access. The workmod will not
be bound, and no services that alter the size or structure of the program module can be
requested. See Processing intents for a list of services that are not allowable.

The value for INTENT can be abbreviated as B or A.

Processing notes

None.

Page 1 of 2CREATEW: Create workmod

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/create...

Return and reason codes

The common binder API reason codes are shown in Table 3.

Return Code Reason Code Explanation

00 00000000 Normal completion. Workmod and workmod token created.

Parameter list

If your program does not use the IEWBIND macro, place the address of the CREATEW parameter
list in general purpose register 1.

PARMLIST DS 0F
DC A(CREATEW) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(DIALOG) Dialog token
DC A(WORKMOD) Workmod token
DC A

(INTENT+X'80000000')
Processing intent and end-of-list indicator

CREATEW DC H'10' CREATEW function code
DC H'version' Interface version number

INTENT DC CL1'A' Processing intent
 'A' = Access
 'B' = Bind

Table 9. CREATEW parameter list

Page 2 of 2CREATEW: Create workmod

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/create...

__iew_openW() - Open workmod

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

The __iew_openW() creates a context(_IEWAPIContext) and initializes all of the parameters in the context
and loads IEWBIND into memory. If successful, the context is created and returned to user for all
subsequent API calls.

This is a ‘C' function equivalent to binder API STARTD and CREATEW.

Format

#include <__iew_api.h>
_IEWAPIContext *__iew_openW(_IEWTargetRelease __rel ease,
 _IEWInten t __intent,
 _IEWList *__file_list,
 _IEWList *__exit_list,
 const cha r *__parms,
 unsigned int *__return_code,
 unsigned int *__reason_code);

Parameters Descriptions

__release
target release can be one of the following:

_IEW_ZOSV1R9•
_IEW_ZOSV1R10•
_IEW_ZOSV1R11•
_IEW_ZOSV1R12•
_IEW_ZOSV1R13•

Note:
It is recommended that you define the feature test macro _IEW_TARGET_RELEASE prior to
the #include <__iew_api.h>, and that _IEW_TARGET_RELEASE be used for __release. This
definition ensures that structure mappings in <__iew_api.h> are consistent with the data
returned by the other API access functions.

__intent
processing intent can be one of the following:

_IEW_ACCESS•
_IEW_BIND•

Note:
_IEW_ACCESS is more efficient but only allows the program to be inspected or copied. This
can be changed later by __iew_resetW().

__file_list
file list is created by __iew_create_list().

__exit_list
exit list is created by __iew_create_list().

__parms
parameters - list of binder option.

__return_code
return code is passed back from STARTD or CREATEW.

__reason_code
reason code is passed back from STARTD or CREATEW

Returned Value

If successful, __iew_openW() returns API context.

If unsuccessful, __iew_openW() returns NULL.

Note:
The returned value is the same as the code returned by a subsequent __iew_get_return_code().

Utilities Functions

__iew_create_list()

Page 1 of 1__iew_openW() - Open workmod

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2...

__iew_fd_startName() - Starting a session with a DD
name or path

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Begin inspecting a program object identified either by a path name or by a DDname and member
name.

Format

#include <__iew_api.h>
int __iew_fd_startName(_IEWFDContext *__context,
 const char *__dd_or_path,
 const char *__member);

Parameters Descriptions

__context
FD context is created and returned by calling __iew_fd_open() and is used throughout the open
session.

__dd_or_path
DD name or path name.

__member
member name.

Returned Value

If successful, __iew_fd_startName() returns 0.

If unsuccessful, __iew_fd_startName() returns nonzero.

Note:
The returned value is the same as the code returned by a subsequent __iew_fd_get_return_code
().

Utilities Functions

__iew_fd_get_reason_code()
__iew_fd_get_return_code()

Page 1 of 1__iew_fd_startName() - Starting a session with a DD name or path

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2...

SJ - Starting a session with a DD name or path

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

The calling application identifies the program object either directly by a UNIX path name or
indirectly by the name of a DD statement which identifies either a UNIX path or one or more
partitioned data sets. The application may also provide a member name.

Parameter Usage Format Content

1 in structure 'SJ', X'0001'
2 in/out binary word mtoken

Must contain zero when the service is called. The
service will supply a value if the service is
successful.

3 in vstring DD name or path

If the string data begins with a slash or a period
followed by a slash it is treated as a path,
otherwise as a DD name.

4 (optional) in vstring Member name or path extension

If parameter 3 is a DD name defining a PDSE or
concatenation this is a member name and is
required.

If parameter 3 is either a path or a DD name
defining a path, this parameter is optional and is
appended to the path name if present.

Table 36. SJ parameter list

Sample assembler code

 CALL (15),(SJIL,MTOKEN,UNIXDD),VL
* Note: 4th optional parameter omitted here

SJIL DC C'SJ',X'0001'
MTOKEN DC F'0' Replaced by the servic e
UNIXDD DC H'5','UPATH' Name of a DD statement ,
* which in turn has PATH .

Page 1 of 1SJ - Starting a session with a DD name or path

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/sjddp.h...

Binder name list (version 7)

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Please note that the version 7 binder name list buffer has been slightly changed from the version 6 buffer.

Figure 49. Format for binder name list entries

 Field Field Off Leng De scription
 Name Type set

 IEWBBNL Binder Name List buffer, Version 7
 BNLH_BUFFER_ID Char 0 8 Buffer iden tifier "IEWBBNL"
 BNLH_BUFFER_LENG Binary 8 4 Length of t he buffer,
 includin g the header
 BNLH_VERSION Binary 12 1 Version ide ntifier
 *** RESERVED *** Binary 13 3 Reserved, m ust be zeros
 BNLH_ENTRY_LENG Binary 16 4 Length of e ach entry in the list
 BNLH_ENTRY_COUNT Binary 20 4 Number of e ntries in the buffer
 *** RESERVED *** Binary 24 8 Reserved, i nitialize to zeros
 BNLH_ENTRY_ORIGIN 32 First namel ist entry

1 BNL_ENTRY Namelist En try
2 BNL_CLS_LENGTH Binary 0 4 Class segme nt length (NTYPE=CLASS only)
3 BNL_SECT_CU Binary 0 4 Compile uni t number (NTYPE=SECTION only)
 BNL_BIND_FLAGS Bit 4 1 Bind Attrib utes(NTYPE=CLASS only)
 1... Generated by Binder
 .1.. No data p resent
 ..1. Varying l ength records
 ...1 Descripti ve data (non-text)
 1... Class has initial data
 1.. Fill char acter specified
 1 Class val idation error
 BNL_LOAD_FLAGS Bit 5 1 Loadability (NTYPE=CLASS only)
 1... Read Only
 .xx. Time of l oad
 .00. Class is initially loaded
 .01. A DEFER l oad class
 .10. A NOLOAD class
 ...1 Sharable
 1... Moveable (AdCon free)
 xx Binding M ethod
 00 CAT(caten ated text)
 01 MERGE(mer ged parts)
 BNL_NAME_CHARS Binary 6 2 Length of n ame
 BNL_NAME_PTR Pointer 8 4 Pointer to class or section
 name
 BNL_ELEM_COUNT Binary 12 4 Number of e lements in class
 or section
 BNL_SEGM_ID Binary 16 2 Segment ID (NTYPE = CLASS only)
 BNL_ATTR Bit 18 1
 BNL_ALIGN Bit 5 Alignment (NTYPE = CLASS only)
 00011 Doubleword
 00100 Quadword
 01100 Page (4K)
 BNL_RMODE Bit 3 Residence mode (NTYPE = CLASS only)
 001 Rmode 24
 011 Rmode ANY
 100 Rmode 64
 BNL_NAMESPACE Binary 19 1 Namespace (NTYPE = CLASS only)
 x'01' = catenate class
 x'02' = pseudoregisters (merge class)
 x'03' = parts (merge class)
 BNL_SEGM_OFF Binary 20 4 Class offse t from start of segment
 (NTYPE=CLA SS only)

Notes:
This entry is valid for output only.1.
BNL_SECT_CU is at the same offset as BNL_CLS_LENGTH.2.

Page 1 of 1Binder name list (version 7)

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2...

GETN: Get names

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

GETN returns the names of each section or class in the workmod, a count of the total number of
sections or classes, and the compile unit (CU) numbers for each section. The names returned also
include names generated by the binder to represent private code sections, unnamed common,
SEGTAB and ENTAB sections for overlay programs, and any other sections created by the binder.
GETN can only be performed on a bound workmod.

The syntax of the GETN call is:

[symbol] IEWBIND FUNC=GETN
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD =workmod
[,AREA=buffer]
,CURSOR=cursor
,COUNT=count
,TCOUNT=tcount
[,NTYPE={SECTION | CLASS}]

FUNC=GETN
Specifies that a count of the number of sections in a workmod and, optionally, the names of
each section, be returned to a specified location.

VERSION=1 | 2 | 3 | 4 | 5 | 6 | 7
Specifies the version of the parameter list to be used. The default value is VERSION=1.
Note:

This version must match the version you specify with the IEWBUFF macro when you
define the buffer passed on this call.

RETCODE=retcode — RX-type address or register (2-12)
Specifies the location of a fullword integer that is to receive the return code returned by the
binder.

RSNCODE=rsncode — RX-type address or register (2-12)
Specifies the location of a 4-byte hexadecimal string that is to receive the reason code returned
by the binder.

WORKMOD= workmod — RX-type address or register (2-12)
Specifies the location of an 8-byte area that contains the workmod token for this request.

AREA=buffer — RX-type address or register (2-12)
Specifies the location of a buffer to receive the names. This buffer must be in the format for
section names (TYPE=NAME). See IEWBUFF - Binder API buffers interface assembler
macro for generating and mapping data areas and Binder API buffer formats for information
on buffer definition.

Section names will be moved until either the buffer is filled or all names have been moved.
This keyword is optional. If it is not specified, only the number of section names in the
workmod will be returned.

CURSOR=cursor — RX-type address or register (2-12)
Specifies the location of a fullword integer that contains the position relative to the start of the
list of names where the binder should begin processing. Specifying a zero for this argument
causes the binder to begin processing at the beginning of the list. Offsets are specified in
records and are relative to the start of the list. The cursor value is modified before returning to
the caller.

COUNT=count — RX-type address or register (2-12)
Specifies the location of a fullword integer in which the binder will indicate the number of
names actually returned in the buffer.

TCOUNT= tcount — RX-type address or register (2-12)
Specifies the location of a fullword integer in which the binder will indicate the total name
count. TCOUNT indicates the total number of sections or classes in the workmod, not just
those returned in the buffer.

NTYPE={SECTION | CLASS}

Page 1 of 2GETN: Get names

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/getn.ht...

Specifies the type of names to be returned and counted. SECTION causes the names of all
sections in the workmod, including special sections, to be returned. In addition, the compile
unit CU numbers are provided for buffer version 6 or higher. CLASS causes the names of all
classes in the workmod containing data to be returned. The value for NTYPE can be
abbreviated as S or C. SECTION is the default.

Processing notes

The CURSOR value identifies an index into the requested data beginning with 0 for the first name list
entry. The name list buffer formats defined in Binder API buffer formats contain an entry length field
in their headers. Multiplying the cursor value by the entry length provides a byte offset into the data.
CURSOR is both an input and output parameter. On input to the service, the cursor specifies the first
item to return. On exit from the service, it is updated to the index of the next sequential name list
entry if not all entries have yet been retrieved.

Return and reason codes

The common binder API reason codes are shown in Table 3.

Return Code Reason Code Explanation

00 00000000 Normal completion.
04 83000800 An end-of-data condition was detected. Some data might have

been returned in buffer. There is no message associated with this
condition.

04 83000801 No section names exist. No data was returned.
08 83000750 The buffer is not large enough for one record. No data is

returned.
04 83000810 Cursor is negative or beyond the end of the specified item. No

data was returned.
12 83000102 Workmod is unbound. GETN request rejected.

Parameter list

If your program does not use the IEWBIND macro, place the address of the GETN parameter list in
general purpose register 1.

PARMLIST DS 0F
DC A(GETN) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(BUFFER) Data buffer
DC A(CURSOR) Starting position
DC A(COUNT) Data count
DC A(TCOUNT) Total count
DC A

(NTYPE+X'800000000')
Name type to return and end-of-list indicator

GETN DC H'60' GETN Function code
DC H'version' Interface version number

NTYPE DC CL1'C' 'C' = class; 'S' = section

Table 16. GETN parameter list

Page 2 of 2GETN: Get names

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/getn.ht...

__iew_getN() - Get names

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Returns a list of section or class names within the program together with information about the
sections or classes.

Format

#include <__iew_api.h>
int __iew_getD(_IEWAPIContext *__context,
 _IEWNameType __nametype,
 unsigned int *__total_cou nt,
 _IEWNameListEntry ** __na me_entry);

Parameters Descriptions

__context
API context is created and returned by calling __iew_openW() and is used throughout the open
session.

__nametype
name type could be one of the following: _IEW_SECTION or _IEW_CLASS.

__total_count
total number of sections or classes in the workmod.

__name_entry
returned buffer - binder name list.

Returned Value

If successful, __iew_getN() returns > 0 (count, number of entries returned in the buffer).

If unsuccessful, __iew_getN() returns 0.

Utilities Functions

__iew_eod()
__iew_get_reason_code()
__iew_get_return_code()
__iew_get_cursor()
__iew_set_cursor()

Page 1 of 1__iew_getN() - Get names

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2...

__iew_fd_getN() - Get names

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Returns a list of section or class names within the program together with information about the
sections or classes.

Format

#include <__iew_api.h>
int __iew_fd_getN(_IEWFDContext *__context,
 _IEWNameType __nametype,
 _IEWNameListEntry ** __name_entry);

Parameters Descriptions

__context
FD context is created and returned by calling __iew_fd_open() and is used throughout the open
session.

__nametype
name type can be _IEW_SECTION or _IEW_CLASS

__name_entry
returned buffer - binder name list.

Returned Value

If successful, __iew_fd_getN() returns > 0 (count, number of entries returned in the buffer).

If unsuccessful, __iew_fd_getN() returns 0.

Utilities Functions

__iew_fd_eod()
__iew_fd_get_reason_code()
__iew_fd_get_return_code()
__iew_fd_get_cursor()
__iew_fd_set_cursor()

Page 1 of 1__iew_fd_getN() - Get names

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2...

GN - Getting Names of sections or classes

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

This is often the first Get service requested, because it provides the names of sections or classes
within the program object, thus providing information required for the GD or GE service calls. If this
service is called with no buffer it returns, in the count field, the number of classes or sections in the
program object.

Parameter Usage Format Content

1 in structure 'GN', X'0001'
2 in binary word mtoken
3 in character ntype: C for class or S for section

May be upper or lower case.

4 (optional) in/out vstring buffer

Must be an NAME buffer formatted by
IEWBUFF or as defined in Binder API buffer
formats.

5 in/out binary word cursor - in items

The item size depends on the buffer type and
buffer version used.

6 out binary word count - in items

Table 42. GN parameter list

Sample assembler code

 CALL (15),(GNIL,MTOKEN,TYPE,BUFF,CURS,CNT),VL

GNIL DC C'GN',X'0001'
MTOKEN DS F As set at Start call
TYPE DC C'C' To return class names /info
CURS DC F'0' Start with first clas s
CNT DS F Number of classes ret urned
BUFF IEWBUFF FUNC=MAPBUF,TYPE=NAME,VERSION=6,SIZE=50
* i.e. a buffer big enough to hold 50 classes.
* (Class names are never too long.)

Page 1 of 1GN - Getting Names of sections or classes

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/gnsec.h...

ESD entry (version 5)

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Figure 44. Format for ESD entries

 Field Field Off Leng De scription
 Name Type set

 IEWBESD Binder ESD buffer, Version 5
 ESDH_BUFFER_ID Char 0 8 Buffer iden tifier "IEWBESD"
 ESDH_BUFFER_LENG Binary 8 4 Length of t he buffer,
 includin g the header
 ESDH_VERSION Binary 12 1 Version ide ntifier (Constant 2)
 *** RESERVED *** Binary 13 3 Reserved, m ust be zeros
 ESDH_ENTRY_LENG Binary 16 4 Length of e ach entry
 ESDH_ENTRY_COUNT Binary 20 4 Number of e ntries in the buffer
 *** RESERVED *** Binary 24 8 Reserved
 ESDH_ENTRY_ORIGIN 32 First ESD e ntry

 ESD_ENTRY ESD entry
 ESD_TYPE Char 0 2 ESD Type
 C' ' Null Entry
 C'SD' Control Sec tion
 C'LD' Label Defin ition
 C'ER' External Re ference
 C'PR' Part Refere nce
 C'PD' Part Defini tion
 C'ED' Element Def inition

 ESD_TYPE_QUAL Char 2 2 ESD Type Qu alifier
 C' ' (no qualifi cation)
 C'SD' Section Def inition (SD)
 C'CM' Common (SD)
 C'ST' Segment Tab le (SD)
 C'ET' Entry Table (SD)
 C'PC' Unnamed Sec tion (SD)
 C'PR' Part Refere nce (PR, PD)
 C'PD' Part Defini tion (PR, PD)
 C'ER' External Re ference (ER)
 C'WX' Weak Refere nce (ER)
 ESD_NAME_SPACE Binary 4 1 Name Space for symbols
 X'00' Class and section names (SD, ED)
 X'01' Labels an d references (LD, ER)
 X'02' Pseudoreg isters (PR, PD)
 X'03' Parts(PR, PD) in merge classes
 X'04'-x'07' Reserved
 ESD_SCOPE Char 5 1 Scope of Na me
 ' ' Not appli cable
 'S' Section (Types SD/private,ST,ET)
 'M' Module (T ypes SD/CSECT,LD,
 ER /weak,CM,PR,DS,PD)
 'L' Library (Type ER/strong)
 'X' Symbol ca n be IMPORTED or
 EX PORTED.
 ESD_NAME Name 6 6 Symbol repr esented by ESD record
 ESD_NAME_CHARS Binary 6 2 length of name in bytes
 ESD_NAME_PTR Pointer 8 4 pointer t o name string

 Field Field Off Leng De scription
 Name Type set

 ESD_SYMBOL_ATTR Binary 12 1 Symbol attr ibutes
 1... ON = str ong ref or def.
 OFF = wea k ref or def.
 .1.. ON = this symbol can be renamed
 ..1. ON = Symb ol is a descriptor
 ...1 ON = symb ol is a C++ mangled name
 1... ON = symb ol uses XPLINK linkage
 conventions
 1.. Environme nt exists
 11 ** Reserv ed **
 ESD_FILL_CHAR Char 13 1 Value to fi ll with
1 ESD_RES_SECTION Name 14 6 Name of con taining section
 ESD_RESIDENT_CHARS Binary 14 2 length of name in bytes
 ESD_RESIDENT_PTR Pointer 16 4 pointer t o name string
 ESD_LENG Binary 20 4 Length of d efined element
 (ED, PD, PR)
 ESD_ALIGN Binary 24 1 Alignment s pecification from
 language pr ocessor. Indicates
 Alignment o f section contribution
 within clas s segment (ED, PD, PR)
 X'00' Byte alig nment (PD, PR)
 X'01' Halfword (PD, PR)
 X'02' Fullword (PD, PR)
 X'03' Doublewor d (PD, PR, ED)
 X'04' Quadword (PR, PD, ED)
 X'0C' 4K page (ED)
 ESD_USABILITY Binary 25 1 Reusability of Section (SD)
 X'00' Unspecifi ed
 X'01' Nonreusab le
 X'02' Reusable
 X'03' Reentrant
 X'04' Refreshab le

 Field Field Off Leng De scription
 Name Type set

 ESD_AMODE Bit 26 1 Addressing Mode for Section or
 label (SD, LD)
 X'00' Unspecifi ed
 X'01' AMODE 24
 X'02' AMODE 31
 X'03' AMODE ANY (24 or 31)
 X'04' AMODE MIN
 X'05' Unused, r eserved

Page 1 of 2ESD entry (version 5)

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2...

 X'06' AMODE 64
 ESD_RMODE Bit 27 1 Residence M ode for class element
 (ED)
 X'01' RMODE 24
 X'03' RMODE ANY (24 or 31)
 X'04' RMODE 64 ESD_RECORD_FMT
 Binary 28 2 Record form at for class (ED)
 H'1' Byte stre am
 H'>1' Fixed len gth records
 ESD_LOAD_FLAGS Bit 30 1 Load Attrib utes (ED)
 1... Read-only
 .1.. Do not lo ad with module
 ..1. Moveable
 ...1 Shareable
 1... Deferred
 111 Reserved
 ESD_BIND_FLAGS Bit 31 1 Bind Attrib utes
2 1... Binder ge nerated (SD, ED, LD)
2 .1.. No class data available (ED)
2 ..1. Variable length records (ED)
 ...1 Descripti ve data (not text) (ED)
 1... ON = clas s contains part initializers (ED)
 1.. ON = fill character has been specified (ED)
 1. Class has padding
 1 ** Reserv ed **
 ESD_BIND_CNTL Bit 32 1 Bind contro l information
1 1... Removable class(ED)
1 .x.. ** Reserv ed **
1 ..xx Binding m ethod (ED)
1 ..00 CAT (Ca tenated text)
1 ..01 MRG (Me rged parts)
1 ..1x ** Rese rved **
 ESD_ATTRIBUTES Bit 33 1 General att ributes
 4 1... Compiled as system LE
 4 .1.. Compiled as lightweight LE
 ..11 ** Reser ved **
 4 xx.. Error se verity for dups (PD, LD)
 00.. - I-leve l
 01.. - W-leve l
 10.. - E-leve l
 11.. - S-leve l
 1. ** Reser ved **
 1 ** Reser ved **

 Field Field Off Leng De scription
 Name Type set

 ESD_XATTR_CLASS Name 34 6 Extended at tributes class
 (LD, ER)
 ESD_XATTR_CLASS_CHARS
 Binary 34 2 length of name in bytes
 ESD_XATTR_CLASS_PTR
 Pointer 36 4 pointer t o name string
 ESD_XATTR_OFFSET Binary 40 4 Extended at tributes element offset
 (LD, ER)
2 ESD_SEGMENT Binary 44 2 Overlay seg ment number (SD)
2 ESD_REGION Binary 46 2 Overlay reg ion number (SD)
 ESD_SIGNATURE Char 48 8 Interface s ignature
2 ESD_AUTOCALL Binary 56 1 Autocall sp ecification (ER)
 1... ** Reserv ed **
 .1.. Entry in LPA. If ON, name is
 an alias.
 ..xx xxxx ** Reserv ed **
2 ESD_STATUS Bit 57 1 Resolution status (ER)
 1... Symbol is resolved
 .1.. Processed by autocall
 ..1. INCLUDE a ttempted
 ...1 Member no t found
 1... Resolved outside module
 1.. NOCALL or NEVERCALL
 1. No strong references
 1 Special c all library
2 ESD_TGT_SECTION Name 58 6 Target sect ion (ER)
 ESD_TARGET_CHARS Binary 58 2 length of name in bytes
 ESD_TARGET_PTR Pointer 60 4 pointer t o name string
 *** RESERVED *** Char 64 2 Reserved
 ESD_RES_CLASS Name 66 6 Name of con taining class
 (LD, PD) or target class (ER)
 ESD_RES_CLASS_CHARS
 Binary 66 2 length of name in bytes
 ESD_RES_CLASS_PTR
 Pointer 68 4 pointer t o name string
3 ESD_ELEM_OFFSET Binary 72 4 Offset with in class element
 (LD, ER)
2 ESD_CLASS_OFFSET Binary 76 4 Offset with in class segment
 (ED, LD, PD , ER)
 *** RESERVED *** Char 80 2 Reserved
 ESD_ADA_CHARS Binary 82 2 Environment name length (LD)
 ESD_ADA_PTR Pointer 84 4 Pointer to name of environment (LD)
 *** RESERVED *** Char 88 4 Reserved
 ESD_PRIORITY Binary 92 4 Binding pri ority

Notes:
This entry is ignored on input to the binder.1.
Recalculated by the binder.2.
Calculated on the ED and ER records, required input to LD.3.
Valid for SDs only.4.

Page 2 of 2ESD entry (version 5)

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2...

GETE: Get ESD data

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

GETE returns data from ESD items. GETE must be used on a bound workmod. Four optional
parameters allow you to specify selection criteria for the ESD items to be returned: section name,
ESD record type, offset in the section or module, and symbol name. Only ESD records that meet all
of the selection criteria will be returned. Multiple selection criteria can be specified to retrieve exactly
the records you need.

The syntax of the GETE call is:

[symbol] IEWBIND FUNC=GETE
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD =workmod
[,SECTION=section]
[,RECTYPE=rectype]
[,CLASS=class]
[,{ OFFSET=offset | SYMBOL =symbol}]
,AREA=buffer
,CURSOR=cursor
,COUNT=count

FUNC=GETE
Requests that data from ESD items in a workmod be returned to a specified location.

VERSION=1 | 2 | 3 | 4 | 5 | 6 | 7
Specifies the version of the parameter list to be used. The default value is VERSION=1.
Note:

If VERSION=1 is specified for the GETE call, CLASS cannot be specified as a macro
keyword. The parameter list ends with the COUNT parameter (with the high-order bit
set). This exception is for Version 1 only.

RETCODE=retcode — RX-type address or register (2-12)
Specifies the location of a fullword integer that is to receive the return code returned by the
binder.

RSNCODE=rsncode — RX-type address or register (2-12)
Specifies the location of a 4-byte hexadecimal string that is to receive the reason code returned
by the binder.

WORKMOD= workmod — RX-type address or register (2-12)
Specifies the location of an 8-byte area that contains the workmod token for this request.

SECTION=section — RX-type address or register (2-12)
Specifies the location of a 16-byte varying character string that contains the name of the
section to be processed. This argument can be set to blanks to indicate blank common area.
Sections will be retrieved in the same order that they were included in the workmod.

The default value is all sections. If this parameter is specified, only the indicated section is
searched.

RECTYPE=rectype — RX-type address or register (2-12)
Specifies the location of a varying character string that contains a list of the ESD record types
to be returned. If you do not specify this argument, all record types are returned.

Record types must be identified by one- or two-character codes, separated by commas and
enclosed in parentheses. Embedded blanks are not allowed. Valid record types are:

SD
Section definition

ED
Element definition

LD
Label definition

PD
Part definition

PR
Part reference

ER
External reference

CM
Common

ST
Segment table

ET
Entry table

DS
Dummy section definition

CM
Common section definition

ET
ENTAB

ST
SEGTAB

PC
Private code section definition

WX
Weak external reference

In addition, you can use a generic code to reference more than one ESD type:

S
Section definition records (SD, CM, ST, ET, PC, and DS)

U
Unresolved external references (ER, ESD_STATUS=unresolved)

CLASS=class — RX-type address or register (2-12)
Specifies the location of a 16-byte varying character string containing the name of the text
class referenced by the ESD record to be selected. If class has not been specified, ESD records
are returned without regard to class.

OFFSET=offset — RX-type address or register (2-12)
Specifies the location of a fullword integer that contains the offset within the specified section.
If a section name has not been specified, a module offset is assumed. If you specify OFFSET
you cannot specify SYMBOL but must specify CLASS.

SYMBOL= xsymbol — RX-type address or register (2-12)
Specifies the location of a varying character string that contains a symbol to be used as a
selection criterion. If you specify SYMBOL you cannot specify OFFSET.

If neither OFFSET nor SYMBOL is provided, processing begins at the start of the item.

AREA=buffer — RX-type address or register (2-12)

Page 1 of 2GETE: Get ESD data

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/gete.ht...

Specifies the location of a buffer to receive the data. This buffer must be allocated and
initialized in ESD format. See IEWBUFF - Binder API buffers interface assembler macro for
generating and mapping data areas for information on buffer handling.

CURSOR=cursor — RX-type address or register (2-12)
Specifies the location of a fullword integer that indicates the position within the section or
module where the binder should begin processing. Specifying a zero for this argument causes
the binder to begin processing at the first ESD entry. Offsets are specified in records and are
relative to the start of the selected ESD item(s).

COUNT=count — RX-type address or register (2-12)
Specifies the location of a fullword integer in which the binder will store the number of entries
it has returned.

Processing notes

The binder returns ESD records that meet the selection criteria specified on the call:

If SECTION is specified, only that section of the ESD will be searched. All sections is the
default.

•

If RECTYPE is specified, only ESD records of the types appearing in the supplied list are
returned.

•

If OFFSET is specified and rectype="S", the ESD record for the control section (or common
area) containing the specified offset, is returned for buffer version 1. The SD record mapping
in other buffer versions does not contain an offset and no records will be returned. If OFFSET
is specified and rectype="LD", then all LD ESD records for the symbols defined at or before
that location (within the containing section) will be returned.

•

If SYMBOL is specified, all ESD records of the type(s) specified with that symbol name are
returned. If CLASS is specified, only ESD records that define locations in that class are
returned. Some records, such as SD and ER, are not associated with any class and are never
returned if class is specified.

•

Note:
Processing of the ESD records returned by a GETE call should not make assumptions about the
order of the returned ESD records. For example, such processing should not assume that LD
type ESD records are returned in the order of their offsets in the section.

The CURSOR value identifies an index into the requested ESD data beginning with 0 for the first
ESD. The ESD buffer formats defined in Binder API buffer formats contain an entry length field in
their headers. Multiplying the cursor value by the entry length provides a byte offset into the data.
CURSOR is an input and output parameter. On input to the service, the cursor specifies the first
record to return. On exit from the service, it is updated to the index of the next sequential ESD if not
all data has yet been retrieved.

The binder will typically return multiple entries in a single call, depending on the size of the buffer.
Data is reformatted, if necessary, to conform to the version identified in the caller's buffer. The
COUNT parameter is set to the number of records actually returned in the buffer.

The ESD buffer formats defined in Binder API buffer formats contain a record length field in their
headers giving the length of each ESD record. This provides a way for the caller to index through the
returned records or to access a specific record in the returned data buffer.

In some cases where OFFSET is specified and the parameter list is version 6 or less, return code 0
and reason code 0 will be returned on an end-of-data condition. The version 7 API call will always
return return code 4 and reason code 83000800 on an end-of-data condition, while the COUNT may
be non-zero indicating that data was returned.

Return and reason codes

The common binder API reason codes are shown in Table 3.

Return Code Reason Code Explanation

00 00000000 Normal completion.
04 83000705 The specified symbol could not be located in the workmod. No

data is returned in the buffer.
04 83000800 An end-of-data condition was detected. Some data might have

been returned in buffer. There is no message associated with this
condition.

04 83000801 The requested item was not found in the workmod, or was
empty, or no records met the specified criteria. No data returned.

04 83000812 The specified offset was negative or beyond the end of the
designated item or module. No data is returned in the buffer.

12 83000101 OFFSET and SYMBOL have both been specified. Request
rejected.

12 83000102 Workmod is unbound. GETE request rejected.

Parameter list

If your program does not use the IEWBIND macro, place the address of the GETE parameter list in
general purpose register 1.

PARMLIST DS 0F
DC A(GETE) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(SECTION) Section name
DC A(RECTYPE) ESD record type(s)
DC A(OFFSET) Offset in module or section. If not a selection

criterion, set to -1.
DC A(SYMBOL) Symbol name
DC A(BUFFER) Data buffer
DC A(CURSOR) Starting position
DC A(COUNT) Data count
DC A(CLASS) Text class

GETE DC H'62' GETE function code
DC H'version' Interface version number

RECTYPE DC H'7',CL7'(SD,CM)' Sample varying string

Table 15. GETE parameter list

Note:
X'80000000' must be added to either the COUNT parameter (for Version 1) or the CLASS
parameter (for Version 2 or higher).

Page 2 of 2GETE: Get ESD data

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/gete.ht...

__iew_getE() - Get ESD data

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Returns external symbol dictionary information selected by various criteria.

Format

#include <__iew_api.h>
int __iew_getE(_IEWAPIContext *__context,
 const char *__sect, const char *__class,
 const char *__sym, const c har *__rec_type
 int *__offset,
 _IEWESDEntry ** __esd_entr y);

Parameters Descriptions

__context
API context is created and returned by calling __iew_openW() and is used throughout the open
session.

__sect
section name.

__class
class name. See class under Understanding binder programming concepts for details.

__sym
symbol name. See “External symbol dictionary" in Chapter 2 of Program Management User's
Guide and Reference for details.

__rec_type
ESD record type.

__offset
offset in module or section

__esd_entry
returned buffer - ESD entry

Returned Value

If successful, __iew_getE() returns > 0 (count, number of entries returned in the buffer).

If unsuccessful, __iew_getE() returns 0.

Utilities Functions

__iew_api_name_to_str()
__iew_eod()
__iew_get_reason_code()
__iew_get_return_code()
__iew_get_cursor()
__iew_set_cursor()

Page 1 of 1__iew_getE() - Get ESD data

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2...

__iew_fd_getE() - Get ESD data

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Returns external symbol dictionary information selected by class and/or section to which it refers.

Format

#include <__iew_api.h>
int __iew_fd_getE(_IEWFDContext *__context,
 const char *__sect, c onst char *__class,
 _IEWESDEntry ** __esd _entry);

Parameters Descriptions

__context
FD context is created and returned by calling __iew_fd_open() and is used throughout the open
session.

__sect
section name.

__class
class name.

__esd_entry
returned buffer - ESD entry.

Returned Value

If successful, __iew_fd_getE() returns > 0 (count, number of entries returned in the buffer).

If unsuccessful, __iew_fd_getE() returns 0.

Utilities Functions

__iew_api_name_to_str()
__iew_fd_eod()
__iew_fd_get_reason_code()
__iew_fd_get_return_code()
__iew_fd_get_cursor()
__iew_fd_set_cursor()

Page 1 of 1__iew_fd_getE() - Get ESD data

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2...

GE - Getting External Symbol Dictionary data

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

This service is a specialized variant of GD, used to retrieve only one class, B_ESD. This can be a
confusing class, though, because ESD records are owned by elements in a second class and may point
to elements in a third class. For example, an ESD may describe an adcon in class C_CODE that refers
to an address in class B_TEXT. Using the 'GD' service you would only be able to indicate that you
were interested in class B_ESD, and would have to retrieve all ESDs to locate the specific ones you
were interested in. The 'GE' service allows the caller to screen ESDs returned, limiting the output to
those owned by a specified class. The calling application can also ask for ESDs in a specific section.

Parameter Usage Format Content

1 in structure 'GE', X'0001'
2 in binary word mtoken

3 (optional) in vstring class
4 (optional) in vstring section

5 in/out structure buffer

Must be formatted by IEWBUFF or as defined in
Binder API buffer formats, and appropriate to the
class requested.

6 in/out binary word cursor - in items

The item size depends on the buffer type and
buffer version used.

7 out binary word count - in items

Table 41. GE parameter list

Sample assembler code

 CALL (15),(GEIL,MTOKEN,CLASS,,BUFF,CURS,C NT),VL

GEIL DC C'GE',X'0001'
MTOKEN DS F As set at Start call
CLASS DC H'6',C'C_CODE' Limit ESDs returned
CURS DC F'0' Start with first ESD
CNT DS F Number of ESDs return ed
BUFF IEWBUFF FUNC=MAPBUF,TYPE=ESD,VERSION=6,SIZE=50
* i.e. a buffer big enough to hold 50 ESDs,
* assuming the names are not too long.

Page 1 of 1GE - Getting External Symbol Dictionary data

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/gesdd....

Text data buffer (version 1)

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Figure 32. Format for TXT entries

 Field Field Off Leng Desc ription
 Name Type set

 IEWBTXT Binder Text buffer, Version 1
 TXTH_BUFFER_ID Char 0 8 Buffer iden tifier "IEWBTXT"
 TXTH_BUFFER_LENG Binary 8 4 Length of t he buffer,
 includin g the header
 TXTH_VERSION Binary 12 1 Version ide ntifier
 *** RESERVED *** Binary 13 3 Reserved, m ust be zeros
 TXTH_ENTRY_LENG Binary 16 4 Length of e ntries (always 1)
 TXTH_ENTRY_COUNT Binary 20 4 Number of e ntries (bytes) in the
 buffer
 *** RESERVED *** Binary 24 8 Reserved, i nitialize to zeros
 TXT_ARRAY Undef. 32 var Program Tex t (length varies from
 1 to 2** 31-1 bytes, depending
 on valu e in TXTH_ENTRY_COUNT)

Page 1 of 1Text data buffer (version 1)

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2...

GETD: Get data

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

GETD returns data from items in a workmod. The values of the CLASS and SECTION parameters
determine which item is returned. If SECTION is omitted, all sections are returned as a single unit.
This service can only be performed on a bound workmod.

The syntax of the GETD call is:

[symbol] IEWBIND FUNC=GETD
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD =workmod
,CLASS=class
[,SECTION=section]
,AREA=buffer
,CURSOR=cursor
,COUNT=count
[,RELOC=reloc]

FUNC=GETD
Requests that data from items in a workmod be returned to a specified location.

VERSION=1 | 2 | 3 | 4 | 5 | 6 | 7
Specifies the version of the parameter list to be used. The default value is VERSION=1.

RETCODE=retcode — RX-type address or register (2-12)
Specifies the location of a fullword integer that is to receive the return code returned by the
binder.

RSNCODE=rsncode — RX-type address or register (2-12)
Specifies the location of a 4-byte hexadecimal string that is to receive the reason code returned
by the binder.

WORKMOD= workmod — RX-type address or register (2-12)
Specifies the location of an 8-byte area that contains the workmod token for this request.

CLASS=class — RX-type address or register (2-12)
Specifies the location of a 16-byte varying character string containing a class name. The class
name might have been defined by the binder, a compiler, or an end user. See Understanding
binder programming concepts for binder class names. B_PMAR is also accepted as a class
name, although it is not an actual class in a binder workmod.

SECTION=section — RX-type address or register (2-12)
Specifies the location of a varying character string that contains the name of the section to be
processed. If omitted, this defaults to a concatenation of all sections in the specified class. If
the processing intent is bind, the sections are ordered by virtual address. If the processing
intent is access, they are returned in the same order that they were included in the workmod.

AREA=buffer — RX-type address or register (2-12)
Specifies the location of a buffer to receive the data. The binder returns data until either this
buffer is filled or the specified items have been completely moved. See IEWBUFF - Binder
API buffers interface assembler macro for generating and mapping data areas for information
on buffer handling.

CURSOR=cursor — RX-type address or register (2-12)
Specifies the location of a fullword integer that contains the position within the item(s) where
the binder should begin processing. Specifying a zero for the argument causes the binder to
begin processing at the start of the item. The cursor value is specified in bytes for items in the
TEXT class, in records for all other classes. The value is relative to the start of the item. The
cursor value is modified before returning to the caller.

COUNT=count — RX-type address or register (2-12)
Specifies the location of a fullword that is to receive the number of bytes of TEXT or the
number of entries returned by the binder.

RELOC=reloc
Specifies a base address to be used for relocation. You can only use this parameter with
VERSION=6 or higher. You will need to know the load segment for the data you are
requesting. You can map text classes into load segments using GETN. reloc is a single 8–byte
address. The relocation address will relocate the adcons in the returned text buffer as though
the program segments had been loaded at the designated address. If you do not use the
RELOC parameter, it should set to zero.

Processing notes

The CURSOR value identifies an index into the requested data beginning with 0 for the first data
item. Each of the buffer formats defined in Binder API buffer formatscontains an entry length field in

Page 1 of 2GETD: Get data

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/getd.ht...

its header. Multiplying the cursor value by the entry length provides a byte offset into the data. Note
that CUI, LIB, PMAR, and text data is always treated as having entry length 1. The CURSOR value
is both an input and output parameter. On input to the service, the cursor specifies the first item to
return. On exit from the service, it is updated to an appropriate value for continued sequential
retrieval if not all data has yet been retrieved. For text data, this may or may not be the next byte after
the last one returned, because pad bytes between sections and uninitialized data areas within sections
may have been skipped. Any data skipped should be treated by the calling application as containing
the fill character (normally X'00').

On the next GETD request, the binder begins processing where the last request left off.

If you interrupt a series of successive GETD calls, you should reset the value of the cursor before
continuing. Otherwise, the cursor value might be invalid and the results of a GETD request are
unpredictable.

If a section name is not passed on a GETD API invocation for a text class and the target is an overlay
module, the cursor is interpreted as an offset into the module and laid out sequentially in segment
order, using the alignment as specified in the object modules.

Return and reason codes

The common binder API reason codes are shown in Table 3.

Return Code Reason Code Explanation

00 00000000 Normal completion.
04 83000800 Normal completion. Some data might have been returned in the

buffer, and an end-of-data condition was encountered. There is
no message associated with this condition.

04 83000801 The requested item did not exist or is empty. No data has been
returned.

08 83000750 The buffer is not large enough for one record. No data is
returned.

08 83000813 The buffer version is not compatible with the module content.
No data is returned.

08 83002349 Not all adcons were successfully relocated. This condition could
occur because relocation addresses for all the segments were not
passed, or because the adcon length was insufficient to contain
the address.

12 83002379 Binder encountered a bad cursor for class B_PARTINIT and
processing has been stopped.

12 83000102 Workmod was in an unbound state. GETD request could not be
processed.

12 83002375 The class was not a text class.

Parameter list

If your program does not use the IEWBIND macro, place the address of the GETD parameter list in
general purpose register 1.

PARMLIST DS 0F
DC A(GETD) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(CLASS) Class name
DC A(SECTION) Section name
DC A(BUFFER) Data buffer
DC A(CURSOR) Starting position
DC A

(COUNT+X'80000000')
Data count and end-of-list indicator

DC A(RELOC) Relocation address
GETD DC H'61' GETD function code

DC H'version' Interface version number

Table 14. GETD parameter list

Page 2 of 2GETD: Get data

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/getd.ht...

__iew_getD() - Get data

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Returns data associated with a specified class (and optionally section) in the program.

Format

#include <__iew_api.h>
int __iew_getD(_IEWAPIContext *__context,
 const char *__class, cons t char * __sect,
 long long * __reloc,
 void ** __data_entry);

Parameters Descriptions

__context
API context is created and returned by calling __iew_openW() and is used throughout the open
session.

__class
class name.

__sect
section name.

__reloc
relocation address.

__data_entry
returned buffer - based on class name.

Returned Value

If successful, __iew_getD() returns a number greater than zero representing the number of data items
or bytes returned in the buffer.

If unsuccessful, __iew_getD() returns 0.

Utilities Functions

__iew_api_name_to_str()
__iew_eod()
__iew_get_reason_code()
__iew_get_return_code()
__iew_get_cursor()
__iew_set_cursor()

Page 1 of 1__iew_getD() - Get data

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2...

__iew_fd_getD() - Get data

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Return data associated with a specified class (and optionally section) in the program.

Format

#include <__iew_api.h>
int __iew_fd_getD(_IEWFDContext *__context,
 const char *__class, const char * __sect,
 long long *__reloc,
 void ** __data_entry);

Parameters Descriptions

__context
FD context is created and returned by calling __iew_fd_open() and is used throughout the open
session.

__class
class name.

__sect
section name.

__reloc
relocation address.

__data_entry
returned buffer - based on class.

Returned Value

If successful, __iew_fd_getD() returns > 0 (count, could be number of bytes of TEXT (if class=TEXT) or
number of entries returned in the buffer).

If unsuccessful, __iew_fd_getD() returns 0.

Utilities Functions

__iew_api_name_to_str()
__iew_fd_eod()
__iew_fd_get_reason_code()
__iew_fd_get_return_code()
__iew_fd_get_cursor()
__iew_fd_set_cursor()

Page 1 of 1__iew_fd_getD() - Get data

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2...

GD - Getting Data from any class

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

This service is often used to access program text, but can also be used to retrieve data from other
compiler-defined or binder-defined classes. The data can optionally be limited to that associated with
a particular section.

One special feature for program text is that the addresses within the text can be relocated in the same
way that the loader would do, relative to a specified starting address.

Note that many programs are built with multiple text classes. The GD service is not able to combine
data from different classes in a single call, and the cursor used for positioning is always relative to the
beginning of the specified class (or section contribution within the class if the optional section
parameter is provided). Typically the calling application views program text as continuous across
classes within a loadable segment. The application can adjust for this by using the class starting offset
within the segment as returned by the GN service in the BNL_SEGM_OFF field.

Parameter Usage Format Content

1 in structure 'GD', X'0001'
2 in binary word mtoken
3 in vstring class

4 (optional) in vstring section
5 in/out structure buffer

Must be formatted by IEWBUFF or as defined in
Binder API buffer formats, and appropriate to the
class requested.

6 in/out binary word cursor - in items

The item size depends on the buffer type and
buffer version used.

For text data, this might not be returned as the
next location after the last text byte returned,
because pad bytes between sections and
uninitialized data areas within sections may have
been skipped. Any data skipped should be treated
by the caller as containing the fill character
(normally X'00').

7 out binary word count - in items
8 (optional) in 64-bit address relocation value

An assumed address for the start of the class, to
be used for address constant relocation.

Table 40. GD parameter list

Sample assembler code

 CALL (15),(GDIL,MTOKEN,CLASS,,BUFF,CURS,C NT),VL

GDIL DC C'GD',X'0001'
MTOKEN DS F As set at Start call
CLASS DC H'6',C'B_TEXT' One particular text c lass
CURS DC F'0' Start at beginning of text
CNT DS F Number of bytes retur ned
* (since text item size is 1)
BUFF IEWBUFF FUNC=MAPBUF,TYPE=TEXT,BYTES=8192
* Note default to V1, but text buffer hasn't changed

Page 1 of 1GD - Getting Data from any class

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/gdcall....

CUI entry (version 6)

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Figure 46. Format for CUI entries

 Field Field Off Leng De scription
 Name Type set

 IEWBCUI Binder CUI buffer, Version 6
 CUIH_BUFFER_ID Char 0 8 Buffer iden tifier "IEWBCUI"
 CUIH_BUFFER_LENG Binary 8 4 Length of t he buffer, including the header
 CUIH_VERSION Binary 12 1 Version ide ntifier
 *** RESERVED *** Binary 13 3 Reserved, m ust be zeros
 CUIH_ENTRY_LENG Binary 16 4 Length of e ntries
 CUIH_ENTRY_COUNT Binary 20 4 Number of e ntries (bytes) in the buffer
 *** RESERVED *** Binary 24 8 Reserved, i nitialize to zeros
 CUIH_ENTRY_ORIGIN 32 First compi le unit entry
 CUI_ENTRY Compile Uni t Entry
 CUI_CU Binary 0 4 Compile uni t number
 CUI_SOURCE_CU Binary 4 4 Source of c ompile unit number

 *** RESERVED *** Binary 8 2 Reserved, m ust be zero
 CUI_MEMBER_LEN Binary 10 2 Length of m ember
 CUI_MEMBER_PTR Pointer 12 4 Pointer to the member
 *** RESERVED *** Binary 16 2 Reserved, m ust be zero
 CUI_PATH_LEN Binary 18 2 Length of p ath
 CUI_PATH_PTR Pointer 20 4 Pointer to the path
 *** RESERVED *** Binary 24 2 Reserved, m ust be zero
 CUI_DSNAME_LEN Binary 26 2 Length of d sname
 CUI_DSNAME_PTR Pointer 28 4 Pointer to the dsname
 CUI_DDNAME Char 32 8 Ddname
 *** RESERVED *** Binary 40 2 Reserved, m ust be zero
 CUI_CONCAT Binary 42 1 Concat
 CUI_TYPE Binary 43 1 Source type
 X'00' Load modu le
 X'01' Generated by PUTD API version 1
 X'02' Generated by PUTD API version 2 or higher
 X'10' PO1 (PM1) format program object
 X'11' Object mo dule (traditional format)
 X'12' Object mo dule (XOBJ format)
 X'13' Object mo dule (GOFF format)
 X'14' Unknown
 X'15' Workmod
 X'1E' Generated by the binder
 X'20' PO2 (PM2) format program object
 X'30' PO3 (PM3) format program object
 X'41' PO4 (PM4) format program object, z/OS 1.3 compatible
 X'42' z/OS 1.5 compatible
 X'43' z/OS 1.7 compatible
 X'51' PO5 (PM5) format program object, z/OS 1.8 compatible
 *** RESERVED *** Binary 44 4 Reserved, m ust be zero
 *** RESERVED *** Binary 48 2 Reserved, m ust be zero
 CUI_C_MEMBER_LEN Binary 50 2 Length of m ember (original)
 CUI_C_MEMBER_PTR Pointer 52 4 Pointer to the member (original)
 *** RESERVED *** Binary 56 2 Reserved, m ust be zero
 CUI_C_PATH_LEN Binary 58 2 Length of p ath (original)
 CUI_C_PATH_PTR Pointer 60 4 Pointer to the path (original)
 *** RESERVED *** Binary 64 2 Reserved, m ust be zero
 CUI_C_DSNAME_LEN Binary 66 2 Length of d sname (original)
 CUI_C_DSNAME_PTR Pointer 68 4 Pointer to the dsname
 *** RESERVED *** Char 72 3 Reserved, m ust be zero
 CUI_C_TYPE Binary 75 1 Source type within the object file
 CUI_C_SEQ Binary 76 4 CU sequence number within the object file

Notes:
The header record contains information about the target workmod as a whole. The format is the same as that of the other records.
CUI_CU, CUI_SOURCE_CU and CUI_C_SEQ will always be zero in the header record.

1.

Fields that have the comment original refer to the object module used to build the program object the first time. These field contents are
not changed if the program object is rebound. However, this information is available only if the program object is compatible with the
z/OS 1.5 format or higher version. Thus, complete information is returned for nonheader records only if the CUI_TYPE value is 42 or
greater. CUI_TYPE for program objects in formats compatible with releases earlier than z/OS 1.5. Load modules have CUI_TYPE set to
the format of the target module.

2.

Entries for compile units representing sections created by the binder, including section 1, contain no information other than the compile
unit number (CUI_CU) and the type (CUI_TYPE).

3.

Page 1 of 1CUI entry (version 6)

2/2/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/cuie6.ht...

GETC: Get compile unit list

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

GETC returns data which is mapped to a new CUI buffer format (Version 6). The
COMPILEUNITLIST parameter determines which data is returned.

The syntax of the GETC call is:

[symbol] IEWBIND FUNC=GETC
,VERSION=version
[,RETCODE=retcode]
[,RSNCODE=rsncode]
,WORKMOD =workmod
[,COMPILEUNITLIST =compileunitlist]]
,AREA=buffer
,CURSOR=cursor
,COUNT=count

FUNC=GETC
Requests that data from items in a workmod be returned to a specified location.

VERSION=6
Specifies the version of the parameter list to be used (6 or higher).

RETCODE=retcode — RX-type address or register (2-12)
Specifies the location of a fullword integer that is to receive the return code returned by the
binder.

RSNCODE=rsncode — RX-type address or register (2-12)
Specifies the location of a 4-byte field that is to receive the reason code returned by the binder.
Reason codes are documented as a sequence of 8 hexadecimal digits.

WORKMOD= workmod — RX-type address or register (2-12)
Specifies the location of an 8-byte area that contains the workmod token for this request.

COMPILEUNITLIST= compileunitlist
Determines which data is returned. If COMPILEUNITLIST is specified, one record for each
compile unit in a list of compile units will be returned. If COMPILEUNITLIST is omitted,
one record of each of all compile units will be returned. The header record, the first compile
unit record, is built when the cursor is zero.

The compile unit list is a structure:

Count DC F'5' List with 5 entries
List DS 5F Returned by GETN

Note:
compileunitlist must be composed of values returned in BFNL_6_SECT_CU resulting
from a GETN TYPE=SECTION,VERSION=6 API call.

When INTENT=ACCESS is specified in the CREATEW API call, information about the
input module (the target module of the GETC call) is placed in the header record. This
information includes the program object version and the source of the input module (data set
name or path name, ddname, and member name).

AREA=buffer — RX-type address or register (2-12)
Specifies the location of a CUI buffer to receive the data. The binder returns data until either
this buffer is filled or the specified items have been completely moved. See IEWBUFF -
Binder API buffers interface assembler macro for generating and mapping data areas for
information on buffer handling.

CURSOR=cursor — RX-type address or register (2-12)
Specifies the location of a fullword integer that contains the position within the items where
the binder begins processing. Specifying a zero causes the binder to return the header record,
the first compile unit record. The information is provided on the DASD location of the
program object. The cursor value is modified before returning to the caller.

When no compile unit list is provided, the cursor is an index into an ordered list of all CUI
entries that can be returned. If the application does not modify the cursor during the retrieval
process, multiple calls return all CUI records in the order by CU number because the buffer is
full. When a compile unit list is provided, the cursor is an index into that application-provided
list. CUI records are returned in the order specified in the CU list. If the application still does

Page 1 of 2GETC: Get compile unit list

2/2/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/getc.htm...

not modify the cursor during the retrieval process, multiple calls continue with subsequent
entries in the list because the buffer is full. End of data is signalled when the end of the
application-provided list is reached.

COUNT=count — RX-type address or register (2-12)
Specifies the location of a fullword that receives the number of CUI records returned by the
binder.

Processing notes

The CURSOR value identifies an offset into the requested data beginning with 0. It is both an input
and output parameter. On input to the service, the cursor specifies the first byte to return. On exit
from the service, it is updated to the next byte for continued sequential retrieval if not all data has yet
been retrieved.

For load modules and program object formats at a compatability level prior to z/OS V1R5 , a compile
unit is the same as a section. For z/OS V1R5 compatible modules, a compile unit corresponds to a
single object module. Each compile unit in a workmod is assigned a unique number; however, this
assigned number may change when a module is rebound. Furthermore, the compile unit number will
be zero for all binder generated sections (IEWBLIT or section 1, for example).

Return and reason codes

The common binder API reason codes are shown in Table 3.

Return Code Reason Code Explanation

00 00000000 Normal completion. There might be additional data that did not
fit in the buffer.

04 83000800 End of data. Some data might have been returned in the buffer,
but no more is available.

04 83000801 No section names exist. No data was returned.
04 83000810 Cursor is negative or beyond the end of the specified item. No

data was returned.
08 83002342 Some of the passed compile unit numbers do not exist in

workmod. Data for the valid compile units is returned.
12 83000102 Workmod was in an unbound state.

Parameter list

If your program does not use the IEWBIND macro, place the address of the GETC parameter list in
general purpose register 1.

PARMLIST DS 0F
DC A(GETC) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(WORKMOD) Workmod token
DC A(CULIST) Compile unit list
DC A(BUFFER) Data buffer
DC A(CURSOR) Starting position
DC A

(COUNT+X'80000000')
Data count

GETC DC H'64' GETC function code
DC H'6' Interface version number

Table 13. GETC parameter list

Page 2 of 2GETC: Get compile unit list

2/2/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/getc.htm...

__iew_getC() - Get compile unit list

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Obtains source information about the program and the compile units from which it was constructed.

Format

#include <__iew_api.h>
int __iew_getC(_IEWAPIContext *__context,
 int __culist[],
 _IEWCUIEntry ** __cui_ent ry);

Parameters Descriptions

__context
API context is created and returned by calling __iew_openW() and is used throughout the open
session.

__culist
compile unit list - array of compile units where the first entry is used to specify the total
number of compile unit entries. If the first entry is non zero, then one record for each compile
unit in a list of compile units will be returned. If the first entry is zero, then one record of each
of all compile units will be returned.

__cui_entry
returned buffer - CUI entry, one record for each compile unit in a list of compile units is
returned.

Returned Value

If successful, __iew_getC() returns > 0 (count, number of entries returned in the buffer).

If unsuccessful, __iew_getC() returns 0.

Utilities Functions

__iew_eod()
__iew_get_reason_code()
__iew_get_return_code()
__iew_get_cursor()
__iew_set_cursor()

Page 1 of 1__iew_getC() - Get compile unit list

2/2/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2b...

__iew_fd_getC() - Get compile unit list

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Obtains source information about the program and the compile units form which it was constructed.
The program object source "header record" returned by fast data in the CUI buffer for a program
object in a PDSE will never identify the data set containing the object.

Format

#include <__iew_api.h>
int __iew_fd_getC(_IEWFDContext *__context,
 int __culist[],
 _IEWCUIEntry ** __cu i_entry);

Parameters Descriptions

__context
FD context is created and returned by calling __iew_fd_open() and is used throughout the open
session.

__culist
compile unit list - array of compile units where the first entry is used to specify the total
number of compile unit entries. If the first entry is non zero, then one record for each compile
unit in a list of compile units will be returned. If the first entry is zero, then one record of each
of all compile units will be returned.

__cui_entry
returned buffer - CUI entry, one record for each compile unit in a list of compile units will be
returned.

Returned Value

If successful, __iew_fd_getC() returns > 0 (count, number of entries returned in the buffer).

If unsuccessful, __iew_fd_getC() returns 0.

Utilities Functions

__iew_fd_eod()
__iew_fd_get_reason_code()
__iew_fd_get_return_code()
__iew_fd_get_cursor()
__iew_fd_set_cursor()

Page 1 of 1__iew_fd_getC() - Get compile unit list

2/2/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2b...

GC - Getting Compile unit information

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Compile unit information is primarily data passed to the binder by compilers, identifying the source
of each program making up the program object being inspected. As an important special case, though,
the first compile unit entry returned when the cursor is specified as zero provides information on the
DASD location of the program object itself. The program object source "header record" returned by
fast data in the CUI buffer for a program object in a PDSE will never identify the data set containing
the object.

When no culist is provided, the cursor is an index into an ordered list of all CUI entries that can be
returned. If the application does not modify the cursor during the retrieval process, multiple calls
return all CUI records in the order by CU number because the buffer is full. When the culist is
provided, the cursor is an index into that application-provided list. CUI records are returned in the
order specified in the culist. If the application still does not modify the cursor during the retrieval
process, multiple calls continue with subsequent entries in the list because the buffer is full. End of
data is signalled when the end of the application-provided list is reached.

Parameter Usage Format Content

1 in structure 'GC', X'0001'
2 in binary word mtoken

3 (optional) in binary words culist

An array of numbers. The first word is the
number of additional words that follow it. Each
additional word is a compile unit number returned
in BNL_SECT_CU by a 'GN' call.

If no compile unit numbers are passed, the first
(and only) word must be zero.

4 in/out structure buffer

Must be a CUI buffer formatted by IEWBUFF or
as defined in Binder API buffer formats.

5 in/out binary word cursor

Cursor is an index within the culist or into an
ordered list of all CUI entries.

6 out binary word count

The number of CUI records returned by the
binder.

Table 39. GC parameter list

Sample assembler code

 CALL (15),(GCIL,MTOKEN,NULL,BUFF,CURS,CNT),VL

GCIL DC C'GC',X'0001'
MTOKEN DS F As set at Start call
NULL DC F'0' Omitted to get all CU' s
CURS DC F'0' Start with PO informat ion
CNT DS F Number of records retu rned
BUFF IEWBUFF FUNC=MAPBUFF,TYPE=CUI,VERSION=6,SIZE =2000

Page 1 of 1GC - Getting Compile unit information

2/2/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/gccui.ht...

SETO: Set option

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

SETO specifies options for processing and module attributes. Each option is set at either the dialog or
workmod level by providing a token in the call. The options that can be specified are listed in Setting
options with the regular binder API.

The syntax of the SETO call is:

[symbol] IEWBIND FUNC=SETO
[,VERSION=version]
[,RETCODE=retcode]
[,RSNCODE=rsncode]
[,WORKMOD =workmod]
[,DIALOG =dialog]
,OPTION=option
,OPTVAL =optval
[,PARMS=parms]

FUNC=SETO
Specifies that you are requesting specific processing options or module attributes for a dialog
or workmod.

VERSION=1 | 2 | 3 | 4 | 5 | 6 | 7
Specifies the version of the parameter list to be used. The default value is VERSION=1.
Note:

If VERSION=1 is specified for the SETO call, PARMS cannot be specified as a macro
keyword. The parameter list ends with the OPTVAL parameter (with the high-order bit
set). This exception is for version 1 only.

RETCODE=retcode — RX-type address or register (2-12)
Specifies the location of a fullword integer that is to receive the return code returned by the
binder.

RSNCODE=rsncode — RX-type address or register (2-12)
Specifies the location of a 4-byte hexadecimal string that is to receive the reason code returned
by the binder.

WORKMOD= workmod — RX-type address or register (2-12)
Specifies the location of an 8-byte area that contains the workmod token for this request.
WORKMOD and DIALOG are mutually exclusive. To set the options at the workmod level,
provide the WORKMOD token.

DIALOG= dialog — RX-type address or register (2-12)
Specifies the location of an 8-byte area that contains the appropriate dialog token.
WORKMOD and DIALOG are mutually exclusive. To set the options at the dialog level,
provide the DIALOG token.

OPTION=option — RX-type address or register (2-12)
Specifies the location of an 8-byte varying character string that contains an option keyword.
Except for CALLIB, all keywords can be truncated to three characters. See Setting options
with the regular binder API for a complete list of keywords.

OPTVAL= optval — RX-type address or register (2-12)
Specifies the location of a varying character string that contains a value or a list of values for
the specified option.

PARMS=parms — RX-type address or register (2-12)
Specifies the location of a varying character string that contains a list of option specifications
separated by commas.

Processing notes

Option values are coded as value or (value1,value2). A list of values is enclosed in parentheses. A
value containing special characters is enclosed in single quotation marks. An imbedded single
quotation mark is coded as two consecutive single quotation marks. Special characters include all
EBCDIC characters other than upper and lower case alphabetics, numerics, national characters (@ #
$), and the underscore. YES and NO values can be abbreviated Y and N, respectively.

Options specified for a workmod override any corresponding options specified for that dialog.
Options specified at the dialog level override the corresponding system defaults, and apply to all
workmods within the dialog unless overridden. If INTENT=ACCESS, these keywords are not
allowed: ALIGN2, CALL, CALLIB, EDIT, LET, MAP, OVLY, RES, TEST, XCAL, and XREF.

Page 1 of 2SETO: Set option

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/seto.ht...

The options list specified in the PARMS= parameter is a character string identical to the PARM=
value defined in the "Binder options reference" chapter of z/OS MVS Program Management: User’s
Guide and Reference, with the following restrictions:

The list is not enclosed with apostrophes or parentheses•
Environmental options cannot be specified on SETO. See the list of environmental options in
Setting options with the binder API

•

The EXITS and OPTIONS options are also not allowed in this list.•

The OPTION and OPTVAL operands are used together to specify a single option and its value.

None of the environmental options can be specified. See Setting options with the binder API.•
The following invocation options may not be specified on the OPTION/OPTVAL operands of
SETO because they are really mapped to something different: EXITS, OPTIONS, REFR,
RENT, and the YES, NO, or default values for REUS.

•

The negative option format (for example, NORENT) is not allowed. The corresponding option
with a value must be used (for example, OPTION=REUS,OPTVAL=SERIAL).

•

An option specified using the OPTION and OPTVAL operands overrides any value for that
same option specified within the PARMS operand.

•

You can specify a z/OS UNIX System Services file as the CALLIB parameter value on a SETO call.

Return and reason codes

The common binder API reason codes are shown in Table 3.

Return Code Reason Code Explanation

00 00000000 Normal completion.
08 83000109 One or more options designated as environmental have been

specified on SETO. Option ignored.
12 83000100 Neither dialog token nor workmod token were specified.

Request rejected.
12 83000106 The option specified is invalid for a workmod specified with

INTENT=ACCESS. Request rejected.
12 83000107 Invalid option keyword specified. Request rejected.
12 83000108 The option value is invalid for the specified keyword. Request

rejected.
12 83000113 An option you specified is valid only for the STARTD function.

The request is rejected.

Parameter list

If your program does not use the IEWBIND macro, place the address of the SETO parameter list in
general purpose register 1.

PARMLIST DS 0F
DC A(SETO) Function code
DC A(RETCODE) Return code
DC A(RSNCODE) Reason code
DC A(DIALOG) Dialog token
DC A(WORKMOD) Workmod token
DC A(OPTION) Option keyword
DC A(OPTVAL) Option value
DC A(PARMS) Options list

SETO DC H'20' SETO function code
DC H'version' Interface version number

Table 27. SETO parameter list

Note:
The PARMS parameter is an addition for Version 2 and X'80000000' must be added to either the
OPTION parameter (for Version 1) or the PARMS parameter.

Page 2 of 2SETO: Set option

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/seto.ht...

__iew_setO() - Set option

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Set binder options to be used for subsequent processing. See Setting options with the regular binder
API for details. Environment options cannot be specified here.

Format

#include <__iew_api.h>
int __iew_setO(_IEWAPIContext *__context,
 const char *__parms);

Parameters Descriptions

__context
API context is created and returned by calling __iew_openW() and is used throughout the open
session.

__parms
list of binder options.

Returned Value

If successful, __iew_setO() returns 0.

If unsuccessful, __iew_setO() returns nonzero.

Note:
The returned value is the same as the code returned by a subsequent __iew_get_return_code().

Utilities Functions

__iew_get_reason_code()
__iew_get_return_code()

Page 1 of 1__iew_setO() - Set option

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2...

Binder options reference

z/OS MVS Program Management: User's Guide and Reference
SA22-7643-11

Guideline: This topic refers to binder processing. These concepts apply equally to linkage editor and
batch loader processing, unless noted otherwise in Processing and attribute options reference. The
linkage editor and batch loader cannot process program objects.

This section describes the processing and attribute options that can be requested. Binder options are
specified in a number of ways. These are broadly classified as interfaces that pass option strings and
interfaces that have tailored option capabilities.

The following interfaces pass option strings:

The PARM field of the JCL EXEC statement•
The first parameter passed to •

IEWBLINK◦

IEWBLOAD◦

IEWBLODI or IEWBLDGO◦

when using CALL, LINK, ATTACH, or XCTL from another program
An options file identified by the OPTIONS option•
An options file specified by the DD name IEWPARMS•
The SETOPT control statement•
Installation option defaults•
The PARMS parameter of the IEWBIND FUNC=STARTD or FUNC=SETO call.•

The following interfaces have tailored option capabilities:

Arguments passed to the TSO LINK or LOADGO commands•
Arguments passed to the z/OS UNIX System Services c++, c89, cc, or ld commands•
The OPTIONS parameter of the IEWBIND FUNC=STARTD call•
The OPTION and OPTVAL parameters of the IEWBIND FUNC=SETO call.•

Note:
IEWBIND is fully documented in z/OS MVS Program Management: Advanced Facilities

Many options have the possible values YES and NO. These options usually have an associated option
that begins with N or NO. For example, you can specify MAP to produce a module map, and
NOMAP to suppress production of a module map. You can also specify the MAP option as
MAP=YES or MAP(YES) and MAP=NO or MAP(NO). Table 7 shows the associated negative
option if the option's values are YES and NO.

The options you specify, through any means, when invoking the binder, always override similar data
from included modules. For example, if you specify PARM=RENT, the resultant module is marked
"reentrant" regardless of the reusability of any included modules.

If more than one output module is produced by a single binder instance, the options specified will
apply to all output modules, unless overridden by a SETOPT control statement, or IEWBIND
FUNC=SETO call.

Page 1 of 1Binder options reference

1/27/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab100/pmbop...

31 Copyright International Business Machines Corporation 2013Copyright International Business Machines Corporation 2013Copyright International Business Machines Corporation 2013
129221292212922--- It's Not Just About HLASM It's Not Just About HLASM It's Not Just About HLASM ––– You Need the Binder to 'Assemble' the Parts!You Need the Binder to 'Assemble' the Parts!You Need the Binder to 'Assemble' the Parts!

Options precedence rules (low to high)

1. Installation options from IEWBODEF

2. Primary invocation options, from one of the following:

1. The PARM field of the JCL EXEC statement
2. The first parameter passed to IEWBLINK, IEWBLOAD, etc.

3. The PARMS parameter of IEWBIND FUNC=STARTD

3. The IEWPARMS DD statement – introduced in z/OS V1R11 !
4. The OPTIONS parameter of IEWBIND FUNC=STARTD

5. IEWBIND_OPTIONS environment variables via the ENVARS parameter of
IEWBIND FUNC=STARTD

6. Dynamic option changes from either:

1. Options set from attributes by an INCLUDE -ATTR control statement or
2. The SETOPT control statement, or

3. The PARMS parameter, followed by the OPTION/OPTVAL parameter, of
IEWBIND FUNC=SETO

__iew_api_name_to_str() - Convert API name into
string

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

Data buffers returned by the binder and fast data APIs often contain pointers to names. Those are
character data, but not stored as C null-delimited strings. Instead they have a separate length field in
the buffer structure. This function returns a C string equivalent to the name returned by the API.

The function also provides special handling for binder-generated names, which are returned as binary
numbers. The function will convert those to special displayable strings which will be recognized and
automatically reconverted by the functions in this suite if they are passed back to the API later.

Format

#include <__iew_api.h>
void __iew_api_name_to_str(const char *__name,
 short __len,
 char *__str);

Parameters Descriptions

__name
input: varying string characters.

__len
input: varying string size.

__str
output: string.
Note:

You need to allocate storage for string. The length should be the greater of 10 and input
len+1.

Returned Value

None.

Page 1 of 1__iew_api_name_to_str() - Convert API name into string

1/31/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2...

__iew_create_list() - Create list

z/OS MVS Program Management: Advanced Facilities
SA22-7644-14

The binder's lists consist of a fullword count of the number entries followed by the entries. Each list
entry contains an 8-byte name, a fullword containing the length of the value string, and a 31-bit
pointer to the value string. The __iew_create_list() function creates a list of keywords and values in
“binder list format". It is used to support file lists and exit lists for the __iew_openW() call. There are
two types of lists:

A list of DD names with keywords being any of the standard binder DD names as strings, and
values being string replacement names to use for them.

1.

A list of exit routines with keywords being any of the strings “MESSAGE", “INTFVAL", or
“SAVE", and values being an array of three pointers, to:

2.

exit routine entry point◦

application data passes to the exit◦

message exit severity (unused, but must be provided as zero, for the other two exits)◦

Format

#include <__iew_api.h>
_IEWList *__iew_create_list(int__size,
 char *__keys[],
 void *__values[]);

Parameters Descriptions

__size
input: size of the list.

__keys
input: list of keywords.

__values
input: list of values.

Returned Value

If successful, __iew_create_list() returns API list.

If unsuccessful, __iew_create_list() returns null.

Page 1 of 1__iew_create_list() - Create list

2/2/2013http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieab200/iea2b2b...

17 Copyright International Business Machines Corporation 2013Copyright International Business Machines Corporation 2013Copyright International Business Machines Corporation 2013
129221292212922--- It's Not Just About HLASM It's Not Just About HLASM It's Not Just About HLASM ––– You Need the Binder to 'Assemble' the Parts!You Need the Binder to 'Assemble' the Parts!You Need the Binder to 'Assemble' the Parts!

load module vs. program object

CSECT

C

CSECT

B

CSECT

A

RLD

data

ESD

data

IDR

data

SYM

data

Loaded Text Unloaded Data

Lo
ad

 M
od

ule

Pro
gr

am
 O

bje
ct

Class X

Section A

Section B

Class Y1

Class Z

Class Y2

Section C

element

element

partelement

element part

partelement

65 Copyright International Business Machines Corporation 2013Copyright International Business Machines Corporation 2013Copyright International Business Machines Corporation 2013
129221292212922--- It's Not Just About HLASM It's Not Just About HLASM It's Not Just About HLASM ––– You Need the Binder to 'Assemble' the Parts!You Need the Binder to 'Assemble' the Parts!You Need the Binder to 'Assemble' the Parts!

What else comes with the binder?
Binder APIs …

records

names

1st string ptrreserved
maximum
count

entry
length

versionlengthbuffer ID

