

Fit for Purpose Platform Positioning and Performance Architecture

Joe Temple IBM

Monday, February 4, 11AM-12PM Session Number 12927

Insert Custom Session QR if Desired.

Fit for Purpose Categorized Workload Types

Mixed Workload – Type 1 • Scales up

- Updates to shared data and work queues
- Complex virtualization
- Business Intelligence with heavy data sharing and ad hoc queries

Parallel Data Structures – Type 3

- Scales well on clusters
- XML parsing
- Buisness intelligence
 with Structured Queries
- HPC applications

Application Function Data Structure

Highly Threaded – Type 2

Scales well on large SMP

- Web application servers
- Single instance of an ERP system
- Some partitioned databases

Usage Pattern SLA Integration Scale

Small Discrete – Type 4

• Limited scaling needs

- HTTP servers
- File and print
- FTP servers
- Small end user apps

Black are design factors

Blue are local factors

These do not define workload

- Languages
 - c/c++,COBOL,FORTRAN, JAVA, etc.
- Middleware
 - Oracle, DB2, Websphere, MQ, Tuxedo, CICS, Encina, etc.
- Workload Type
 - OLTP, Analytics, Business Applications, Infrastructure
 - Mixed/Consolidated, Highly Threaded, Parallel, Small Discrete

Workload types can be used for positioning machines, but are not enough to guide platform selection

Workload Definition

- A workload consists of a workload type *plus local factors:*
 - Usage Pattern
 - Load Variability
 - Scale
 - Size of load
 - Service Level
 - Response or turnaround expectation at load
 - Desired Efficiency
 - Target utilization level
 - Integration
 - Connections and shared data impacts

x86 Performance Degrades As I/O Demand Increases

- Run multiple virtual machines on x86 server
- Each virtual machine has an average I/O rate
- x86 processor utilization is consumed as I/O rate increases

Intel CPU As IO Load Increases

Scaling Matters

- Oracle RAC is inefficient by design
 - Network based lock and buffer management
 - Scaling RAC requires complex tuning and partitioning
 - Application partition awareness makes it difficult to add or remove nodes
- Published studies demonstrate difficult or poor scalability
 - Dell (shown in chart): Poor scalability despite using InfiniBand for RAC interconnect
 - CERN: Four month team effort to tune RAC, change database, change application
 - Insight Technology: Even a simple application on two node RAC requires complex tuning and partitioning to

Oracle RAC characteristics as shown in Dell RAC InfiniBand Study <u>http://www.dell.com/downloads/global/power/ps2q07-20070279-Mahmood.pdf</u> CERN (European Organization for Nuclear Research) <u>http://www.oracleracsig.org/pls/apex/RAC_SIG.download_my_file?p_file=1001900</u> Insight Technology <u>http://www.insight-tec.com/en/mailmagazine/vol136.html</u>

Complete your sessions evaluation online at SHARE.org/SFEval

Cache Working Set Matters

Queuing and Load Variability Matter

Response time and Consolidation matter

Modeling and benchmarks

- There is enough data in the machine specification to make an architectural performance model
- We know that distributed on line loads usually have high variability
- However, the resulting model has relatively low precision
 - It is better to use measurements
 - Traditional measurement of maximum throughput metrics will not help enhance the model. It simply replaces it with another low precision model.
 - We should measure single thread speed
 - Single thread Saturation
 - Scaling with increased thread count (related to saturation)
 - Interval data of the usage and possibly throughput pattern

Performance architecture involves requirements as well as comparisons

- How is response time defined?
 - Completion of a single thread of work?
 - Completion of many threads of work?
- What response time is required and what fraction of the peaks need to be "covered"?
 - There is a trade off between peak coverage, cost and utilization efficiency.
 - Feasibility can become and issue if the SLA is too "tight".
- Is "aggregate throughput" meaningful to users or is the preferred metric the number of loads contained in the machine while meeting the SLA?

There is a design tradeoff between throughput and capacity

Here: Throughput is Clock * SMT muttiplier/threads per core * total threads Thread Capacity is Clock * SMT muttiplier/threads per core * cache/thread

It is best to replace is Clock * SMT muttiplier/threads per core by measured thread speed

Throughput can't be faster that thread speed * Threads

Thread capacity is how much work can stack on a single thread which is related to both the thread speed and the cache available.

Virtual Machine Density and the Tradeoff

As VM's per core of the workload increases the importance of aggregate throughput decreases

> As the size of a virtual machine increases The importance of its internal throughput rate increases.

> > Increased density favors favors z; increased VM size favors Power

> > > Intel is favored when resources can be aggregate without scaling penalties. Power and z are favored when resources can be

shared without scaling penalties.

Do you need a deep dive to understand workload fit?

- Workload fit involves more than determining the workload type and a throughput ratio rule of thumb.
 - Operational considerations will change the relative capacity of machines
 - Throughput ratios do not generally take operational tradeoffs into consideration
- An Performance Architecture workshop can provide such a deep dive.
 - The objectives of the workshop are to build a model which produces characteristic curves
 - Response time v Throughput
 - Response time v Load Count or VM count
 - Response time v utilization
 - Throughput v utilization
 - Scaling
- The workshop can work with machine specs and assumed usage patterns in lieu of data but collection of data will yield better results

Fit for purpose thinking comes down to: Know the legacy, workload, and costs

Know the current IT Environment

Examine costs

Workload analysis gets technical fast, and real cost analysis is a deep dive.

Understand the

workload

Eagle Engagements

- Technology Connections Results
- Free of Charge total cost of ownership study that helps customers evaluate the lowest cost option among alternative approaches. The study usually requires one day for an on-site visit and is specifically tailored to a customer's enterprise.
- The study can be focused on at least one of the areas below :

- We conduct Eagle studies for System z, POWER, and PureSystems accounts
- Over 300 customer studies since the formation of the TCO Eagle team in 2007

Engage our Eagle-Eyed Experts!

- Start by requesting your IBM Contact to send an email to <u>eagletco@us.ibm.com</u>
- For deep workload analysis workshop use the same link and ask for Joe Temple
- Will be ramping up capability for workload deep dives in the coming quarters.

