

zEnterprise Long Distance Connectivity Using WDM Technology

Uli Schlegel ADVA Optical Networking SE

> 02/07/2012 Session # 12896

www.LinkedIn.com/in/ulischlegel

2013

San Francisco

Agenda

- WDM what is it ?
 - Technology fundamentals
 - The WDM System
 - Protocols
 - Channel modules general design
 - WDM optical layer
 - Protection options
- WDM design for datacenter environments
 - Network layout
- The near future of WDM

Agenda

- WDM what is it ?
 - Technology fundamentals
 - The WDM System
 - Protocols
 - Channel modules general design
 - WDM optical layer
 - Protection options
- WDM design for datacenter environments
 - Network layout
- The near future of WDM

-0 + 107 > (cor) Acardo (or) Automiud 97(10) Ž=,~, 6.67 (10)¹¹ N m²/K

WDM FUNDAMENTAL CONCEPT

Complete your sessions evaluation online at SHARE.org/SanFranciscoEval

••• in San Francisco 2013

Which flavors of WDM are available

- WDM means <u>Wavelength Division Multiplexing</u>
 - Parallel transmission of number of wavelengths (λ) over a fiber
- Two flavors
 - Dense WDM (DWDM)
 - Narrow channel spacing e.g. 0.4nm (50GHz grid) -> up to 160 λ
 - Coarse WDM (CWDM)
 - Wider channel spacing 20nm (2.5THz grid) -> usually 8-16 λ

WDM optical networking Passive versus active solutions

- Higher capacity per dark fiber
- Higher aggregation bandwidth (100G per λ)
- Higher distance (up to 200km single span)
- Qualified solution available for zEnterprise
- More Features available (Encryption, failover, ...)

What is TDM ?

Multilple clients signals feed into one network signal

Bandwidth Allocation

Relief of wavelengths for further services

OSI 7-Layer Model

File Transfer, Resource Sharing, Database Access,... (e.g. Internet Protocols: Telnet, SMTP (eMail), FTP, HTTP,...)

Data Encryption/Decryption, Compression, Syntax,...

Establishing and Terminating logical Connections, Dialogue Control,...

End-to-End Data Reliability, Address Translation,... (Transport Layer Protocols: TCP, UDP,...)

Addressing, Routing, Switching, Sequencing, Flow Control,... (Network Layer Protocols: X.25, IP, ATM, MPLS, SDH,...)

Defines Data Format including Framing, Error Control,... (Data Link Protocols: HDLC, X.25, ATM, MPLS, Frame Relay, SDH,...)

Line Coding, Physical Link Control, Synchronization,... (Interface Standards, V.24, X.21, G.703 (SDH), G.692 (DWDM),...)

ACTIVE WDM SYSTEMS

Basic working scheme of active WDM

DWDM native service offerings

Gbit/s

Mbit/s

	816	12,5		155,52	200	622,08	1.062,5	1.250	2.125	2.488	2.500	2.666	4.250	5.000	8.500	9.953	10.312	10.000	10.518	10.709	39.813	43.018	
SDH/			ST	M-1	S1	「M-4 ⊇-12			STI	M-16						1-64			S	TM	-256 768		
OTN				0-0		0-12				<u>-40</u>	ΟΤΙ	J-1				192			OT	U-2	2 OT	U-3	
E LAN/ WAN	the	rnet Fast Ethern	et				Giga Ethe	abit rnet							W L	10Gb AN-P AN-PI	E HY HY					100 GbE	
SAN				ESC		N F(FIC	C/ ON	2G FIC	FC/ ON			4G F FIC(-C/ DN	8 F	G C			1(F)G C	16 F	6G C		
Sysplex ETR,C HPC-Clu	Tim CLC uste	ner) er _				Coup Lir ISC	oling ik 5-2	ISC	-3	Inf Ba 1xS	ini nd DR		Inf Ba 1xD	ini Ind DR		1	Inf Ba xQ	ini nd DR					

Generic system Overview

- Shelf
 - AC or DC PSU (redundant)
 - Shelf controller
 - Node controller
 - Optical supervisory channel
 - Amplifier and dispersion comp.
 - WDM filters
 - Mux- and transponders

Note: Some systems has DC feed only, so rectifiers are needed too

WDM MODULE TYPES

Transponder design

Typical link delay: 5µs ≙ 1km of fiber									
Client I/F	SONET/SDH Mapping	G.709 Mapping w/ FEC	WDM Network I/F						

Telco/ISP Transponder design

Simple Transponder design

- Full standard compliant network (WDM) Interface for Telco/ISP interaction
- Digital performance monitoring
- Up to 2000+km possible

- Proprietary network (WDM) interface
- Simple performance monitoring
- Up to 200km possible without regeneration
- Very fast and reliable (high MTBF)

Muxponder design (TDM)

Telco/ISP Muxponder design

Simple Muxponder design

 Full standard compliant network (WDM) Interface for Telco/ISP interaction

- Digital performance monitoring
- Up to 2000+km possible
- High and unstable delay

- Proprietary network (WDM) interface
- Simple performance monitoring
- Up to 200km possible without regeneration
- Very fast and reliable (high MTBF)
- Transparent also for 'non standard' signals like ISC-3, Infiniband,

Fibre optics networks security concerns

There are multiple ways to access fiber

WDM OPTICAL LAYER

120 lambda WDM system

Complete your sessions evaluation online at SHARE.org/SanFranciscoEval

2013

• in San Francisco

Simplified EDFA design

Signal distortion due to chromatic dispersion

- Erbium doped fiber for light amplification without a optical-electrical-optical conversion
- Amplifies up to 80 lambdas at once
- Low latency design

- Dispersion compensation might be needed from 50kms onwards
- Fiber based compensation (spool based)
 - High latency
- Bragg grating based compensation
 - Very low latency
 - But more complicated and expensive
 - Better suitable for datacenters

Protection – overview

- Protection could offer huge leverage over equipment cost
- Wide variety of protection options allows exact match of required availability to • necessary CapEx

Protection cost versus availability

Scenario	Category	Cost Index ¹	Availability [%] ²		
unprotected		1,00	99,94		
line protection (RSM)	-1	1,10	99,99		
line protection (VSM)	-1	1,10	99,99		
Channel protection (NPCUP)	-	1,38	99,994		
Card protection		2,13	99,996		
Client layer protection (CL)		2,00	99,99997		

¹ Based on a 16Ch System with 4xGbE, 4x10GbE, 6x2G FC; 50km G652, HW Cost only

² Based on a fiber availibility of 99,95% and a MTTR of 4h

Agenda

- WDM what is it ?
 - Technology fundamentals
 - The WDM System
 - Protocols
 - Channel modules general design
 - WDM optical layer
 - Protection options
- WDM design for datacenter environments
 - Network layout
- The near future of WDM

WDM NETWORK DESIGN

Network design goals #1

- Fiber routes
 - Must be independent and non crossing
 - As short as possible
 - New fiber preferred for latest protocols
- Protection
 - Shall be based on client devices (SAN/Ethernet Switch /MF) (client based protection)
 - Additional protection may be provided by the WDM system

Network design goals #2

- WDM system
 - Lowest latency possible
 - Qualified by major datacenter vendors (IBM, EMC, HP, Brocade, Cisco)
 - Should behave like a cable rather than like an additional system
- Concept
 - WDM system should be seen as part of the SAN network
 - Proof of concept should be accomplished as part of the theology evaluation

Especially coupling links and sync mirroring links are extremely latency sensitive -> short fiber and low latency devices

WDM based dark fiber network

WDM dark fiber network with protection

Agenda

- WDM what is it ?
 - Technology fundamentals
 - The WDM System
 - Protocols
 - Channel modules general design
 - WDM optical layer
 - Protection options
- WDM design for datacenter environments
 - Network layout
- The near future of WDM

WDM – FUTURE

What's next in WDM ?

- 100G per lambda as a standard protocol with encryption
- SDN for the optical layer
 - Virtualization of the optical layer
 - Full flexible networks with on demand connectivity
 - Openflow based integration
- WDM enabled end devices
 - Switches/Routers could take over the role of a WDM system
 - Highly integrated and standardized interfaces

Extended Distance Redbook

Please check the IBM Redbook homepage for availability

QUESTIONS ?

zEnterprise Long Distance Connectivity Using WDM Technology

Uli Schlegel ADVA Optical Networking SE

02/07/2012 Session # 12896

www.LinkedIn.com/in/ulischlegel

