
Making the Most Out of Native SQL
Procedures

Maryela Weihrauch, Distinguished Engineer
IBM Corporation

Meg Bernal, Senior Software Engineer
IBM Corporation

Wednesday, February 6, 2013
Session Number 12802

Please note
IBM’s statements regarding its plans, directions, and intent are subject to change
or withdrawal without notice at IBM’s sole discretion.

Information regarding potential future products is intended to outline our general
product direction and it should not be relied on in making a purchasing decision.

The information mentioned regarding potential future products is not a commitment,
promise, or legal obligation to deliver any material, code or functionality.
Information about potential future products may not be incorporated into any
contract. The development, release, and timing of any future features or
functionality described for our products remains at our sole discretion.

Performance is based on measurements and projections using standard IBM
benchmarks in a controlled environment. The actual throughput or performance
that any user will experience will vary depending upon many factors, including
considerations such as the amount of multiprogramming in the user’s job stream,
the I/O configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve results
similar to those stated here.

Agenda

• Introduction to Native SQL Procedures
• Enhancements

• XML
• Support for Scalar Functions
• Performance

• Operational Challenges
• Monitoring
• Change Management

• Future Outlook
• Array Data Type
• Autonomous Transactions

4

Introduction to Native
SQL Procedures

General Stored Procedure Benefits

• Provides modularity in application development
• Data will always be processed in a consistent way,

according to the rules defined in the procedure
• Enforcement of business rules

• i.e. use procedures to define set of business rules
common to many applications

• Can be an alternative to constraints and triggers
• Improved application security

• i.e. sensitive business logic runs on the DB2 server,
end-users are authorized to execute the procedure

• Reduces network traffic for distributed applications i.e.
many SQL statements can be encapsulated in a single
procedure

Introduction to SQL Procedures
• What is an SQL Stored Procedure?

• A stored procedure that contains only SQL statements
• May use SQL control statements to write the logic part

of the program (WHILE, IF, etc.)
• SQL Procedural Language or SQL PL

• Two types of SQL Stored Procedures
• External SQL Procedures (from V5 on) - Generated C

program which runs in a WLM environment
• Native SQL Procedures (from DB2 9) - The SQL

procedure logic runs in the DBM1 address space

History

7

PrePre--V9V9 V9V9 V10V10

Stored Procedure External for Host
Languages (C, PLI,
JAVA, etc)

External SQL

Native SQL Native SQL
Enhancements

Scalar Function External

Inline

Non-Inline SQL

Table Function External SQL

External and Native SQL Procedure
Comparison

External Native

• Multi-step (Precompile,
compile, link-edit, BIND, DDL)
• Requires C compiler

• Single step
• DDL

Requires WLM environment,
load module

Runs entirely within the DB2
engine

Preparation

Execution

External Stored Procedure Processing

WLM
//STEPLIB DD SP1

Load
module

z/OS
Appl pgm

CALL SP1

DB2 DBM1 WLM DDF

sched SP1

EDM
pool

Appl pgm

CALL SP1

SP1
logic
(load

module)

SP1 pkg
DB2

directory

SP1
pkg

Native SQL Procedure Processing

z/OS
Appl pgm

CALL SP1

DB2
DBM1

DDF

Appl pgm

CALL SP1

SQL PL native logic
SQL
SQL

SP1
DB2

directory

EDM pool

SQL PL native logic
SQL
SQL

SP1

*native SQL procedures do not run IN the WLM address space but are still running UNDER the WLM

When to Use Native SQL Procedures

• Go To Option When ….
• SQL intensive
• Contains minimal application logic
• Lowest billable cost (for remote) and productivity are

the most important priorities i.e. the stored procedure
execution itself is zIIP off-loadable

• Classic Example is TPC-C:
• An OLTP application for order-entry consisting of entering and

delivering orders, recording payments, checking the status of
orders, and monitoring the level of stock at the warehouses

• Consider Alternatives When ….
• Contains significant amount of application logic

• Many IF/WHILE/CASE/REPEAT statements

• Executes math, string, file manipulation functions

12

Native SQL Procedure
Enhancements in DB2 10

XML Parameters and Variables
• XML is available as a procedure parameter or as an SQL

variable inside a Native SQL Procedure

CREATE PROCEDURE XMLPROC(IN XMLPARM XML, IN VCHPARM VARCHAR(32000))
LANGUAGE SQL
BEGIN

DECLARE myXMLVar XML;

IF (XMLEXISTS('$x/ITEM[value < 200]' passing by ref XMLPARM as "x")) THEN
INSERT INTO T1 VALUES(XMLPARM);

END IF;

SET myXMLVar =
XMLDOCUMENT(XMLELEMENT(NAME "ORDER",

XMLCONCAT(PARM1, XMLPARM)));

INSERT INTO T1 VALUES(myXMLVar);

END #

*Consider the following set of XML APARs: PM66042, PM65046, PM65366, PM66040, PM66142

Enhanced Support for SQL Scalar Functions
• SQL Scalar Functions are enhanced in NFM

– May contain logic using SQL PL control statements

– Non-inline, package

– Parser determines type of scalar function

– Example – Reverse a string
CREATE FUNCTION REVERSE(INSTR VARCHAR(20))
RETURNS VARCHAR(20)
DETERMINISTIC NO EXTERNAL ACTION CONTAINS SQL
BEGIN

DECLARE REVSTR, RESTSTR VARCHAR(20) DEFAULT '';
DECLARE LEN INT;
IF INSTR IS NULL THEN

RETURN NULL;
END IF;
SET (RESTSTR, LEN) = (INSTR, LENGTH(INSTR));
WHILE LEN > 0 DO

SET (REVSTR, RESTSTR, LEN) =
(SUBSTR(RESTSTR, 1, 1) CONCAT REVSTR,
SUBSTR(RESTSTR, 2, LEN - 1),
LEN - 1);

END WHILE;
RETURN REVSTR;
END

Performance – Virtual Storage and CPU
• Virtual storage improvement

• Most multiple instances storage moved to agent local
ATB pool

• CPU reduction
• General CPU reduction
• Specific CPU reduction in commonly used areas in SQL

PL
• SET statement optimizations

• With BIFs moved to Section 1 (CPU for TPC-E reduced by
8.3%)

• Chained SET statement support (multiple values can be set in a
single statement)

• CONCAT(S1,S2)
• Optimization in SELECT x from SYSDUMMY1

• SQLPL workloads at the lab show 10-20% CPU reduction
• A workload using SET statements, IF statements, and

SYSDUMMY1 in native SQL procedures has shown up to 20%
CPU reduction.

Performance - EDM Pool Storage Impact

• One additional section per package (named Section 1)
which has
• Control logic (IF/THEN/ELSE, CASE)
• Assignment statements if no scalar full selects and no UDFs

• Size of Section 1 depends on size of control logic
• When stored procedure invoked, most of Section 1 loaded

as part of above the bar storage
• For all other statements in the procedure, the EDM pool

would go up just like other packages

0GB

2GB

SKCT/SKPT
Most of
CT/PT

Small portion
of CT/PT

17

Operational Challenges

DDF DBM1 WLM SP

Connect

CALL
mySP (:p1)

Commit

Insert

Open

Client

Fetch to fill
row buffer

Class 1 non-nested
time (elap and CPU)

spans connect to
commit and not
executing an SP

Performance Reporting – Native SQL Stored Procedure

Class 2 non-nested
time (elap and CPU)
records time in DB2
while not in an SP

Class 1 and 2 nested
time (elap and CPU)
records time in DB2
while executing an
SP. All time is ‘in

DB2’.

Enhanced Instrumentation for Stored Procedure
Performance Analysis
• PM53243 (DB2 10) New IFCIDs 380 and 381 are created for Stored

Procedure and User-Defined Function detailed information,
respectively.

• These new trace records:
• Identify the Stored Pprocedure or UDF beginning or ending
• Include the current CP, specialty engine, and elapsed time details

for nested activity
• The IFCID 380 and 381 trace records can be used to determine the

CP, specialty engine, and elapsed time for a given SP or UDF
invocation

• Additionally PM53243 (DB2 10) added IFCID 497, 498, 499 for SQL
drill down analysis. These records contain the dynamic or static
statement IDs for non-nested SQL, UDF, and SP work, respectively.

• The statement IDs can be correlated to IFCID 316 dynamic
statement or IFCID 401 static statement cache data.

Enhanced Instrumentation for Stored Procedure
Performance Analysis

DDF DBM1 WLM SP

Connect

CALL
mySP (:p1)

Commit

Insert

Open

Client

SQL1

SQL2

Retur
n

Fetch to fill
row buffer

IFCID 380 written here
for mySP begin. Will
contain 0’s for current
CP, specialty engine
and elapsed times

IFCID 380 written here
for mySP end. Will

contain values that can
be compared to the

begin IFCID380 record
for mySP

IFCID 497 written here
with all non-nested

statement IDs executed
(i.e., the CALL

statement)

IFCID 499 written here
with all statement IDs
executed in the SP
(i.e., SQL1, SQL2)

Monitoring Stored Procedures with OMPE

• The new DB2 instrumentation records for Stored
Procedures are ingested by the OMPE Collector,
aggregated on a system level, and returned to the OPM
Repository Server.

• The OMPE Collector processing includes the sequencing
logic and the calculation of elapsed times for the different
accounting class times written in the IFI records as
timestamps.

• In parallel, the IFCID 316/401 data for the Statement
Caches is collected and a correlation to the executed
Stored Procedure statements is made.

• Full RECTRACE support for all new IFCIDs is provided

Show SQL executed by a SP

Change Management - Problem

• After widespread adoption of SQL PL, customers running into
operational issues in managing SQL PL applications
• Source code management

• No good way to hold source code outside of DB2
• Deployment

• BIND PACKAGE DEPLOY
• Needs DRDA
• Can change only few properties at target server

(QUALIFIER, SCHEMA)
• Properties like PATH, VALIDATE cannot be changed

on target server
• Many forms of DDL, difficult to know which one needed

• CREATE PROC
• ALTER PROC ADD VERSION/REPLACE VERSION

Change Management - Solution

• Provides SQLPL Source Deployment capability
• Introduces a set of sample REXX services that can be

combined to perform these basic SQLPL change
management processes:
• SQLPL source extraction (to a file, to a string)
• SQLPL source transformation and modification (Change the

DDL verb form, schema, version, and options)
• SQLPL source deployment (from a file, from a string)
• SQLPL file transforms (V-format, F-format, HFS)

• SQLPL listing services (precompiler)

• SQLPL source description service (TOC used for editing)

• Replaces BIND DEPLOY usage or complements it

Change Management – Solution (cont’d)

• V9 APAR PM29226 distributes the set of SQLPL source
code management services
• Upgrades the DB2 sample job DSNTEJ67 to exploit the new

services
• Demonstrates the External to Native SQLPL migration

process
• Extract an external SQL proc to file, source deploys a native

SQL SP that generates native options, modify the SQL proc
source file, produce a native SQLPL listing.

26

Future Outlook

Future Outlook – V11
• ARRAY Data Type Support

• Ability to Create a Collection of Elements
• Provides a Mechanism to Convert Arrays to Tables With The collection-

derived-table
• Functionality Allows User to Convert Tables into Arrays With

ARRAY_AGG Aggregate Function

• New SQL to Manipulate & Ascertain Information About Arrays With A
New Set of Array Scalar Functions

• Autonomous Transactions
• Native SQL Procedures that run in their own unit of work

• May perform SQL, COMMITs, ROLLBACK it’s own SQL

• No uncommitted changes from it’s caller are seen

• Locks are not shared between the caller and Autonomous procedure
• Upon completion of the Autonomous procedure, a COMMIT is driven for

the Autonomous procedure work
• The caller’s work is untouched

28

Summary

Summary
• Native SQL PL Routines (procedures/functions) are the way

of the future for SQL intensive applications
• Native SQL PL Routines offer benefits in most scenarios

(reduced cost, increased performance, easier development
and maintenance)

• If you are already using External SQL procedures, migration
to Native SQL procedures is worthwhile

• Consider Native SQL PL Routines for SQL intensive new
application development

• If your parameter lists are long and/or you use temp tables to
return data from your procedures, Array Data Types can
simplify your procedures

• Autonomous Native SQL PL Procedures provide a capability
to separate units of work

Making the Most Out of Native SQL
Procedures

Maryela Weihrauch, Distinguished Engineer
IBM Corporation

Meg Bernal, Senior Software Engineer
IBM Corporation

Wednesday, February 6, 2013
Session Number 12802

