
Leveraging the Instrumentation Facility on
DB2 for z/OS: Tracing and Monitor
Fundamentals
John B. Tobler
IBM, DB2 for z/OS Senior Technical Staff Member
jtobler@us.ibm.com

February 7, 2013 3:00 – 4:00
Session 12783

1

Disclaimer:
Information regarding potential future products is intended to outline our general
product direction and it should not be relied on in making a purchasing
decision. The Information mentioned regarding potential future products is not a
commitment, promise, or legal obligation to deliver any material, code or
functionality. Information about potential future products may not be
incorporated into any contract. The development, release, and timing of any
future features or functionality described for our products remains at our sole
discretion.

Performance Disclaimer:
This document contains performance information based on measurements done
in a controlled environment. The actual throughput or performance that any user
will experience will vary depending upon considerations such as the amount of
multiprogramming in the user’s job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be
given that an individual user will achieve throughput or performance
improvements equivalent to the numbers stated here.

2

Agenda

• Introduction to instrumentation
• Instrumentation volume control

• Accounting rollup
• SMF compression
• Trace Filtering

• Aggregated performance statistics
• Statement level analysis
• Stored procedure analysis
• Auditing

3

DB2’s Instrumentation Facility
• DB2 defines traces records as IFCIDs

• Each record has a unique mapping (DSNDQW* external
macros or DSNWMSGS)

• When written to SMF, the DB2 record types are 100
(statistics), 101 (accounting), and 102 (everything else)

• Trace records can be externalized based on
• A timer (statistics)
• An event (accounting, performance, audit)
• A real-time request (monitor)

• Managed via –START, –STOP, –DISPLAY,
–MODIFY TRACE commands
• IFCIDs are grouped into ‘classes’ by trace type for ease of use

Example: --START TRACE(STAT) CLASS(1) enables IFCID 1, 2, 105, 106, 202,
and 225

4

DB2’s Instrumentation Facility

DB2 CICS application

SMF or GTF

System
stats timer
expires and

writes
records to

dataset

CICS
transaction

completes and
accounting

record written
to dataset

5

DB2’s Instrumentation Facility – IFI interface

OMPE

Show me all
active threads

DB2

OP
Buffer

Monitor data
collector

Monitor
return
area

CICS application

Monitor
return
area

OMPE

Show me SQL
events

SQL end
event record

IFCID 58
written to OP

buffer IFI READA
request
transfers
records in
buffer to

return area

IFI READS request
transfers IFCID

148 data on CICS
tran to return area

6

Instrumentation Basics Continued…

• The most common and recommended classes are:

Negligible1, 3, 9 to track all system level activity
(SQL, BP, storage, CPU), deadlock and
timeout
5 for data-sharing installations to track
group buffer pools

Stats

2-3% CPU
Classes 7 and 8 can
consume ~1K/package/
transaction of ECSA in v9

1, 2, 3, 7, 8 to track time in and out of DB2
and each package executed
10 for package level drill down

Accounting

Typical OverheadRecommended ClassesTrace Type

• Audit classes are largely determined by security and monitoring needs. The impact of
these is typically low.

• Performance traces are often used for detailed analysis. These may be very high
volume and can induce overhead of 10-20% CPU (see filtering).

7

Instrumentation Basics Continued…
• IFCIDs can be destined for SMF and GTF datasets or an in memory OP buffer

• An IFCID is built 1x and then routed to each destination. Thus a record destined for 2
destination does not incur 2x the overhead. The majority of tracing overhead is in the
build phase of the record with the externalization having smaller impact.

• Some IFCIDs are not external records and are switches to signal the collection of
additional data (e.g., accounting classes 7,8 enable the data collection for IFCID239).
The destination for switch IFCIDs is ignored and filters do not impact these IFCIDS. The
destination for the externalized record is what matters.

The serialization mechanism is the
CML lock of the MSTR address
space. This may adversely affect
system throughput in v9 (mitigated in
v10). This is typically seen as an
increase in not accounted for time
when a high volume trace is started.

Limited in memory buffer (64M in
v10). May be overrun if monitor
program doesn’t empty the buffer.
Monitor may store permanently for
post-analysis but typically these are
discarded.

OP

Low MVS dataset can be saved for post-
analysis. Difficult to overrun but can
be at high volumes (see filtering)

SMF or GTF
OverheadData PermanenceDestination

8

Agenda

• Introduction to instrumentation
• Instrumentation volume control

• Accounting rollup
• SMF compression
• Trace Filtering

• Aggregated performance statistics
• Statement level analysis
• Stored procedure analysis
• Auditing

9

Volume Control – Accounting

• V8 introduced rollup accounting
– Controlled by ZPARMs ACCUMACC and ACCUMUID
– Rolls up ACCUMACC number of 'end user instances' into a single

accounting record for DDF and RRSAF threads
Example: userid = 'jtobler' runs 10 distributed transactions and 1
accounting record is written for all 10 transactions

– Rollup Accounting can reduce SMF volume ACCUMACC times for DDF
and RRSAF threads

– Drawbacks to rollup accounting are:
● Not all fields are rolled up
● Package accounting is not useful in v8/v9

Rollup

10

• V10 dramatically enhanced rollup accounting
– Up to 24 packages are now rolled up (DSNDQPAC in IFCID 239)

– Up to 4 remote locations are now rolled up (DSNDQLAC in
IFCID 3)

– IFI accounting data is now rolled up (DSNDQIFA in IFCID3)

– Distributed header, DDF accounting information reflect the last
thread to roll data

– Fixed time rather than variable time staleness threshold

Volume Control – Accounting

11

• V10 also introduced SMF compression
• Controlled by ZPARM SMFCOMP with the default being OFF
• Will compress all records written to SMF
• Simple decompression algorithm
• Accounting records compress 80-90% in many cases
• Overhead is ~1%

• A combination of rollup accounting with ACCUMACC at 10 and SMF
compression could reduce SMF accounting volume by 99%!

Rollup

Compress

Volume Control – Accounting

12

Volume Control – Filtering
• DB2 9 introduced extensive enhancement to instrumentation filtering. Filters now

include PLAN, LOCATION, AUTHID, USERID, APPNAME, WRKSTN, PKGPROG,
PKGLOC, PKGCOL, CONNID, CORRID, ROLE and eXclude keywords for each (i.e.,
XPLAN)

• Terminating and positional wildcards are allowed (e.g., PLAN(DSNTEP*)
PLAN(PLAN_01))

• For each affirmative filter, multiple values are allowed. The logic between these is
OR logic. For example:

--START TRACE(PERFM) CLASS(3) PLAN(A, B)

will write performance trace records if the PLAN = A OR PLAN = B.
Note: This will start effectively 2 traces so the total trace limit of 32 may be reached
more rapidly. Consider the use of wildcards if possible.

• For each exclude filter, multiple values are allowed. The logic between these is AND
logic. For example:

--START TRACE(PERFM) CLASS(3) XPLAN(A,B)

will write performance trace records if the PLAN is not A AND is NOT B.

13

Volume Control – Filtering
• Filtering is binary decision to externalize the entire record or to

discard it. The state of the thread attempting to write the record is all
that is considered. The content of the record does not apply.

Note: Package filters do NOT filter content from IFCID239. Filtering
content may be considered in a future release of DB2.

• Filtering only applies to records that are externalized. IFCIDs that
are global switches (e.g., accounting class 2, 3, 7, 8, IFCID318,
IFCID400 etc.) cannot be filtered.

• Filtering is applied during the build phase of each record.
Depending on the record, there is still some overhead for records
that are discarded. The savings are primarily volume control and a
% of the CPU for an unfiltered trace.

14

Agenda

• Introduction to instrumentation
• Instrumentation volume control

• Accounting rollup
• SMF compression
• Trace Filtering

• Aggregated performance statistics
• Statement level analysis
• Stored procedure analysis
• Auditing

15

Aggregated Performance Statistics –
Combining Accounting and Statistics
• Performance analysis and monitoring is typically done by a combination

of statistics and accounting
• Commonly use system wide counters as heuristics to ID interval where

wait times or CPU usage would have increased (e.g., I see a 2x inflow of
DDF threads so this may be a time where CPU spiked).

Identify wide
interval

Collect IFCIDs 1 and 2
to look at thread counts,

SQL counts, lock,
and BM stats

Identify narrow window
based on stats analysis

Aggregate IFCID 3 accounting
records by connection type

to identify the
application or application type

for detailed analysis

16

Aggregated Performance Statistics –
Combining Accounting and Statistics

• PM62797 simplifies the process where we can look at aggregated
accounting data in a single snapshot view. With IFCID369 (stats class 9)
accounting wait and CPU data is aggregated per connection type.

• Allows for us to positively ID the interval with high wait times and CPU
and then attempt to ID the cause rather than the reverse.

Identify wide
interval

Analyze IFCID 369 aggregate
accounting records to identify the

time interval and the
application or application type

for detailed analysis

17

Agenda

• Introduction to instrumentation
• Instrumentation volume control

• Accounting rollup
• SMF compression
• Trace Filtering

• Aggregated performance statistics
• Statement level analysis
• Stored procedure analysis
• Auditing

18

Statement Level Statistics
• Enhance messages and traces to capture statement level information
• Externalize in THREAD INFO messages for deadlocks, timeouts,

unavailable resource and lock escalation
• IFCIDs enhanced for statement level information

• IFCID 53/58 – includes per statement execution statistics
• IFCID 63/350 – includes STMT_ID with statement text
• IFCID 124 – statement level accounting

• Monitor Class 29 (overhead is ~1-3%)
• New for statement level detail
• Activates IFCID 318 - IFCID 316 information can be collected

via READS
• IFCID 401 for static SQL

• Statement information externalized in real-time
• STMT_ID - unique statement identifier assigned when statement first

inserted into dynamic statement cache
• Statement Type – static or dynamic
• Bind timestamp – 10 byte timestamp when stmt was prepared
• Statement level execution statistics (per execution)

19

Statement Level Statistics Continued…

It is important to note that statement level stats are collected at different
intervals than package accounting or plan level accounting. The sum total
of statement level stats for all statements in a package will be < the
package totals. Deviations are caused by 1) point of collection 2)
transaction termination 3) COMMIT.

20

Agenda

• Introduction to instrumentation
• Instrumentation volume control

• Accounting rollup
• SMF compression
• Trace Filtering

• Aggregated performance statistics
• Statement level analysis
• Stored procedure analysis
• Auditing

21

Stored Procedure Performance Analysis –
Enhanced Instrumentation
• SP and UDF performance and tuning analysis has typically been

performed via a combination of IFCID3 and IFCID239. IFCID3
provides plan level information and aggregates all executions of SPs
or UDFs into common fields. This can create difficulty when tuning
multiple procedures or functions that are executed in a given
transaction. IFCID239 is also used for performance and tuning
analysis at the package level. This provides better granularity than
IFCID3 but still may not be sufficient for all transactions. If a
procedure or function is executed multiple times, the variation
between executions cannot be identified.

• PM53243 (DB2 10) New IFCIDs 380 and 381 are created for Stored
Procedure and User-Defined Function detail respectively. These
records:
• Identify the stored procedure or UDF beginning or ending
• Include the current CP, specialty engine, and elapsed time

details for nested activity

• These record can be used to determine the CP, specialty engine,
and elapsed time for a given SP or UDF invocation

22

Stored Procedure Performance Analysis –
Enhanced Instrumentation

DDF DBM1 WLM SPAS

Connect

CALL
mySP (:p1)

Commit

Insert

Open

Client

SQL1

SQL2

Return

Fetch to fill
row buffer

IFCID 380 written here
for mySP begin. Will
contain 0’s for current
CP, specialty engine
and elapsed times

IFCID 380 written here
for mySP end. Will

contain values that can
be compared to the

begin IFCID380 record
for mySP

23

Agenda

• Introduction to instrumentation
• Instrumentation volume control

• Accounting rollup
• SMF compression
• Trace Filtering

• Aggregated performance statistics
• Statement level analysis
• Stored procedure analysis
• Auditing

24

Audit Policies – Satisfy Your Auditor
• New audit policies provide needed flexibility and

functionality
• Auditor can define an audit policy to audit any access

to specific tables for specific programs during day
• Audit policy does not require AUDIT clause to be specified
using DDL
• An audit policy generates records for all read and update
access for statements with unique statement identifier
• Audit policy provides wildcarding of based on schema and
table names

• Auditor can define an audit policy to identify any
unusual use of a privileged authority
• Records each use of a system authority
• Audit records written only when authority is used for
access
• External collectors only report users with a system
authority

25

Audit Policies – Exploitation
• Security administrator using the new SECADM authority

maintains DB2 audit policies in a new catalog table
• SYSIBM.SYSAUDITPOLICIES

• Audit policies enabled using –START TRACE command

• Audit policies disabled using –STOP TRACE command

• Up to 8 audit policies can be specified to auto start or auto
start as secure during DB2 start up

• Only user with SECADM authority can stop a secure audit
policy trace (APAR PM28296)

26

Audit Policies – Categories

Categories
CHECKING
VALIDATE
OBJMAINT
EXECUTE
CONTEXT
SECMAINT
SYSADMIN
DBADMIN

Mapping IFCIDs
IFCID 83 (only authentication failures), IFCID 140
IFCIDs 55, 83, 87, 169, 269, 319
IFCID 142
IFCIDs 143, 144, 145
IFCIDs 23, 24, 25
IFCIDs 141, 270, 271
IFCID 361 (Audits installation SYSADM, installation
SYSOPR, SYSOPR, SYSCTRL, SYSADM)

IFCID 361 (Audits DBMAINT, DBCTRL, DBADM,
PACKADM, SQLADM, system DBADM, DATAACCESS,
ACCESSCTRL, SECADM)

27

Audit Policies – Example Dynamic
Auditing of Tables

• Audit all the tables that start with ‘PAY’ in EMPLOYEE schema
• Does not require AUDIT clause to be specified during table

definition
• IFCID 145 trace record contains full SQL statement text and

unique statement ID
• IFCID 143 and 144 trace records contain the unique

statement ID that can be used to identify the SQL statement
in IFCID 145 record.

INSERT INTO SYSIBM.SYSAUDITPOLICIES (AUDITPOLICYNAME,
OBJECTSCHEMA, OBJECTNAME, OBJECTTYPE, EXECUTE)
VALUES ('TABADT1',‘EMPLOYEE','’’PAY%’’','T','A');

-STA TRACE (AUDIT) DEST (GTF) AUDTPLCY(TABADT1);

28

Thank you !

John Tobler (jtobler@us.ibm.com)

29

Appendix
• Global switch IFCIDs. Filtering and destinations for these

do not apply
• Accounting and monitor classes 2, 3, 7, 8, 10
• IFCIDs 318, 400

• IFCIDs available only via IFI READS requests. These
cannot be directed to SMF, GTF, or OP buffer
destinations.
• IFCIDs 124, 129, 147, 148, 149, 150, 185, 187, 197, 306

Note: IFCID 316 and IFCID 401 will only be written to SMF,
GTF, or an OP destination if a dynamic statement or static
statement is evicted from a cache. To view the entire cache,
an IFI READS request must be made.

