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DB2 10 and Query Performance 

• Major focus of DB2 10 was “out-of-the-box” 
performance improvements
• Query performance has a large impact on application/system 

performance (and thus, TCO)
• Bigger focus on performance than prior releases of DB2

• 3-pronged approach for DB2 10 query performance 
• Plan management and query stabilization
• Runtime optimizations (regardless of access path choice)
• New optimizer choices 
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DB2 10 Optimizer changes overview

• Plan management and Query Stabilization
• Concentrate statements with literals
• Plan management – APREUSE/APCOMPARE
• EXPLAIN enhancements
• Statement level hints and options

• Runtime optimizations
• Predicate evaluation enhancements 
• RID overflow to work file

• New access path choices
• Multi-IN list matches
• Range-list access

• Misc
• RUNSTATS performance and usability
• Even distribution for parallelism and removal of limitations
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Focus of this 
presentation

See session 12740 “DB2 
for z/OS Migration – 
Query Performance 

Considerations”



Agenda

• Introduction
• IN-list and complex ORs
• Predicate simplification
• Stage 2 predicate pushdown
• View/Table expression merge
• Misc optimizations
• Summary

5



Performance enhancement for 
complex OR & long IN-lists

• Improvement to early-out of (non-matching) ORs and
IN-lists
• For example: WHERE C1 IN (1,2,3,...,100)

• DB2 9 stops predicate comparison once a match was found, but 
cycles through the predicate tree to find the end.

• DB2 10 stops predicate comparison and jumps to end

• Predicate application (code path) is also reduced in DB2 10
• Runtime optimization - no REBIND needed 
• Not visible in PLAN_TABLE 
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IN-list Table
Table Type 'I' and Access Type 'IN'  

• The IN-list predicate will be represented as an in-memory table if:
o List prefetch is chosen, OR

o More than one IN-list is chosen as matching

• The EXPLAIN output associated with the in-memory table will have:
o New Table Type: TBTYPE – ‘I’
o New Access Type: ACTYPE – ‘IN’ 

 SELECT … FROM T1 WHERE T1.C1 IN (?, ?, ?);

QBNO   PLANNO   METHOD TNAME            ACTYPE  MC  ACNAME     QBTYPE     TBTYPE PREFETCH

1          1              0         DSNIN001(01)  IN          0                      SELECT    I          
1          2              1         T1                     I             1    T1_IX_C1  SELECT   T          L



Multi IN-List Example

• Ability to match on more than one IN-list
o DB2 9 could only match on the 1st IN-list
o DB2 10 can match on all three columns in this example

SELECT … FROM T1
WHERE C1 IN (?, ?)  
  AND C2 IN (?, ?)
  AND C3 = ?
     
Pln                                   I SORT COMP  T
Nr Nr   M Table         AC  MC Index  O UJOG UJOG  T
-- --- -- ------------  -- --- ------ - ---- ----  -
 1   1  0 DSNIN002(01)  IN   0 I1     N NNNN NNNN  I 
 1   1  1 DSNIN003(01)  IN   0 I1     N NNNN NNNN  I 
 1   1  1 T1            I    3 I1     N NNNN NNNN  T

index I1 on T1 (C1,C2,C3)
column  cardinality
C1               2 
C2              20 
C3      10,000,000 



IN-list Predicate Transitive Closure (PTC)

• Without IN-list PTC (DB2 9)
o Optimizer will be unlikely to consider T2 as the first table accessed

• With IN-list PTC (DB2 10)
o Optimizer can choose to access T2 or T1 first

• PTC already supported for =, BETWEEN, <, <=, >, >=

SELECT … 
FROM T1, T2
WHERE T1.C1 = T2.C1 
  AND T1.C1 IN (?, ?, ?)
  AND T2.C1 IN (?, ?, ?)  Optimizer can generate 

   this predicate via PTC 



Reducing Matchcols for IN-lists

• If the equals (=) predicates provide strong filtering
o Optimizer may choose not to match on the IN-list

• Instead apply as index screening
• To avoid overhead of additional index probing

• Example above
o MATCHCOLS reduced from 2 to 1
o ACCESSTYPE changed from “N” to “I”

• Optimizer already trims IN-lists if equals predicates are unique

SELECT … 
FROM T1
WHERE C1 = ? 
  AND C2 IN (?, ?, ?, ?, ?)  Optimizer may
                               choose not to match  



Range-list access
Targets two types of OR queries 

• Cursor scrolling (pagination) SQL
o Retrieve next n rows
o Common in COBOL/CICS and any screen scrolling application
o Not to be confused with “scrollable cursors” 

• Hence term pagination to avoid confusion (???)

• Complex OR predicates against the same columns
o Common in SAP

• In both cases:
o The OR (disjunct) predicate refers to a single table only.
o Each OR predicate can be mapped to the same index. 
o Each disjunct has at least one matching predicate.



● Scroll forward to obtain the next 20 rows
o WHERE clause may appear as:

o Assumes index is available on (LASTNAME, FIRSTNAME)
o DB 10 supports

● Single matching index access with sort avoided
o DB2 9 requires

● Multi-index access, list prefetch and sort

WHERE (LASTNAME='JONES' AND FIRSTNAME>'WENDY') 
   OR (LASTNAME>'JONES')
ORDER BY LASTNAME, FIRSTNAME;

Simple scrolling 
Index matching and ORDER BY



● To avoid multi-index access in online transactions for scrolling SQL
o Customers added redundant predicate to support single matching index
o And – potentially OPTIMIZE FOR n ROWS

o DB2 10 supports
● MATCHCOLS=2 on 1st OR, and MC=1 on 2nd OR

o DB2 9 supports
● MATCHCOLS=1 on predicate in red

• NOTE: APAR PM56355 to encourage range-list access with OFnR and extra predicate

WHERE ((LASTNAME='JONES' AND FIRSTNAME>'WENDY') 
   OR (LASTNAME>'JONES'))
AND LASTNAME >= 'JONES' 
ORDER BY LASTNAME, FIRSTNAME
OPTIMIZE FOR 1 ROW;

Simple scrolling – Pre-DB2 10 Solution



● Given WHERE clause
o And index on one or both columns

● DB2 9 requires
o Multi-index access with list prefetch

● DB2 10 supports
o Matching single (range-list) index access – no list prefetch
o Or, Multi-index access with list prefetch

WHERE (LASTNAME='JONES' AND FIRSTNAME='WENDY') 
   OR (LASTNAME='SMITH' AND FIRSTNAME='JOHN');

Complex OR predicates against same index



Range-list – PLAN_TABLE representation

• Order of PLAN_TABLE entries is by coding sequence
o Determination of execution sequence deferred to runtime

• When all host variables/parameter markers are resolved
o For this example, coding sequence does not match execution sequence

WHERE (LASTNAME>‘JONES’)
   OR (LASTNAME=‘JONES’ AND FIRSTNAME>’WENDY’)
ORDER BY LASTNAME, FIRSTNAME;

QBlockno Planno Accessname Access_Type Matchcols Mixopseq

1 1 IX1 NR 1 1
1 1 IX1 NR 2 2

New access type (NR = IN-List Range) Coding sequence



Range-list – not always chosen

• Range-list (ACCESSTYPE=‘NR’) is a new optimizer choice
o Does not mean “ALWAYS” chosen

• This is a cost-based choice

• Range-list is a good choice when
o Single matching index access is needed to avoid:

• RID processing
• Sort (if order is needed)

o Ideal for online (CICS/COBOL or web) screen scrolling

• Biggest challenge for optimizer
o Programs that FETCH first n rows, but do NOT have OPTIMIZE or FETCH 

FIRST clause
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Remove “Always False” Predicates

• Remove “Always False” literal predicates
o Literal “IN” or “=“ only (no host vars or REOPT)

• Original “OR” is stage 2
– Disables index access and many query transformations

o Becomes….

o Documented tricks are NOT pruned (OR 0=1)
• Available in V8/9 via zparm PREDPRUNE

WHERE ('A' = 'B' OR COL1 IN ('B', 'C'))

WHERE COL1 IN ('B', 'C')



Other variations of “Always False/True”

• Removal of “Always False” literal predicates
o Does NOT apply for “Always False” within “AND”

• “Always True” predicates are NOT pruned
o These will be executed by DB2 for each row processed

WHERE ((COL1= 'C' AND 'A' = 'B') OR COL1 ='B')

WHERE 1=1



Remove Unnecessary Tables

• Remove unnecessary LEFT OUTER JOIN tables
o If no columns are SELECTed from the RIGHT table, then

• The right table is unnecessary if no duplicates because:
– Unique index on join key of right table
– Or, SELECT DISTINCT

o NOTE: “Removed” tables will NOT appear in explain (PLAN_TABLE)

» Available in V8/9 via zparm PREDPRUNE

SELECT DISTINCT T1.C3
FROM T1 LEFT OUTER JOIN T2
ON T1.C2 = T2.C2
WHERE T1.C1 = ?

SELECT DISTINCT T1.C3
FROM T1 
WHERE T1.C1 = ?
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Stage 2 predicate “pushed down” to IM/DM 

• Most Stage 2  (residual) predicates can execute as index screening 
(indexable) or stage 1 (sargable)
o CPU time improvement
o Reduced data getpages if stage 2 predicate becomes index screening
o Applies to

• Arithmetic/datetime expressions, scalar built-in functions, CAST (essentially 
all expressions without subqueries or CASE)

o Does not apply to
• Cannot be OR’d with an IN predicate

• List prefetch

o Eligible for DM (stage 1) pushdown but NOT IM pushdown
• Join predicates

• OR’d predicates that span different predicate stages

• Externalized in DSN_FILTER_TABLE column PUSHDOWN



Stage 2 predicate “pushed down” to IM/DM 

• Timing
o Index matching
o Index screening 
o Stage 2 pushed down to IM 
o Stage 1 
o Stage 2 pushed down to DM
o Stage 2

• Push down decision is made after the access path selection
o Does not influence access path selection decisions (not cost-based)
o RDS is still invoked to evaluate

No data access
Data access



Stage 2 predicate “pushed down” examples (1)

Given an index on CITY, ZIPCODE
EXPLAIN ALL SET QUERYNO = 1 FOR       
 SELECT CUSTNO FROM CUSTOMERS                       
 WHERE CITY = ?                 
   AND MOD(ZIPCODE,5)=0;
                              
DSN_FILTER_TABLE output                                              
   +---------------------------------------------+
   |  QUERYNO  |  PREDNO  |   STAGE   | PUSHDOWN |
   +---------------------------------------------+
 1_|         1 |        2 | MATCHING  |          | 
 2_|         1 |        3 | STAGE2    | I        |  Eligible for IM
   +---------------------------------------------+
Where is PREDNO=1? From DSN_PREDICAT_TABLE
   ----------------------------------------------------------------------------------------
   | PREDNO | TYPE |  TEXT
   ----------------------------------------------------------------------------------------
 1_|      1 | AND  | (SYSADM.CUSTOMERS.CITY=? AND MOD(SYSADM.CUSTOMERS.ZIPCODE,5)=0)



Stage 2 predicate “pushed down” examples (2)

EXPLAIN ALL SET QUERYNO = 2 FOR       
 SELECT CUSTNO FROM CUSTOMERS                       
 WHERE CITY = ?                 
   AND( CASE WHEN ZIPCODE = 99999 THEN 1 ELSE ZIPCODE END) = 99999; 

EXPLAIN ALL SET QUERYNO = 3 FOR                        
 SELECT CUSTNO                                         
 FROM CUSTOMERS                                        
 WHERE CITY = ?                                  
 AND (MOD(ZIPCODE,5)=0 OR ZIPCODE IN (99998, 99999));                          
                     

   +---------------------------------------------+
   |  QUERYNO  |  PREDNO  |   STAGE   | PUSHDOWN |
   +---------------------------------------------+
 3_|         2 |        2 | MATCHING  |          | 
 4_|         2 |        3 | STAGE2    |          |  Not Eligible (CASE expr)
 5_|         3 |        2 | MATCHING  |          | 
 6_|         3 |        3 | STAGE2    |          |  Not Eligible (IN-list)
   +---------------------------------------------+



Stage 2 predicate “pushed down” – Predicate Tricks (3)

EXPLAIN ALL SET QUERYNO = 4 FOR                        
 SELECT CUSTNO                                         
 FROM CUSTOMERS                                        
 WHERE CITY = ?                                  
 AND (ZIPCODE = 99999 OR 0=1);    documented trick      
                                         
EXPLAIN ALL SET QUERYNO = 5 FOR                        
 SELECT CUSTNO                                         
 FROM CUSTOMERS                                        
 WHERE CITY = ?                                  
 AND (ZIPCODE = 99999 OR 1=2);    Incorrect use of documented trick  

   +---------------------------------------------+
   |  QUERYNO  |  PREDNO  |   STAGE   | PUSHDOWN |
   +---------------------------------------------+
 7_|         4 |        2 | MATCHING  |          | 
 8_|         4 |        3 | STAGE2    | I        |  Eligible for IM
 9_|         5 |        2 | MATCHING  |          | 
10_|         5 |        3 | MATCHING  |          |  ??????
   +---------------------------------------------+

** OR 1=2 has been pruned, leaving indexable predicate. OR 0=1 is NOT 
pruned.
 



Stage 2 predicate “pushed down” – Predicate Tricks (4)

EXPLAIN ALL SET QUERYNO = 6 FOR              
 SELECT CUSTNO                               
 FROM CUSTOMERS                              
 WHERE CITY = ?                        
 AND ZIPCODE = 99999+0;        Documented trick to disable index matching
                                   
EXPLAIN ALL SET QUERYNO = 7 FOR              
 SELECT CUSTNO                               
 FROM CUSTOMERS                              
 WHERE CITY = ?                        
 AND ZIPCODE+0 = 99999;        Incorrect use of documented trick (stage 2 pred)  

   +---------------------------------------------+
   |  QUERYNO  |  PREDNO  |   STAGE   | PUSHDOWN |
   +---------------------------------------------+
11_|         6 |        2 | MATCHING  |          |
12_|         6 |        3 | STAGE1    |          |  applied as screening
13_|         7 |        2 | MATCHING  |          |
14_|         7 |        3 | STAGE2    | I        |  Eligible for IM
   +---------------------------------------------+



Stage 2 predicates “pushed down” examples (5)

Given and index on CITY, ZIPCODE
EXPLAIN ALL SET QUERYNO = 8 FOR              
 SELECT CUSTNO                               
 FROM CUSTOMERS                              
 WHERE CITY = ?                        
 AND (ZIPCODE+0 = 99999 OR ZIPCODE = 99998);  All OR’d predicates are in index
                            
EXPLAIN ALL SET QUERYNO = 9 FOR         
 SELECT CUSTNO                          
 FROM CUSTOMERS                         
 WHERE CITY = ?                   
 AND (ZIPCODE+0 = 99999 OR CUSTNO = 1);       All OR’d predicates NOT in index  

   +---------------------------------------------+
   |  QUERYNO  |  PREDNO  |   STAGE   | PUSHDOWN |
   +---------------------------------------------+
15_|         8 |        2 | MATCHING  |          |
16_|         8 |        3 | STAGE2    | I        |  Eligible for IM
17_|         9 |        2 | MATCHING  |          |
18_|         9 |        3 | STAGE2    | D        |  Eligible for DM (stage 1)
   +---------------------------------------------+
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Merge expression on preserved side of
Outer Join

• DB2 can merge view/table expression on preserved side of outer join
o CASE, VALUE, COALESCE, NULLIF, IFNULL

• Exception if merged predicate is stage 2

SELECT A.C1, B.C1, A.C2, B.C2
FROM T1, (SELECT COALESCE(C1,0) as C1, C2 
          FROM   T2) A     <--table expression 'A' will be Merged
     LEFT OUTER JOIN
         (SELECT COALESCE(C1,0) as C1, C2
          FROM   T3) B     <-- B will be Materialized           
     ON A.C2 = B.C2
WHERE T1.C2 = A.C2; 



Merge single table view/
table expression with subquery

SELECT *
FROM T1 LEFT OUTER JOIN
       (SELECT * FROM T2
        WHERE T2.C1 = (SELECT MAX(T3.C1) FROM T3 ) ) TE <--subquery
ON T1.C1 = TE.C1;

SELECT *
FROM T1 LEFT OUTER JOIN T2              <-- table expression is merged
ON T2.C1 = (SELECT MAX(T3.C1) FROM T3)   <-- subquery ON-predicate
AND T1.C1 = TT.C1; 

• View/Table expression with subquery on NULL-supplied side
– Merge into ON clause

• On preserved side
– Merge into WHERE clause



Correlated to Non-correlated Rewrite

• DB2 10 can rewrite correlated to non-correlated 
o If correlation predicates are covered by local predicates in outer 

• Can result in additional index matching predicate
o Only targets simple example shown

SELECT TRANSDATE
FROM T1 A
WHERE A.ACCOUNTNO = ?
  AND A.TRANDATE =
(SELECT MAX(B.TRANDATE)
 FROM T1 B
 WHERE B.ACCOUNTNO = A.ACCOUNTNO)

Indexable

Indexable

Stage 2

SELECT TRANSDATE
FROM T1 A
WHERE A.ACCOUNTNO = ?
  AND A.TRANDATE =
(SELECT MAX(B.TRANDATE)
 FROM T1 B
 WHERE B.ACCOUNTNO = ?) Indexable

Indexable

Indexable

DB2 10 
Rewrite
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Minimizing Optimizer Challenges – Safe Optimization

• Potential causes of sub-optimal plans 
o Insufficient statistics 
o Unknown literal values used for host variables or parameter markers

• Optimizer will evaluate the risk for each predicate
o For example: WHERE BIRTHDATE < ?

• Could qualify 0-100% of data depending on literal value used

o As part of access path selection
• Compare access paths with close cost and choose lowest risk plan



Minimizing impact of RID failure
• RID overflow can occur for

o Concurrent queries each consuming shared RID pool
o Single query requesting > 25% of table or hitting RID pool limit

• DB2 9 will fallback to tablespace scan*

• DB2 10 will continue by writing new RIDs to work file
o Work file usage may increase

• Mitigate by increasing RID pool size (default increased in DB2 10).

• MAXTEMPS_RID zparm for maximum WF usage for each RID list

o Not supported for queries with column functions (MAX, MIN etc)
o Runtime optimization (no REBIND needed)

* Hybrid join can incrementally process. Dynamic Index ANDing will use WF for failover.



Sort performance enhancements

• Tournament tree sort is avoided for FETCH FIRST n ROWS ONLY

o DB2 9   -  only ORDER BY and (n * (sort key + data)) < 32K

o DB2 10 -  extended to GROUP BY (without HAVING), and to
                (n * (sort key + data)) < 128K 
                if over 128K, each WF for each run contains only n rows

o Instead of sorting, uses in-memory replacement technique 
• Demonstrated on next slides



Sort performance enhancements 2

• Sort is not avoided for FETCH FIRST n ROWS ONLY 
prior to DB2 10: SELECT SUM(C1)

FROM   T1
GROUP BY C2 
FETCH FIRST 3 ROWS ONLY;

T.C1
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1

3

7

8

2

...

Sort

Scan
WF

1

2

3

4

5

6

7

8

9

...

Fetch



Sort performance enhancements 3

• Sort avoidance for FETCH FIRST n ROWS ONLY 
in DB2 9 and later: SELECT SUM(C1)

FROM   T1
GROUP BY C2 
FETCH FIRST 3 ROWS ONLY;

T.C1

9

6

4

5

1

3

7

8

2

...

Scan

2nd fetch

3rd fetch
1st fetch

Mem
9  5  2
6  1
4  3



Other Sort performance enhancements 

• In-memory work file for small sorts 
o extended to intermediate sorts (DB2 9 was top query sort only)

• Up to 255 rows
o block fetch for reading the in-memory Sort work file

• top query sort only 
• (#rows in work file * (sort key + data)) < 1M
• Significant CPU time reduction (due to avoiding RDS/DM trips)

• RID sort and RID intersection are done in-place, RID union is done with 
extra 2 RID blocks only
o Minimizes RID pool storage usage (50% savings for sort/union)
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• Major focus of DB2 10 was “out-of-the-box” performance 
improvements
• Query performance has a large impact on application/system 

performance (and thus TCO)
• Bigger focus on query performance than prior releases of DB2

• 3-pronged approach for DB2 10 query performance
• Plan management and query stabilization
• Runtime optimizations (regardless of access path choice)
• New optimizer choices

DB2 10 and Query Performance - Recap 

Examples provided in 
this presentation
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