
11

zFS Diagnosis I: Performance
Monitoring and Tuning Guidelines

Scott Marcotte
IBM

February 7, 2013 8AM
Yosemite B

Session Number 12730

smarcott@us.ibm.com
Insert
Custom
Session
QR if
Desired.

2

2

Topics

Title Slides

Fundamentals 3-5

Storage 6-8

User File Cache 9-12

Metadata/Backing Cache 13-16

DASD IO 17-19

Lock Contention 20-22

Additional Items 23

Sysplex Sharing 24-25

Object Caching 26-28

Sysplex Statistics 29-32

Going Forward 33

z/OS 11/12 Summary 34

3

3

Fundamentals I: Overview (Most of this presentation is for z/OS 13):

�zFS cache defaults are small
–Larger users of zFS should perform tuning for best

performance

�zFS has F ZFS,QUERY commands which can be used to
gauge performance

–Also has F ZFS,RESET to reset statistics
–Individual stats only 4 byte words – can wrap quickly

• Useful mainly for analysis of peak usage, not long-
term usage

�Cache sizes can be dynamically altered via zfsadm config

�F ZFS,QUERY,STORAGE – Shows how much memory zFS
is using - IMPORTANT

�Ensure that zFS is not paging

zFS caching defaults have been historically low. When zFS was introduced, HFS
was the primary file system and zFS kept its defaults low since most file systems
would be HFS and therefore system memory should be used for HFS caching. As
more customers have moved away from HFS onto zFS, those defaults will not
provide optimal performance. Currently, zFS tuning is a manual process where the
user must use zFS commands to gauge performance and then possibly alter zFS
cache sizes and then re-gauge performance. zFS provides an F ZFS,QUERY
command which is used to show zFS performance. Since the internal counters are
only four bytes large, they can wrap quickly (a few hours of peak usage for heavily
loaded systems) and therefore, the query commands should be viewed as usable
for monitoring perk performance but not necessarily useful for long-term monitoring
(such as days, weeks, or months). zFS is storage constrained in its primary
address space, and care must be taken when altering the caching defaults for
certain caches.

4

4

Fundamentals II: Tuning zFS For All Environments

� Tune zFS by specifying the following zFS startup parameters:
–User_cache_size – Amount of memory used to cache the

contents of user files.
–Meta_cache_size/metaback_cache_size – Amount of memory

used to cache disk blocks that contain metadata.
• Metadata is anything on disk that is not user file data such as directories, access

control lists (ACLs), structures that track free file system space etc…
–Vnode_cache_size – Number of objects that are cached in

memory.
• A file, directory or symbolic link, currently or recently of interest to applications is

represented in memory by a vnode (also called evnode) and that will anchor
additional structures required to process requests for the object.

• zFS caches the most recently accessed objects by applications.
• This parameter is more important to the sysplex environment.

� Can also dynamically alter cache sizes via zfsadm config

zFS allows startup parameters to be specified in a dataset that is specified on the
IOEFSPRM DD statement in the zFS JCL procedure, or via parmlib search. All zFS
options are specified as limits, which determines the maximum amount that zFS will
ever use for that option.

5

5

Fundamentals III: F ZFS,QUERY,KNPFS – zFS summary
PFS Calls on Owner

Operation Count XCF req. Avg Time

--------- ---------- ---------- ----------

zfs_opens 2414314 0 0.004

zfs_closes 2413205 0 0.003

zfs_reads 1809051 0 0.083

zfs_writes 732783 0 0.017

zfs_ioctls 1453868 0 0.001

zfs_getattrs 3041548 0 0.002

zfs_setattrs 10613 0 0.092

zfs_accesses 38730578 0 0.002

zfs_lookups 5926262 0 0.041

zfs_creates 9763 0 0.426

zfs_removes 10604 0 1.532

zfs_links 0 0 0.000

zfs_renames 3710 0 0.489

zfs_mkdirs 333 0 1.247

zfs_rmdirs 529 0 0.275

zfs_readdirs 784790 0 0.550

zfs_symlinks 380 0 0.380

………

zfs_readlinks 34178 0 0.086

zfs_fsyncs 250 0 2.560

zfs_truncs 3931 0 0.012

zfs_lockctls 0 0 0.000

zfs_audits 4970 0 0.046

zfs_inactives 2032174 0 0.001

zfs_recoveries 0 0 0.000

zfs_vgets 3854 0 0.009

zfs_pfsctls 68 0 0.088

zfs_statfss 42700 0 0.008

zfs_mounts 120 0 91.581

zfs_unmounts 2 0 215.575

zfs_vinacts 0 0 0.000

--------- ---------- ---------- ----------

TOTALS 59464578 0 0.017

� This report shows all of the calls made to zFS
since last statistics reset or since start of zFS

�Boldface are write operations

� The *TOTALS* line shows total calls to zFS and the average zFS response time in milliseconds

� Knowing the last reset time, or zFS startup time (from system log), can determine zFS call rates

� Read operation response time desired to be < 1 msec, hopefully significantly less.

The F ZFS,QUER,KNPFS report will show the calls for file systems owned by the
local system (for the single-system environment that is all file systems). It has
another identical report showing the file systems that are owned by a remote
system in the sysplex to break down locally owned, and zFS sysplex client
performance.

If a user does not reset the zFS statistics via the F ZFS,RESET command, then the
statistics shown will be since zFS startup. If the F ZFS,RESET command is used,
then those statistics will be since the reset command affected that particular report
(a user can reset the statistics for only one report, but it is recommended that they
always issues F ZFS,RESET,ALL to reset all statistics to keep things clear). The
system log and zFS job output (if using JES output) will show the time of the last
statistics reset. The last statistics reset time along with the *totals* line can be used
to determine the call frequency to zFS.

Determining the call frequency to zFS determines the importance of tuning zFS, the
higher the rate of calls to zFS the more important its performance is to the system.
In the example above, zFS has a light load and is actually performing well, tuning is
not necessary based on these results.

The XCF Req. column is used to indicate when an owner system has to callback to
clients to reclaim the object lock(s) of the object that are affected by the operation.
It would always be zero for a single system or a system only using z/OS Unix
sysplex sharing as in this example.

6

6

Storage I: zFS System Storage Layout (z/OS 13)

Storage common to all
address spaces

User cache data spaces

user_cache_size (256M)

Metadata backing
cache dataspace

metaback_cache_size (0M)

Log files write-
behind cache

log_cache_size (16M)

1.2 - 1.6 GB

Metadata cache buffer

meta_cache_size (64M)

Vnode (objects) cache

vnode_cache_size (32768)

zFS heap structures and other
storage

zFS Primary Address Space

zFS is a 31 bit C program and therefore its structures reside in its primary address
space with the exception of some dataspaces used to contain in-memory copies of
disk data. zFS does put its internal trace table above the 2GB bar and will run in 64
bit mode when cutting a trace record but all other code runs in 31 bit mode.
Depending on the installed programs and z/OS configuration, part of the address
space is storage that is common to all address spaces and unavailable for zFS use;
typically, this leaves zFS with approximately 1.2 to 1.6GB of storage for its use.

The log files write-behind cache is not something a user has to tune, its shown here
for completeness of the picture. Every zFS file system has a log file that contains
transaction records for recent disk updates and the log file is replayed at mount time
if the system crashed to put the file system in a consistent state. This cache,
contained in a dataspace contains a write-behind cache for the blocks of the log
files of file systems. It is dynamically grown by zFS as more file systems are
mounted, and does not require any customer tuning.

The user file cache contains in-memory copies of disk blocks that contain user file
data. The most recently used pages by applications are kept in this cache, which is
contained in one or more data spaces (with a maximum of 32 data spaces used).
Only the contents of user files are stored in the user cache data spaces, the control
structures that locate the data in the cache are kept in the zFS heap in the zFS
primary address space. Although in theory the zFS user cache could be 64GB (32
2GB data spaces), the primary address space constraints of zFS limit the maximum
to approx. 48GB, and then only if the vnode and metadata cache are kept small (at
their defaults). The default size of the user file cache is 256M.

7

7

Storage II: Monitoring Primary Storage (F ZFS,QUERY,STORAGE)

� Sample Output (example here shows that zFS storage dangerously high):

IOEZ00438I Starting Query Command STORAGE. 778
zFS Primary Address Space Storage Usage

Non-critical Storage Limit: 1717567488 (1677312K) (1638M)

Heap Bytes Allocated: 1587033610 (1549837K) (1513M)
Heap Pieces Allocated: 11445446
Heap Allocation Requests: 4
Heap Free Requests: 3

� Total storage available is amount zFS can use, after factoring common storage

�USS/External Storage Access Limit – Do not define caches so big that this is exceeded:

�If exceeded, application requests to access un-cached objects fail with ENOMEM

�Total Bytes Allocated shows how much storage zFS is using:

�Includes zFS heap storage and zFS runtime stacks for application calls

�And any operating system storage allocated on behalf of zFS

�Try not to define caches so large that: Bytes Allocated + X MB > USS/External limit

Shown in the slide is the first portion of the output of the F ZFS,QUERY,STORAGE
command. It shows the total available storage to zFS in the address space and
how much zFS is using. The USS/External storage access limit is an important
number since it’s the limit that zFS will allow new storage to be obtained on behalf
of applications access to objects that are not currently cached in the vnode cache.
For example: if an application is attempting to open a file, and that file does not
have a vnode yet in the zFS vnode cache, it will get an ENOMEM failure if zFS
exceeds the USS/external access limit. zFS will still allocate storage if its past this
limit, but only for critical internal structures to keep zFS running properly, not new
accesses to new objects by applications.

The example shown in the slide is a case where the user is dangerously close to
the limit, it is not recommended to run this close to the limit, and in this case, it
might be recommended to reduce the size of one or more of the zFS caches. For
most customers, you want to keep a nice buffer zone between the total bytes zFS
has allocated and the USS/External limit, this buffer zone is somewhat workload
dependent. As will be explained later, the buffer zone will depend on z/OS Unix and
application behavior as shown by the vnode cache performance report.

8

8

Storage III: Monitoring zFS Storage continued…
Heap Usage By Component

Storage Usage By Component

Bytes No. of No. of

Allocated Pieces Allocs Frees Component

---------- ------ ------ ------ ---------

….

49176 84 0 0 Aggregate Management

108092 16 0 0 Filesystem Management

194574144 800172 0 0 Vnode Management

196775488 401617 0 0 Anode Management

351680 3082 0 0 Log File Management

150692144 287625 0 0 Metadata Cache

…..

493877648 7964319 0 0 Cache Services

138924280 655378 0 0 User File

…..

� F ZFS,QUERY,STORAGE
also shows usage by zFS sub-
component

Aggregate/Fileset management
are mounted file system
structures

Vnode/Anode Management is storage
related to vnode cache.

Metadata cache storage is for
metadata and backing cache

User File Cache is storage related to
user file cache.

Cache Services is storage related to
all the caches

This slide continues the sample output from the prior slide. The F
ZFS,QUERY,STORAGE command also shows a breakdown of heap storage used
by component. The slide here shows the significant portion of that report related to
the tuning parameters customers would specify for zFS: vnode_cache_size,
meta_cache_size/metaback_cache_size, and user_cache_size. All zFS caches are
managed by a common component. That common component has storage that is
used to link objects together in various sets (some examples of sets would be the
set of vnodes that belong to a specific file system, or the set of dirty metadata cache
buffers for a particular directory) and manage access of sets. This storage is
therefore related to all caches. Reducing or increasing any zFS cache would affect
the amount of storage shown in this field.

The example from this slide is for a sysplex where the vnode_cache_size is
400,000, the user cache size is 2GB, the metadata cache is 100M and the
metaback_cache_size is 2GB.

9

9

User File Cache I: Background

� Cache is comprised of one or more data spaces - simply an array of 4K pages.

� Smallest addressable unit is 4K page - nicely matches VSAM dataset control
interval size

� Files need not have all of their pages in the cache

� Files further broken down into 64K segments,
– A file will have zero or more segments cached at one time.
– Each segment itself is sparse – not all the pages in a segment need to be in

memory
– The structure that represents a segment is in zFS primary storage

• Thus the user file cache primary address space storage is mainly segment
storage and the anchors to the segments for each file.

� Locking is done at the segment level

� Parallel reading and writing to the same file is allowed
– Contention would occur at segment level
– Writing is partially serialized when extending file

� Full read-ahead and write-behind supported
– Metadata updates performed on background tasks

The user file cache is simply a cache of in-memory copies of the 4K VSAM control
intervals that contain user file data from zFS file systems. Files in the zFS are
conceptually partitioned into 64K segments, each segment addressing sixteen 4K
pages. A file need not have all of its segments cached, and a segment need not
have all of its pages in the cache. zFS uses a structure in its primary address
space to represent a file segment, and this structure and the anchors to the list of
segments in memory for a file make up much of the user cache storage that
occupies the zFS primary address space.

10

10

User File Cache II: Recommendations
� Utimate goal: 100% hit ratio

– A hit means an attempt to find a portion of a user file finds the data is in the cache.

� Cache hit ratios very workload dependent:
– A bunch of processes running shell scripts in OMVS accessing small files will likely

achieve a near 100% hit ratio
– A Domino server workload could at best achieve a 70% hit ratio
– In practice, hit ratios will rarely or never be 100%

� F ZFS,QUERY,VM – shows user file cache performance (next slide)

� Some Guidelines:
– If hit ratio is below 90% or the user cache request rate is very high:

• Adjust cache size upward
• Factor in zFS memory usage to make sure zFS not driven too low in primary

storage – use f zfs,query,storage report to estimate primary space growth
• Monitor performance again, if it helped then repeat these steps
• If the increase did not help performance, then your workload might not benefit

from a larger cache, might as well go back to prior size.
– Use zfsadm config –user_cache_size to dynamically change cache size

• Should be done off-peak - its expensive if it’s a large delta from current size
– Update zFS startup parameters (user_cache_size) so it starts with desired size in

future

In an optimal world, one could cache all file system data in memory achieving a 100% hit ratio per cache
access. Since systems do not have an unlimited amount of memory, the user has to decide how much memory
they would like to assign to zFS for user file caching, trying to balance the needs of the rest of the system and
the needs of applications that use zFS to achieve best application response time. The hit ratio that is achieved
in the user file cache is often workload dependent. For example, with Domino server workloads, the amount of
data accessed by Domino clients was so large it could not be contained in even a large user file cache, and the
access pattern was often one that did not repeatedly access the same data. In those workloads, 70% would be
considered a good ratio. For some shell scripts running in OMVS, if they are dealing with mainly smaller files
they could often achieve a 100% hit ratio. If zFS has a high file read/write request rate (as shown by the
query,vm report, which is described on the following slide), then tuning the zFS user file cache is certainly
worthwhile. A reasonable goal would be to attempt to get over a 90% hit ratio, and even higher if there is a high
request rate to zFS. Workloads are often variable, and there may be periods of time when the zFS request rate
is high, and periods of time when it is low. It’s the high request rate periods that will benefit greatly from a
properly sized user file cache.

Therefore, if it appears that raising the cache is a worthwhile goal for the system’s workloads, then the
query,storage report should be used to determine the current amount of memory used by the user file cache
and the total amount of storage being used by zFS. Then determine a safe amount to raise the cache. For
example, if the user file cache is currently using X amount of storage in the zFS primary address space, and it
was desired to raise the cache size by 50%, then one can estimate that zFS will use 1.5X storage in its primary
address space for structures that manage the user file cache. If this would leave the total zFS storage in the
address space below the desired limit then it would be safe to make that cache adjustment.

The zfsadm config –user_cache_size command can be used to dynamically alter the cache size while zFS is
running. It will stop application activity and sync data and re-size the cache, so if the relative change is great
(either upward or downward) then it could take some time, so it should be an off-peak operation. Once you
settle on an optimal size you can add the line: “user_cache_size=XM” in the zFS startup parameters
(IOEFSPRM DD or your parmlib search dataset members) to ensure zFS starts with the desired size in the
future.

11

11

User File Cache III: F ZFS,QUERY,VM --- Cache Statistics
IOEZ00438I Starting Query Command VM. 367

User File (VM) Caching System Statistics

--

External Requests:

Reads 943879 Fsyncs 73 Schedules 4109

Writes 428723 Setattrs 3303 Unmaps 2436

Asy Reads 747874 Getattrs 1641816 Flushes 0

File System Reads:

Reads Faulted 10088 (Fault Ratio 1.069%)

Writes Faulted 10 (Fault Ratio 0.002%)

Read Waits 8171 (Wait Ratio 0.866%)

Total Reads 18791

File System Writes:

Scheduled Writes 23868 Sync Waits 328

Error Writes 0 Error Waits 0

Scheduled deletes 1330

Page Reclaim Writes 0 Reclaim Waits 0

Write Waits 102 (Wait Ratio 0.024%)

Reads and Writes are file read
and write requests made to
user file cache since the last
time statistics were reset

Reads/Writes Faulted shows
miss count and ratio:

hit ratio = 100 – fault ratio

(hit ratio @ 99% in this example)

High page reclaim write and
wait rates, relative to request
rate, show a cache that is too
small for amount of data
being written

Most of the zFS query command output shows statistics since the last reset or since
startup if no reset commands were ever done. Statistics are reset via the F
ZFS,RESET command. The user file cache report will show the external request
rate and the fault ratio (miss rate). The hit ratio is simply 100 – fault ratio. In this
example, the hit ratio is 99% which means the user file cache is performing very
well for the workload and hence no tuning is needed.

An important concept regarding file caching is that not only is the cache used for
containing data to avoid reads from disk, but it also is used for asynchronous write-
behind of data. If the page reclaim writes and/or page reclaim waits is high relative
to the request rate, that means a miss had found that the oldest data in the cache
was actually dirty and had to be written, which adds additional wait time to the
request as it has to wait for writing of the oldest data to make room in the cache for
the data it wants to read. In this case, the working set of data being written is larger
than the cache, and is a good indicator that performance may improve with an
increase in the size of the user file cache.

12

12

User File Cache IV: F ZFS,QUERY,VM continued…

Page Management (Segment Size = 64K)) (Page Size = 4K)

--

Total Pages 65536 Free 65451

Segments 16384

Steal Invocations 2405 Waits for Reclaim 0

Number of dataspaces used: 4 Pages per dataspace: 16384

Dataspace Allocated Free

Name Segments Pages

-------- ---------- ----------

ZFSUCD00 2 16352

ZFSUCD01 0 16384

ZFSUCD02 3 16363

ZFSUCD03 2 16352

•Waits for Reclaim indicate
tasks waiting to reclaim oldest
pages for a miss

•A high value (relative to
request rate) suggests a
possible need to increase user
file cache.

Shows cache size and how many
pages free (unused) and data
space breakdown

� In the simple example shown here, taken late at night on a small production system, the default
user cache size of 256M is fine and does not need tuning.

13

13

Metadata/Backing Cache I: Background

zFS File System

Circular log

Log Cache
Component

Metadata Cache

Backing Cache Data
Space

zFS Primary Address Space

1

2

3
45

1. Every zFS file system has a circular
log file managed by log cache
component that contains
transactional updates to metadata

2. When the log file becomes full, the
log component tells the metadata
cache to write out dirty data so the
log can be over-written

3. The metadata cache writes out dirty
data so that the log can be over-
written with new transaction data

4. Any time the metadata cache needs
to make room for new data, it casts
oldest buffers out to backing cache (if
it exists)

• Will check the backing cache to
see if a block exists in that
cache to avoid disk reads

5. If during a read a block is not in
backing cache and not in meta
cache:

• Will have to read from disk
(this is what users have some
control over)

A zFS file system is
conceptually an array of
8K blocks

A zFS file system conceptually blocks two 4K VSAM control intervals into one 8K block. The
metadata cache and backing cache contains in-memory copies of any 8K block that does NOT
contain the contents of a user file.

Updates to metadata in zFS are handled by transactional updates. Transactions are started and the
changes made to the metadata are written to 8K pages in the log cache component, and as those
pages are filled they are written out to the circular log file in the file system. When that circular log is
becoming full, the log cache component signals to the metadata cache that the log is becoming full
and to write out dirty blocks for that file system, once that is complete the log file can be overwritten
again with new transactional data. The administrator has little control over how the metadata is
written to disk, they can only control the size of the caches. It is important to note that if the metadata
cache is too small that caches misses will be more frequent and if the oldest buffers in the cache are
dirty then that would force a write of that data to make room for the new disk block. Journaling file
systems like zFS have a rule that any log file pages containing update records that describe changes
to a disk block must be written and on disk before that metadata disk block is written. This means
that if the oldest buffers are dirty then it might force more disk-writes and IO waits for log file pages.
Future slides will show how to detect this condition.

What the administrator can control is how much data to cache, the more blocks that are cached the
less likely a disk read is required and the less likely the oldest buffers have to be cast out of the
cache to make room for a new disk block. The backing cache is simply a read-only cache that has
copies of file system metadata blocks, no writing to disk is performed from this cache. Basically it’s a
cache between the metadata cache and the disk.

14

14

Metadata/Backing Cache II: Recommendations
� Goal is to achieve very high hit ratio of metadata cache

– Should be > 90% hit ratio, Preferably closer to 100%

� Use of backing cache can help certain workloads that access large amounts of metadata (directory
searches for example)

– Backing cache hit ratios, because it’s a 2nd level cache are much lower than metadata cache, but:
• Any hit is an eliminated disk IO and
• Some locks are held over metadata cache accesses for control structures in a file system, so

it can also reduce lock contention if IO is avoided
� F ZFS,QUERY,LFS – shows metadata and backing cache statistics (with other information)

� Some Guidelines for metadata cache:
– If hit ratio is below 98%:

• Adjust cache size upward – note that meta cache comes directly from zFS primary
• Factor in zFS memory usage to make sure zFS not driven too low in primary storage – use f

zfs,query,storage report to estimate primary space growth
• Metadata and backing cache control structure storage is = Cache size / 64.

� Some Guidelines for backing cache:
– Attempt to define or increase backing cache
– Is the hit ratio significant enough to make a difference? If so then repeat the procedure until an

optimal size reached.
• Alternatively could work your way down from the maximum you could assign to it (2GB).

� Use zfsadm config –meta_cache_size/-metaback_cache_size to dynamically change cache size
– NOTE: Its not allowed to create a backing cache if it did not exist at zFS startup (z/OS 13)

� Update zFS startup parameters (meta_cache_size & metaback_cache_size) so it starts with
desired sizes in the future

The way in which zFS accesses the metadata cache will typically yield a high hit ratio, even for a smaller cache.
One should certainly strive to achieve a 90% or higher hit ratio, better if its closer to 100% during peak usage.
Metadata updates lock higher level structures before accessing the metadata and backing caches, so avoiding
disk reads will also reduce lock contention wait times too. Its also important to note that since the backing
cache is a 2nd level cache it is likely going to have a much lower hit ratio than the metadata cache. Even a hit
ratio of 30-40% can yield performance improvements if zFS is being heavily used. The backing cache value is
questionable if the hit ratio is very low, say 5-10% as the storage investment may not be worth it if that storage
could help other components of the system.

The F ZFS,QUERY,LFS, as shown on the following slides shows detailed information related to the metadata
backing cache.

In terms of tuning the caches, the backing cache is likely easier since it is external to the zFS primary address
space. The easiest method is to start the cache as large as it can be based on available real memory, possibly
even using its maximum size if available. Measure performance and determine the hit ratio of the cache. If the
hit ratio looks reasonably promising, at least 30-40% or more, try reducing storage to see if you get almost the
same value using less memory. This way you make the best possible choice, you do not use more memory
than you need. The alternative is to start small and work larger looking for better hit ratios until they do not
seem to improve. Either method will get their in the end. It is important to note that for z/OS 13 zFS, you
cannot dynamically create a backing cache via zfsadm config: you can alter its size if it already exists but it can
only be created at startup time.

The metadata cache is a bit trickier since it is stored in the zFS primary address space. The f zfs,query,storage
report should be used to first determine how much primary storage zFS has left and determine a safe amount to
increase based on primary address space usage. There will be a slight amount of overhead in primary address
space for control structures that track the state of each on-disk buffer. The amount of storage required for the
control information can be approximated by taking the desired metadata cache size and dividing by 64 to
determine the amount of bytes for metadata cache control information. Since the cache is limited by zFS
primary storage, the metadata cache control information is not a significant source of storage usage. The same
calculation can be used to determine the amount of primary storage the control information will occupy for the
backing cache.

15

15

Metadata/Backing Cache III: F ZFS,QUERY,LFS

Metadata Caching Statistics

Buffers (K bytes) Requests Hits Ratio Updates

---------- --------- ---------- ---------- ----- ----------

12800 102400 103268428 101985745 98.7% 24902311

Metadata Backing Caching Statistics

Buffers (K bytes) Requests Hits Ratio Discards

---------- --------- ---------- ---------- ----- ----------

262016 2096128 1063370 821113 77.2% 0

I/O Summary By Type

Count Waits Cancels Merges Type
---------- ---------- ---------- ---------- ----------

266415 259768 0 2311 File System Metadata
582931 10666 0 150777 Log File

0 0 0 0 User File Data

Report shows sizes, request rate and
hit ratios for both caches, and also zFS
IO requests by type.

Good performance for both caches, near
99% for metadata and 77% for backing
cache.

IO requests are broken down into
type, this workload was a pure
directory workload (no user file IO)

FYI: zFS uses IO queues, and merges
adjacent IOs to reduce number of
DFSMS IO requests

Also shows number of times a
task had to wait for an IO to
complete

�Summary:

�Backing cache eliminates
almost half of request to zFS
IO sub-system – GOOD!

The f zfs,query,lfs provides much data, one section shows a simple report on
metadata and backing cache performance. In this example (which was from an
intense pure-directory read/write workload: file and directory creations, renames,
removals etc…), the metadata cache got a hit ratio near the desired 100% and the
2GB backing cache was useful, it had a hit ratio of 77% and thus saves over
820,000 disk reads. The IO summary shows approx. 850,000 requests were made
to disk for this workload.

One thing to note about zFS IO is that zFS uses an IO queue for every DASD
volume that contains a zFS mounted file system on it, that queue is used for IO
prioritization and merging of adjacent IOs. The merging of IOs usually occurs for
log file IOs because the log file is in a contiguous region for each file system. The
log file system uses asynchronous write-behind which is why there were not many
IO waits for log file writes; however, there was substantial waiting for metadata IOs,
this is examined further by the next report on the next slide.

16

16

Metadata/Backing Cache IV: F ZFS,QUERY,LFS … continued from prior slide

I/O Summary By Circumstance

Count Waits Cancels Merges Circumstance

---------- ---------- ---------- ---------- ------------

180 0 0 0 Metadata cache read

0 0 0 0 User file cache direct read

0 0 0 0 Log file read

……………..

0 0 0 0 Metadata cache file async write

2569 636 0 0 Metadata cache sync daemon write

0 0 0 0 Metadata cache aggregate detach write

0 0 0 0 Metadata cache buffer block reclaim write

256028 256020 0 2311 Metadata cache buffer allocation write

0 0 0 0 Metadata cache file system quiesce write

7637 3111 0 0 Metadata cache log file full write

582952 10666 0 150777 Log file write

Metadata
cache reads
near 0, GOOD

High frequency
of buffer
allocation writes
indicates cache
smaller than
amount of data
being updated

If possible,
try raising
metadata cache
size to see if
these IOs can
be reducedLog file writes dominate IO, which is

expected for a heavy directory workload

Ideal Situation: Near zero disk reads, almost all writes are log file writes and log file full writes.
If this occurs, the caches are tuned as optimally as possible.

This slide shows a portion of the “IO Summary By Circumstance” section of the F ZFS,QUERY,LFS
report. There are two important lines in this report when analyzing metadata cache performance and
the effect of a change in cache size:

•Metadata cache reads – The number of reads to disk of metadata, since this is a very small value,
the metadata and backing caches did a good job of eliminating reads in the steady-state.

•Metadata cache buffer allocation writes – This is the number of times that a buffer was not found in
the metadata cache and the oldest buffers in the cache were dirty, forcing a write of those buffers and
an IO wait so the buffers could be re-used. Thus although the read hit ratio is very high, the workload
could still benefit from an increased metadata cache (writes are only performed from the metadata
cache) to reduce the occurrence of the case where the oldest buffers are dirty. The user would have
to look at the f zfs,query,storage report to determine if a cache increase was possible, and then re-
evaluate the performance after the increase is made to see if these allocation write request rates
could be reduced. Because the backing cache existed, those metadata cache misses were satisfied
from the backing cache and no disk reads were required, just a write and wait of the oldest dirty
buffer.

As with most journaling file systems, log file writing dominates over metadata IO, this is expected for
all workloads that update a significant amount of metadata.

17

17

DASD IO I: Looking For Bottlenecks
� The first step to good zFS performance is a properly sized user file and metadata/backing

caches
– These reduce disk IO rates making less stress on the channels, control units and DASD

� Another source of response time degradation:
– High-frequency file systems are all located on the same channel, control unit and/or

DASD,
• AND

– The rate of IO is causing too much contention on those devices.

� RMF provides reports which can be used to check for DASD, control unit and channel
contention and guidelines for resolving DASD issues:

– Chapter 4 of z/OS RMF Performance Management Guide describes how to diagnose
DASD contention issues in detail

– RMF is preferred over the zFS queries for analyzing DASD performance but:
– zFS queries can help, by identifying the file systems that are causing the most IO such

as:
• F ZFS,QUERY,IOBYDASD - Shows zFS rates and average IO wait time per DASD

volume
• F ZFS,QUERY,LFS - Shows DASD IO rates per file system and overall average IO

wait time for zFS tasks
• RMF has this zFS information in its reports too, so you could exclusively use RMF

The performance monitoring of the DASD sub-system is outside the scope of this
presentation, a good reference is chapter 4 of the z/OS RMF Performance
Management Guide. This chapter has much information on the hardware concepts
and shows example RMF reports and how to analyze the data.

This does not mean that the zFS queries could not be of some help. Generally
speaking, the zFS DASD reports should echo some of the same results that an
RMF report would show, and the zFS reports can show the file systems that are
causing the DASD activity. Note that RMF has zFS performance information
available too, and thus RMF could be used exclusively to monitor DASD
performance of zFS file systems.

18

18

DASD IO II: F ZFS,QUERY,IOBYDASD
zFS I/O by Currently Attached DASD/VOLs

DASD PAV

VOLSER IOs Reads K bytes Writes K bytes Waits Average Wait

------ --- ---------- ---------- ---------- ---------- ---------- ------------

INFON7 2 0 0 86101 1094272 34269 11.675

INFON5 2 0 0 88480 1167848 34398 7.619

INFON3 2 0 0 82965 1066328 32128 11.436

INFON1 2 0 0 92100 1160816 37986 11.130

INFO01 2 0 0 54 480 17 3.130

INFON8 2 0 0 82161 1046104 31950 7.649

INFON6 2 0 0 85081 1089512 33985 7.087

INFON4 2 0 0 92351 1144528 36431 8.025

INFON2 2 0 0 86966 1150952 29270 14.761

Total number of waits for I/O: 270434

Average wait time per I/O: 9.844

� zFS Average Wait is total wall clock time a task wait for an IO in zFS.

�It is not the same as DASD response time, though it is influenced by it.

�The IO could be in-progress by the time a zFS task decides to wait, making the ZFS time
shorter than DASD response time.

�This is wall clock time, so it includes all processing by z/OS, any queues, the channels, DASD,
the time to dispatch the waiting task, so it can also be longer than DASD response time.

The zFS IOBYDASD shows the IO request rates made by zFS to the DASD volumes, the number of
times a task decided to wait on an in-progress IO and the average wall clock wait time for tasks
waiting on IO completion. This report can be used to identify high frequency volumes and excessive
wait times.

zFS uses an internal IO queue for each DASD volume to queue IOs in excess of what the DASD can
handle in parallel.

The PAV IOs field is not the same number as the amount of IOs the DASD can handle in parallel.
This number is the number of non-priority IOs that zFS will send to the disk. Once this number is in-
progress zFS will queue any additional IOs to that DASD volume that are low-priority. If a high-
priority IO arrives for the DASD volume and the PAV IOs is reached (2 in this example) but the
device PAV value has not been reached, the high priority IO will be sent immediately to DFSMS. If
zFS has submitted the device PAV value IOs and those IOs are not complete yet, any IO, be it high
priority or low-priority is queued; though, high priority IOs are always queued ahead of low priority
IOs.

This queueing allows zFS to ensure high priority IOs are handled ahead of low-priority IOs and allows
zFS to merge adjacent IOs and cancel an IO if it likes.

A high priority IO is any IO that a task has decided to wait on, or has indicated it will soon be waiting
on.

19

19

DASD IO III: F ZFS,QUERY,LFS – IO by aggregate
zFS I/O by Currently Attached Aggregate

DASD PAV

VOLSER IOs Mode Reads K bytes Writes K bytes Dataset Name

------ --- ---- ---------- ---------- ---------- ---------- ------------

INFO01 2 R/W 0 0 54 480 OMVS.ZFS.ROOT

INFON1 2 R/W 0 0 92100 1160816 NOTEBNCH.MAIL.INFON1

INFON2 2 R/W 0 0 86966 1150952 NOTEBNCH.MAIL.INFON2

INFON3 2 R/W 0 0 82962 1066184 NOTEBNCH.MAIL.INFON3

INFON4 2 R/W 0 0 92332 1144272 NOTEBNCH.MAIL.INFON4

INFON5 2 R/W 0 0 88480 1167848 NOTEBNCH.MAIL.INFON5

INFON6 2 R/W 0 0 85081 1089512 NOTEBNCH.MAIL.INFON6

INFON7 2 R/W 0 0 86091 1094144 NOTEBNCH.MAIL.INFON7

INFON8 2 R/W 0 0 82146 1045976 NOTEBNCH.MAIL.INFON8

------ ---------- ---------- ---------- ----------

9 0 0 696212 8920184 *TOTALS*

� This report shows the DASD IO rate by aggregate, and also lists the first DASD volume the file system is
contained on.

� This can be used along with the RMF, DFSMS and F ZFS,QUERY,IOBYDASD to locate the high usage
file systems on the hardware with high contention

20

20

Lock Contention I: Overview

� Like any parallel product, ZFS has locks to protect common resources

� zFS allows tasks in parallel to write to same file in certain cases

� zFS locks a directory in write mode for a directory update, read mode for reads

� zFS file systems have common structures which have locks, which could cause
contention

� Administrators have little control over contention:
– Cannot control what an installed application might do
– Or where it wants its files and directories located
– But might be able to help in some cases:

• When possible, try to have high-usage applications use separate
directories to place files in (to avoid directory lock contention)

• Even better, use different file systems to avoid lock contention altogether
since file systems have common structures like log files that could have
contention on them.

� F ZFS,QUERY,LOCK – shows lock contention

An administrator cannot often control lock contention since they often install
applications that were not written at their site and have to place files and directories
as dictated by the application. But whenever a user has control over the placement
of data or how an application behaves, the best performance will always be
obtained when high-usage parallel applications or tasks write to separate file
systems (avoids any lock contention on shared file system structures) or if that is
not possible, separate directories and files to avoid contention on the individual
objects (could still have lock contention on file system shared structures such as the
log file, the file system free space manager etc…).

21

21

Lock Contention II: F ZFS,QUERY,LOCK
Untimed sleeps: 5947 Timed Sleeps: 0 Wakeups: 2381

Total waits for locks: 3009481

Average lock wait time: 1.462 (msecs)

Total monitored sleeps: 5930

Average monitored sleep time: 1.584 (msecs)

Total starved waiters: 132

Total task priority boosts: 0

Top 15 Most Highly Contended Locks

Thread Async Spin

Wait Disp. Resol. Pct. Description

---------- ---------- ---------- ----- --------------

2922763 0 1633 89.962% Vnode lock

69421 0 15503 2.612% Log system map lock

5378 1515 61692 2.110% Transaction-cache main lock

5109 0 56429 1.893% Transaction-cache complete list lock

2711 31041 6120 1.227% Vnode-cache main lock

11946 9598 7440 0.892% Metadata-cache main lock

….

Top 15 Most Common Thread Sleeps

Thread Wait Pct. Description

----------- ----- -----------

5925 99.916% Transaction GC wait

5 0.84% OSI cache item cleanup wait

0 0.0% CTKC user file pending IO wait

Shows task lock waits and
waits for events to occur
and average wait time in
milliseconds

Most highly contended
locks - used by zFS
level-2.

Sleeps are like lock waits, the
task is waiting for something
to occur (in this case, waiting
to begin a transaction to
update disk)

The lock contention report is used when diagnosing issues with excessive lock
contention. This report, often used by IBM level-2 to analyze a customer situation,
can show areas of improvement for zFS. zFS has reduced lock contention via fixes
in the service stream if the fix is small, and made larger improvements on release
boundaries. zFS is continually reducing lock contention with each release.

zFS does not always make a task wait when there is contention for a lock. It will try
two techniques to avoid a task suspension (and processor context switch):

• Short term spinning – it will loop a short time, this is very effective for
locks held for a short time

• Asynchronous queuing – zFS will queue its resource update request to current
lock holder and let them make the update when possible, this depends on the
nature of the update.

22

22

Lock Contention III – Locks You Might be Able To Configure Around

� Generally speaking, the only lock contention an administrator can control are
when:

– Above value is a large percentage of the average zFS response time (shown in
TOTALS line of QUERY,KNPFS). AND the locks with contention are:

• Vnode Lock/Vnode Cache Access Lock – Generally means many
applications are consistently hitting the same directory

• Log System Map Lock/Anode fileset handle…/Anode bitmap…. – If you
see any lock with these characters in their name, shows high lock
contention on a particular file system.

� Check F ZFS,QUERY,FILESETS and your application to determine if
you can identify high contention directory and/or file systems.
� If unable to identify, talk to IBM and we can help identify them via

dumps. An F ZFS,DUMP will be all the documentation needed.

•Calculating average lock wait time per zFS call:
Total Lock Waits (from QUERY,LOCK)

TOTALS (of Count field from Query,KNPFS reports)

Avg. Lock Wait Time (QUERY,LOCK)X

The administrator can only control zFS lock contention on file system specific
structures if they partition their workload to use separate file systems (though you
often do not need more DASD space, you simply split work amongst two datasets
instead of one, where each dataset is smaller than the original).

If these locks are high contenders and you cannot figure out which directories
and/or file systems are receiving the contention, you can issue an F ZFS,DUMP and
provide that information to IBM to get an exact answer. If some other lock is a high
contender AND lock wait time is a high percentage of response time AND the zFS
response time is deemed inadequate, then you can contact IBM level-2 for
guidance.

23

23

Additional Items
� Large Directory Performance Non-optimal (FIXED IN z/OS 2.1)

– zFS uses linear search to find names in a directory
– zFS has sub-optimal directory performance in general:

• >50,000 names in a directory (@4MB in size) – must use HFS
• >20,000 names in a directory (@2MB in size) – might want to use HFS
• zFS greatly outperforms HFS for file IO, so need to factor in the file IO rates vs. directory IO

rates for a file system that has larger directories in it and make a choice
• Largedir.pl tool available to find directories not suitable for zFS at http://www-

03.ibm.com/systems/z/os/zos/features/unix/bpxa1ty2.html
- Takes a long time to run for a whole system, may want to focus it on suspect file systems

– z/OS 2.1 zFS provides the ability to have over 2 billion names in a directory.
– In the meantime – keep those metadata and backing caches big to avoid disk IO

� z/OS Unix Sysplex Sharing
– Tuning zFS in this environment is the same as single system tuning

• Follow the guidelines presented in the prior slides of this presentation
– z/OS UNIX System Services Planning Guide contains information on z/OS Unix Sysplex

Sharing Tuning:
• Try to ensure ownership of file system matched to the system that does the most requests to

that file system
• Use UNMOUNT for system specific file systems in case of a crash to avoid movement to a

system that will never access that file system.
• Use AUTOMOVE for non-system specific file systems so they are moved if a crash occurs.
• Refer to the appropriate z/OS documentation for more information.

The largedir.pl tool is available from the listed web site. It is written in prl and takes
a long time to run on an entire file system tree, better to run it against a smaller
portion of the tree, such as a suspect file system. An alternative would be to simply
to issue a find command and use the –exec option to issue an ls –l command
against the name and pipe the output to a file. Any directory whose size is 4MB or
more will definitely suffer the slow search time and likely is a better candidate for
HFS. Anything over 2MB in size is potentially better served by HFS, though at this
size one needs to determine if the file system is heavy on file IO. zFS greatly
outperforms zFS for file IO, so that has to be factored into the decision.

24

24

zFS Sysplex Sharing I: RWSHARE Mounted File System (z/OS 13)

XCF

zFS
File
System

z/OS Unix

Metadata Cache

User Cache Data
Spaces

z/OS Unix

Metadata Cache

SY1: Client
(non-owner)

SY2:
Owner

User Cache Data
Spaces

Application requests flow through
z/OS Unix into zFS on all systems.

All plex members can directly
read/write file data into/out of
user cache dataspaces

All systems can read metadata
into the cache from disk. Only
owners can write metadata to
disk.

Token
Manager

All systems have a token
manager used to handle
serialization of file system
objects for file systems they
own

XCF used to
obtain
tokens from
owner, and
tell owner to
update
metadata

Not shown: YES – all systems
can use the backing cache to
cache more metadata.

zFS zFS

With z/OS 11 and significantly enhanced (and simplified for the administrator) in z/OS 13, a file
system can be mounted in RWSHARE mode, which means it will be using zFS sysplex sharing
instead of z/OS Unix Sysplex Sharing. RWSHARE refers to a file system using zFS sysplex sharing
and NORWSHARE refers to a file system using z/OS Unix Sysplex Sharing.

With zFS sysplex sharing, all plex members can read and write files into their user caches to avoid
calling the owner for ever file read or write request. z/OS 13 zFS has full asynchronous write-behind
and read-ahead for all plex members, regardless of who owns the file system. All plex members can
also directly read metadata, such as directory contents and other control information related to files
and directories; however, only sysplex owners can update metadata and can access the primary file
status of an object. All plex members, regardless of owner status, can use the backing cache to
cache more metadata for an RWSHARE file system.

Sysplex serialization to the objects in a file system is handled via tokens, which are in effect, sysplex
locks. If an application want to process a file F, then if the system does not have a token with the
appropriate read or write access, then it has to call the token manager to get one. For owners, this is
a simple function call, and for clients, this is an XCF request to obtain them. Once the token with
proper access rights is obtained, that system can cache data for that object. For clients, this means
that XCF messages to owners are avoided since they have data in their cache. Clients have full
read-ahead and write-behind logic for files; for directories they still send synchronous update
requests to the owner since the owner is only allowed to update metadata.

25

25

zFS Sysplex Sharing II: RWSHARE Summary (z/OS 13)
� Performance Compared to z/OS Unix Sysplex Sharing (NORWSHARE)

– Large File (database) Random Update Workload:
• This workload randomly updates a large file, similar to a database access.
• 9X faster on non-owners with R13 RWSHARE as opposed to R12 NORWSHARE.

– Sequential File Creation Workload:
• This workload creates many sequentially written files (common write pattern in the field)
• 16X faster on non-owners with R13 RWSHARE as opposed to R12 NORWSHARE.

– Directory Update Workload (Significantly improved with z/OS 2.1):
• This workload has many processes repeatedly adding, removing, renaming and searching for

files in a directory, not a typical customer environment.
• 25% faster on non-owners with R13 RWSHARE as opposed to R12 NORWSHARE.

– Cached Directory Read Workloads (Significantly improved with z/OS 2.1):
• 15X-20X faster on non-owners with R13 RWSHARE as opposed to R13 NORWSHARE.

� Some environments cannot use RWSHARE:
– z/OS SMB Server – cannot export file systems that are RWSHARE.
– Fast Response Cache Accelerator support of the IBM HTTP Server for z/OS V5.3

� If using file systems created before z/OS 9:
– Recommend IBM APAR OA39716 to improve sysplex client performance

� Areas of Improvements for z/OS RWSHARE Support:
– Number of objects that can be cached due to primary address space

• � This can cause clients to call server more to re-obtain lost tokens
– Cold startup of servers on non-owners not as fast as desired

• � If they access lots of objects not already cached at client, need to obtain a token for each new
object accessed.

zFS sysplex sharing is much, much faster when files are read and written on non-
owner systems in a pure z/OS 13 sysplex running RWSHARE, no matter what the
access pattern to the file is. Directory update workload (removing files, renaming
files etc…) run faster than z/OS Unix Sysplex Sharing, but only by a small amount.
The reason is that only the owner can update metadata for an object and the client
must send the request synchronously to the owner with the current zFS design.

The environments listed on the slide cannot use zFS sysplex sharing; which is why
zFS allows the user to selectively choose which file systems are RWSHARE and
which file systems are NORWSHARE. Additionally, because zFS is storage
constrained in its primary address space, and because caching of objects and the
associated sysplex token with that object is essential to avoiding XCF
communications to the server to re-obtain a lock due to cast-out for low-memory,
some customer environments might be limited in how many file systems could be
RWSHARE.

One potential issue with z/OS sysplex sharing is the fact that due to zFS primary
address space constraints, it limits the vnode cache size, and hence limits the
number of objects cache-able at clients. Some workloads might need a larger
object cache to be successful.

If you migrated to zFS before z/OS 9, you might have some directories that store
entries in an old format that does not contain the full FID – inode/uniquifer for the
name, this requires the client to query the full FID from the server on lookup
requests which can have a significant performance impact. If the user has been
using zFS for a long time (before z/OS 9) they might have some of these old

26

26

Object Caching I: Vnode and Token Caches Overview

EXT EXT EXT EXT

…VN VN VN VN

VN SYS

VN

VN

SYS

SYS

SYS

TF

TF

TF

Token Manager

LRU queue of vnode_cache_size extended vnodes

For certain workloads: z/OS Unix
and applications can drive zFS
vnode counts higher than
vnode_cache_size

Only extended
vnodes have tokens
from token manager
and the extensions

RWSHARE file
systems have the
SYS serialization
structure and
tokens and token
manager structures
to represent
objects

zFS will NEVER have more
than vnode_cache_size
extended vnodes

token_cache_size is limit on
tokens inside token manager,
default is 2 X vnode_cache_size

BLUE and TAN structures only exist for RWSHARE objects

The most recently used objects by applications and z/OS Unix will have vnodes inside the zFS
address space. zFS will guarantee that no more than vnode_cache_size vnodes have extended
information. This reduces zFS primary address space storage if z/OS Unix/applications allocate
more vnodes than vnode_cache_size. Essentially zFS does not have direct control over how many
vnodes z/OS Unix will hold, and zFS cannot free the storage for a vnode unless given permission by
z/OS Unix. zFS will request that z/OS Unix release vnodes any time they are near or exceed
vnode_cache_size but z/OS Unix may not always honor that request or may delay in honoring that
request. One thing that forces many vnodes to be allocated is if applications have many open files.
The base zFS vnode is approx. 224 bytes and an extended vnode totals approx. 1K in size.

If an application calls zFS for a vnode that does not have an extension, then zFS will steal the
extension (un-caching data from user cache, and if a sysplex client, un-caching data from
metadata/backing caches) from the oldest vnode in the LRU queue of vnodes with extensions. This
is extra path length overhead, but should not occur very often since the tendency of applications is to
continue working with the same files and directories for a period (sometimes very long) of time.

For the most recently accessed objects in RWSHARE file systems, each vnode, whether its
extended or not, will have a sysplex serialization structure attached to it, this structure is approx. 120
bytes. Extended RWSHARE file system objects will also likely have tokens, though those are fairly
small objects. With RWSHARE, there is a token manager on each system that tracks the tokens
held by the various client systems for file systems owned by that system. This adds more storage in
the zFS primary address space, each object tracked by the token manager uses approx. 228 bytes of
storage and each token held by a client system requires approx. 100 bytes. An RWSHARE object
will likely use over 50% more memory than a NORWSHARE object inside zFS. This means that
since zFS is constrained in its primary address space, it can cache less objects with RWSHARE file
systems than with NORWSHARE file systems.

27

27

Object Caching II: Vnode Cache/Token Cache Recommendations
� NORWSHARE File Systems and file systems mounted R/O:

– vnode_cache_size not as important to tune because if a vnode does have an extension,
or needs to be newly created, we can steal from the oldest in the LRU queue, and we can
quickly instantiate the vnode from the metadata cache.

• If the status information for the object is not in the metadata cache it will require a disk
read. � So invest in metadata/backing cache storage.

– A vnode cache miss often just uses a bit more CPU.
– Tune vnode_cache_size last – Ensure user file and metadata caches optimally tuned.

� RWSHARE File Systems:
– vnode_cache_size is much more important, especially for sysplex clients.

• If a vnode does not have an extension or does not exist in the cache for the
desired object, it does not have a token, which means one will have to be obtained
from the token manager. For clients it means an XCF communication.

• Due to storage constraints, its likely dangerous to push the vnode_cache_size much
past 100,000 in size. The default is 32,768.

• Best to selectively choose the best candidate file systems for RWSHARE usage
(highest usage file systems accessed by more than one plex member at a time)

• � ftp://public.dhe.ibm.com/s390/zos/tools/wjsfsmon/wjsfsmon.pdf - this tool will show
which R/W mounted file systems are accessed by more than one plex member

– token_cache_size – The default of double the vnode_cache_size is likely sufficient in
many cases.

• If your plex has a large number of members, increase it to reduce garbage collection.

The token manager token limit is honored as much as possible. Any time the token
manager is approaching its limit it will invoke garbage collection (even making new
token requests wait for garbage collection to complete) and reclaim tokens
proportionally form the other plex members based on how many tokens each plex
member holds. A plex member will process a garbage collection request by stealing
from the least recently used vnodes in its cache.

28

28

Object Caching III: F ZFS,QUERY,LFS – Vnode Cache Statistics
zFS Vnode Cache Statistics

Vnodes Requests Hits Ratio Allocates Deletes

---------- ---------- ---------- ----- ---------- ----------

43119 11868292 8616915 72.605% 0 46880

zFS Vnode structure size: 224 bytes

zFS extended vnodes: 32768, extension size 724 bytes (minimum)

Held zFS vnodes: 220 (high 43051) Open zFS vnodes:

15 (high 8080) Reusable: 38940

LRU queue items: 32768

Total osi_getvnode Calls: 3421429 (high resp 0) Avg. Call Time: 0.005
(msecs)

Total SAF Calls: 116543153 (high resp 0) Avg. Call Time: 0.001
(msecs)

This is vnode_cache_size, they
are using default of 32K vnodes

z/OS Unix pushed zFS past its
limit, 43,119 base vnodes
exist, only 32K have
extensions

Number of vnodes held by z/OS
Unix (currently) and high-water
mark, including number of open
files and high water mark for
open files

This monitors the security
product performance, important
for response time to be just a few
microseconds.

Larger response times likely due
to excess auditing or an issue
with the security product.

Hit ratio in this report not so important to monitor, it will vary
greatly in cases where many new objects are accessed. Other
reports will show information related to object caching shown
later.

This is an example of a case where z/OS Unix and applications force zFS to
allocate more vnodes than the vnode_cache_size. zFS still limits the number of
extended vnodes to the vnode_cache_size limit and uses an LRU queue to
determine which vnode to re-use if a vnode does not exist or does not have an
extension.

29

29

Sysplex Statistics I: F ZFS,QUERY,KNPFS - Sysplex Client Summary

PFS Calls on Client

Operation Count XCF req. Avg Time

--------- ---------- ---------- ----------

zfs_opens 885098 0 0.020

zfs_closes 885110 0 0.010

zfs_reads 12079 0 0.157

zfs_writes 0 0 0.000

zfs_ioctls 0 0 0.000

zfs_getattrs 2450523 8 0.009

zfs_setattrs 313031 656 0.020

zfs_accesses 11495 0 0.018

zfs_lookups 13764811 1190897 0.287

zfs_creates 876507 876556 5.625

zfs_removes 1240556 1240621 2.117

zfs_links 157216 157216 2.567

zfs_renames 155164 155165 1.890

zfs_mkdirs 157971 157971 6.031

zfs_rmdirs 155108 155109 2.164

zfs_readdirs 11322 3053 11.345

zfs_symlinks 157398 157398 4.295

zfs_readlinks 68 58 0.871
zfs_fsyncs 0 0 0.000
zfs_truncs 0 0 0.000
zfs_lockctls 0 0 0.000
zfs_audits 33 0 0.015
zfs_inactives 2698174 0 0.020
zfs_recoveries 0 0 0.000
zfs_vgets 0 0 0.000
zfs_pfsctls 0 0 0.000
zfs_statfss 0 0 0.000
zfs_mounts 0 0 0.000
zfs_unmounts 0 0 0.000
zfs_vinacts 0 0 0.000
--------- ---------- ---------- ----------
TOTALS 23931664 4094708 0.602

� Lookup requests have over 1 million XCF calls,
likely to get token for a vnode not found in cache.
Could make vnode_cache_size larger if memory
permits to try and reduce these.

� But due to client caching, over 12 million lookup
requests satisfied by client metadata/vnode cache.

Directory operations are sent synchronously to
server.

The KNPFS report will also show call counts for file systems that are not locally
owned and are mounted RWSHARE. In this case, the XCF Req. column shows the
number of operations that required one or more calls to the owner of the file system.
For a directory update operation it will generally be 1-1. For read operations there
will typically be a large amount of caching at sysplex clients to reduce XCF call
traffic. This is shown in the open/close/getattr/lookup/read rows since those are all
read operations and are generally getting a good number of cache hits. Note that
since some lookup calls (which are directory searches to find a name in a directory)
result in XCF calls, a larger vnode_cache_size, if possible might reduce those
cases and improve lookup performance.

Note that this is a canned performance test workload and not representative of a
real world customer workload. Typical customer workloads do very light directory
update requests and much, much more file IO, but this report does show a good
example of how a possible tuning improvement might help the workload.

30

30

Sysplex Statistics II: F ZFS,QUERY,STKM – Token manager statistics
Server Token Manager (STKM) Statistics

Maximum tokens: 200000 Allocated tokens: 61440

Tokens In Use: 60060 File structures: 41259

Token obtains: 336674 Token returns: 271510

Token revokes: 125176 Async Grants: 64

Garbage Collects: 0 TKM Establishes: 0

Thrashing Files: 4 Thrash Resolutions: 131

Usage Per System:

System Tokens Obtains Returns Revokes Async Grt Establish

-------- --------- ---------- ---------- --------- --------- ---------

DCEIMGHR 18813 161121 134907 70275 0 0

ZEROLINK 0 66055 66054 5 64 0

LOCALUSR 41247 109499 70549 54974 0 0

Shows token limit, number of
allocated tokens, number of
allocated file structures and
number of tokens allocated to
systems in plex

Number of times tokens had to
collected from plex members
due to tokens reaching limit – if
high then might want to update
token_cache_size

Thrashing files indicates objects
using a z/OS Unix-style
forwarding protocol to reduce
callbacks to clients – check
application usage

� Shows tokens held per-system and number of token obtains and returns since
statistics last reset.

�ZEROLINK – pseudo-sysplex client used for file unlink when the file still open –
used to know when file fully closed sysplex-wide to meet POSIX requirement that
a file’s contents are not deleted, even if its been unlinked, if processes still have
file open.

The STKM report shows token usage for file systems owned by the plex member.
In terms of zFS tuning, there are two things to look for:

•Excessive garbage collection – If the garbage collection count is high, then the plex
is desiring more tokens than the token limit. If there is room in the zFS address
space, try increasing the token_cache_size to reduce garbage collection (which is
simply extra system overhead).

•Thrashing Files – Indicates that more than one plex member is attempting to
access the same object and at least one of them is continually writing. In this case
zFS will use an access protocol very much like z/OS Unix does for its sysplex
sharing, but just for the thrashing object. This reduces/eliminates token revoke
callbacks and yields better performance. Unfortunately, zFS does not list the
thrashing objects here, there is no command to show which directories or files have
continued sysplex contention.

31

31

Sysplex Statistics III: F ZFS,QUERY,CTKC
SVI Calls to System PS1

SVI Call Count Avg. Time

-------------------- ---------- ----------

GetToken 1286368 1.375

GetMultTokens 0 0.000

ReturnTokens 26 0.050

ReturnFileTokens 0 0.000

FetchData 0 0.000

StoreData 540 1.566

Setattr 0 0.000

FetchDir 7140 6.291

Lookup 0 0.000

GetTokensDirSearch 0 0.000

Create 1320406 3.736

Remove 1499704 1.595

Rename 166498 1.448

Link 169176 1.549

ReadLink 0 0.000

SetACL 0 0.000

…..

FileDebug 0 0.000

-------------------- ---------- ----------

TOTALS 4449858 2.167

Shows requests a plex member sends to other
plex members for objects in file systems
owned by other members and average
response time in milliseconds. Includes XCF
transmission time.

Might be able to reduce GetToken calls by
raising vnode_cache_size (if zFS primary
storage allows it)

32

32

Sysplex Statistics IV: F ZFS,QUERY,SVI
SVI Calls from System PS2

SVI Call Count Qwait XCF Req. Avg. Time

-------------------- ---------- -------- -------- ----------

GetToken 1286013 0 0 0.259

GetMultTokens 0 0 0 0.000

ReturnTokens 26 0 0 0.050

ReturnFileTokens 0 0 0 0.000

FetchData 0 0 0 0.000

StoreData 540 0 0 0.081

Setattr 0 0 0 0.000

FetchDir 7140 0 0 4.997

Lookup 0 0 0 0.000

GetTokensDirSearch 0 0 0 0.000

Create 1321096 0 0 2.371

Remove 1499689 0 177 0.645

Rename 166500 0 0 0.509

Link 169608 0 0 0.538

ReadLink 0 0 0 0.000

SetACL 0 0 0 0.000

….

LkupInvalidate 0 0 0 0.000

FileDebug 0 0 0 0.000

-------------------- ---------- -------- -------- ----------

TOTALS 4450612 0 177 1.044

Shows calls received by indicated
plex member:

• Qwait non-zero when all server
tasks are busy

•XCF Req. means server had to
reclaim tokens from other plex
members to process request.

•Avg. Time in milliseconds shown
for server to process request.

33

33

Going Forward.

� A valuable monitoring process:
– If possible at your site, issue:

• F ZFS,QUERY,ALL
• F ZFS,RESET,ALL

– Every 30 minutes or so
• � Now zFS job output and system log have a running history of zFS performance,

good to look back at a reported performance problem, very useful for IBM level-2 if a
performance problem exists.

� IBM working on solutions to:
– Directory scale-ability fixed in z/OS 2.1
– Make more intelligent cache defaults for zFS, based on system memory
– Improve queries,

• Example: showing thrashing objects in a sysplex
– Improve scale-ability by:

• Reducing amount of storage required to track and cache objects and tokens for
RWSHARE

• Run zFS in 64 bit mode to eliminate primary address space storage constraints
which prevent customers from running with really big caches, particularly vnode
caches for RWSHARE.

• Reduce lock contention on file system specific structures in high directory write
workloads.

34

34

z/OS 11 and 12 vs. z/OS 13 zFS

z/OS 11 and 12 RWSHARE specific support:

� Reduced caching capacity – sysplex clients cannot store directory contents in backing
cache

� Do not support write-behind or direct disk IO for sysplex clients
– As a result have reduced performance
– Stress owners more

� Store user file data in a separate set of data spaces than user cache:
– Called client_cache_size

• � Must tune both user_cache_size and client_cache_size and estimating amount of
memory to assign to locally owned access and sysplex client access

� Do not handle thrashing directories quite as well as z/OS 13

z/OS 11 and 12:

� Partition directory data from metadata on owner systems, single systems and for
NORWSHARE systems, placing in a cache called the directory cache:

– Tune via dir_cache_size
– There is no dynamic tuning for directory cache, requires zFS restart
– Should define this to be larger and metadata cache to be smaller to make directory

operations more efficient for these releases and avoid data copying.

Generally speaking, it is highly recommend to migrate to z/OS 13 when using RWSHARE sysplex
support, it simply performs much better and is easier to tune. The R11 and R12 support does not
allow caching of metadata in the backing cache for objects that are not owned on the local system,
this can greatly reduce the amount of directory buffers a sysplex client system could cache. The R11
and R12 support also does not support write-behind and most file writes are going to be synchronous
calls to the owner. Any time file data is missing from a client cache it has to request that data from
the server, which means file contents flowing over the XCF channels and the server having to spend
CPU to obtain and return that data. The R11 and R12 sysplex code requires that the administrator
specify how much cache storage is to be used to hold file data that is remotely owned, and file data
that is locally owned via the client_cache_size parameter. This either requires more system memory
or could reduce cache hits if a system is more heavily skewed either to local file requests or remote
file requests.

Additionally, for all zFS systems: single system, NORWSHARE and RWSHARE, the administrator
has yet another tuning option to specify: dir_cache_size which partitions directory metadata from
other metadata. zFS on those systems could keep the contents of a directory page in two places: the
metadata cache and the directory cache. Since the directory code interfaces directly with the
directory cache, its best to ensure dir_cache_size is reasonably large for directory intensive
workloads. A miss from the directory cache means a search of the metadata cache and a miss there
means a disk read into the metadata cache and then a memory transfer of the block to the directory
cache. The directory cache cannot be dynamically configured via zfsadm config. Because z/OS 13
removed this cache it performs slightly better than z/OS 11 and 12 for directory operations.

35

35

Publications of Interest

� z/OS UNIX System Services Planning (GA22-7800)
General Administration of z/OS UNIX file systems

� z/OS Distributed File Service zSeries File System Administration (SC24-5989)
zFS Concepts and zfsadm command for zFS

� z/OS Distributed File Services Messages and Codes (SC24-5917)
IOEZxxxt messages and X’EFxxrrrr’ reason codes for zFS

� z/OS RMF Performance Management Guide (SC33-7992)
Describes how to monitor DASD performance

36

© 2012 IBM Corporation36 IBM Confidential5 February 2013

System z Social Media Channels

� Top Facebook pages related to System z:
– IBM System z
– IBM Academic Initiative System z
– IBM Master the Mainframe Contest
– IBM Destination z
– Millennial Mainframer
– IBM Smarter Computing

� Top LinkedIn groups related to System z:
– System z Advocates
– SAP on System z
– IBM Mainframe- Unofficial Group
– IBM System z Events
– Mainframe Experts Network
– System z Linux
– Enterprise Systems
– Mainframe Security Gurus

� Twitter profiles related to System z:
– IBM System z
– IBM System z Events
– IBM DB2 on System z
– Millennial Mainframer
– Destination z
– IBM Smarter Computing

� YouTube accounts related to System z:
– IBM System z
– Destination z
– IBM Smarter Computing

� Top System z blogs to check out:
– Mainframe Insights
– Smarter Computing
– Millennial Mainframer
– Mainframe & Hybrid Computing
– The Mainframe Blog
– Mainframe Watch Belgium
– Mainframe Update
– Enterprise Systems Media Blog
– Dancing Dinosaur
– DB2 for z/OS
– IBM Destination z
– DB2utor

���
���
���

