
Big Data Sharing with the Cloud -
WebSphere eXtreme Scale and WebSphere 
Message Broker Integration 

David Coles – WebSphere Message Broker Level 3 Technical Lead,
IBM Hursley – dcoles@uk.ibm.com

Thursday 7th February 2013
12627



Agenda

• Scenarios
• WebSphere eXtreme Scale concepts
• Programming model
• Operational model

2



Agenda

• Scenarios
• WebSphere eXtreme Scale concepts
• Programming model
• Operational model

3



4

Scenario 1 - Storing state for integrations

• When WMB is used to integrate 2 asynchronous systems, the broker needs to 
record some state about the requester in order to correlate the replies 
correctly.

• How can this scale across multiple brokers?



5

Global 
cache

request

response

Scenario 1 - Storing state for integrations

• With a global cache, each broker can handle replies – even when the request 
was processed by another broker.



6

Scenario 2 - Caching static data

• When acting as a façade to a back-end data base, WMB needs to provide 
short response time to client, even though the backend has high latency.



7

memory 
cache

• When acting as a façade to a back-end data base, WMB needs to provide 
short response time to client, even though the backend has high latency.

• This can be solved by caching results in memory (e.g. ESQL shared 
variables).

Scenario 2 - Caching static data



8

memory 
cachememory 

cachememory 
cachememory 

cachememory 
cache

• When acting as a façade to a back-end data base, WMB needs to provide 
short response time to client, even though the backend has high latency.

• This can be solved by caching results in memory (e.g. ESQL shared 
variables).

• However, this does not scale well horizontally.
• When the number of clients increase, the number of brokers/execution groups 

can be increased to accommodate – but each one has to maintain a separate 
in-memory cache

Scenario 2 - Caching static data



9

• With a global cache, the number of clients can increase while maintaining a 
predictable response time for each client.

Scenario 2 - Caching static data



Agenda

• Scenarios
• WebSphere eXtreme Scale concepts
• Programming model
• Operational model

10



5

WXS Concepts - Overview

• Elastic In-Memory Data Grid

• Virtualizes free memory within a grid of Java Virtual Machines (JVMs) into a 
single logical space which is accessible as a partitioned, key addressable 
space for use by applications

• Provides fault tolerance through replication with self monitoring and healing

• The space can be scaled out by adding more JVMs while it’s running without 
restarting

• Elastic means it manages itself! Auto scale out, scale in, failover, failure 
compensation, everything!



Memory CPU

5

Why an in -memory cache?

• Speed

• Challenges
• Physical memory size
• Persistence
• Resilience

Memory CPU

Disk

20ns

20ms

2ms



Notes

• If we look at the speed differences of the various interfaces on a computer we can see that looking up data in memory 
is much quicker than looking it up from disk. So in a high performance system you want to try and retain as much data 
in memory as possible. However at some point you run out of available real memory on a system and then you have 
to start paging for virtual storage or you have to offload to disk, but that of course will incur the cost of disk access 
which won’t perform. 

• However a well setup network will allow you to read data from memory on another machine quicker than you can look 
it up from the local disk. So why don’t all systems do this?

• Persistence, we often want data to survive outages, but this requires writing to a disk so that the data can be reloaded 
in to memory after an outage. 



5

Scaling

• Vertical or horizontal?

T
hr

ou
gh

pu
t

Load / Resources

Linear scaling

Non-linear scaling

Bottleneck

Saturation point



Notes

• We’re next going to look at the different approaches to performance and scaling. In an ideal world you would have no 
bottlenecks in a system and as you add more resources you can get a higher throughput in a linear fashion. In reality 
in most instances as you add more resources you get less and less benefit and eventually you may also reach a point 
where throughput stops increasing as you reach a bottleneck after the saturation point. At this point you need to 
eliminate the bottle neck to get the throughput to increase again.

• In most cases the obvious approach to increase throughput is to throw more processors or memory at a system to get 
the throughput to scale. This is vertical scaling. Eventually, perhaps with a traditional database system, you will hit a 
bottleneck, perhaps with IO to the disk, that stops the scaling completely. You could try to buy more faster and 
expensive hardware to overcome this bottleneck, but you may need a different approach. The next step is to try 
distributing the work over more machines and at this point you get to horizontal scaling.

• With a traditional database system this may not be possible because you may not be able to scale a database across 
multiple systems without still having a disk IO bottleneck. 

• At this point you may want to think about partitioning the data so that half is stored in one place and half in another, 
thus allowing horizontal scale of the lookup.



5

WXS Concepts

• Partition

• Container
• Catalog

• Shard

• Zone



5

WXS Concepts - Partitions

• Partitions
• Think of a filing cabinet
• To start off with you store everything in one draw 

• This fills up, so split across 2 draws

• Then that fills up so you split across 3, etc

• We’re partitioning the data to spread it across multiple ‘servers’

• WXS groups your data in partitions

A-Z

A-M N-Z

A-H I-P Q-Z



5

WXS Concepts - Shards

• Shard
• Think of a copy of you data in another filing cabinet draw
• This provides a backup of your data

• In WXS terms a shard is what actually stores your data
• A shard is either a primary or a replica

• Each partition contains at least 1 shard depending on configuration 
• A partition is a group of shards

A-H I-P Q-Z

A-H I-P Q-Z

A-H I-P Q-Z
primary

replica



5

WXS Concepts – Container / Zone

• Container
• Think of the room(s) you store your filing cabinet(s) in

• They could all be in 1 room

• Or split across several rooms in your house
• Or perhaps some in your neighbours house

• Depending on your access and resilience goal each option has a benefit

• In WXS terms a container stores shards
• A partition is split across containers

• (Assuming more than 1 shard per partition)

• Container position defines resilience

• Zone
• A Zone is the name of your room

• Or your house, or your neighbours house, or the town, etc
• WXS uses zones to define how shards are placed

• eg primary & replicas in different zones

• You can have multiple containers in a zone



A Very Simple WXS Topology

• You can replace JVM with

• WebSphere Application Server

• Datapower XC10

• WebSphere Message Broker Execution Group



Elastic In -Memory Data Grid

• Dynamically reconfigures as JVMs come and go

• 1 JVM

• No replicas

• 2 JVMs

• Replicas are created and distributed automatically

• 3 JVMs

• In the event of a failure the data is still available and is then rebalanced:

1 2 3

1 2 3 1 2 3

1 2 2 3 1 3

1 2 3 1 2 3



5

WXS Concepts - Catalog

• Catalog
• A catalog is like an index

• It tells you where to find stuff from a lookup

• In WXS the catalog server keeps a record of where the shards for each 
partition are located

• The catalog is key, if you lose it, you lose the cache

BCQ-Z

ABI-P

CAA-H

RepPri

1 2 2 3 1 3

JVM A JVM B JVM C

Catalog



User/Developer view

• A WXS developer sees only different maps of key value pairs



24

WMB Global Cache implementation

• WMB contains an embedded WXS grid
• For use as a global cache from within message flows. 
• WXS components are hosted within execution group processes.

• It works out of the box, with default settings, with no configuration. You just 
have to switch it on.

• The default scope of one cache is across one Broker (i.e. multiple execution 
groups) but it is easy to extend this across multiple brokers.

• Advanced configuration available via execution group properties.

• The message flow developer has new artefacts for working with the global 
cache, and is not aware of the underlying technology (WXS).



25

WMB Global Cache implementation

• Our implementation has

• 13 partitions
• one synchronous replica for each primary shard

• changes are sync'd from primary to replica immediately.



Agenda

• Scenarios
• WebSphere eXtreme Scale concepts
• Programming model
• Operational model

26



27

WMB Programming model

• Java Compute Node framework has new MbGlobalMap class for accessing 
the cache

• Underlying implementation (WXS) not immediately apparent to the flow 
developer

• Each cache action is autocommitted, and is visible immediately

• Other WMB language extensions to follow 
• Possible to call Java from most other interfaces so can still access cache now

• eg ESQL calling Java



28

public class jcn extends MbJavaComputeNode {
public void evaluate(MbMessageAssembly assembly) th rows MbException {

...
MbGlobalMap myMap = MbGlobalMap.getGlobalMap(“myMap ");
...
myMap.put(varKey, myValue);
myMap.put(“aKey”, myValue);
...
myValue = (String)myMap.get(varKey);

}
}

WMB Programming model - Java

New MbGlobalMap object. With 
static 'getter' acting as a factory.

Can also getMap() to get the 
default map.

Getter handles client connectivity 
to the grid.

Data is PUT on the grid

Data is read from the grid



WMB Programming model - Java

• Each statement is autcommitted

• Consider doing your cache actions as the last thing in the flow (after the 
MQOutput, for instance) to ensure you do not end up with data persisted after 
flow rollback

• put() will fail if the value already exists in the map. use containsKey() to check 
for existence and update() to change the value

• Clear out data when you are finished! (Using remove() )
• clear() is not supported – but can be achieved administratively using 

mqsicacheadmin, described later

• All mapnames are allowed apart from SYSTEM.BROKER.*

• Consider implementing own naming convention, similar to a pubsub topic 
hierarchy



Agenda

• Scenarios
• WebSphere eXtreme Scale concepts
• Programming model
• Operational model

30



31

Topologies - introduction

• Broker-wide topology specified using a cache policy property. 
• The value Default provides a single-broker embedded cache, with one catalog

server and up to four container servers. 

• The initial value is Disabled - no cache components run in any execution 
groups. Switch to Default and restart in order to enable cache function.

• Choose a convenient port range for use by cache components in a given 
broker.

• Specify the listener host name, which informs the cache components in the 
broker which host name to bind to. 



32

Diagram of the default topology

• Demonstrates the cache components hosted in a 6-EG broker, using the 
default policy. 



33

Topologies – default policy

EG1

Catalog
Service

Container
Service

Client
(message flows)

EG2
Container
Service

Client
(message flows)

EG3
Container
Service

Client
(message flows)

= Clients connecting to catalog server
= WXS internal connections between catalog server and containers

• Default
• All connections shown in the diagram below have out-of-the-box defaults!



34

Topologies – default policy 

Notes:

• Multiple execution groups/brokers participate together as a grid to host the cache
• Cache is distributed across all execution groups – with some redundancy
• One execution group is configured as the catalog server
• Distribution of “shards” handled by WXS
• Catalog server is required to resolve the physical container for each key
• Other execution groups are configured with the location of the catalog server
• Execution groups determine their own roles in the cache dynamically on startup
• Flows in all execution groups can connect to the cache. They explicitly connect to the 

catalog server, and are invisibly routed to the correct containers for each piece of data



35

Topologies – default policy, continued
• The execution group reports which role it is playing in the topology



36

Topologies – policy files

• Specify the fully-qualified path to an XML file to create a multi-broker cache
• In the file, list all brokers that are to participate in the cache
• Specify the policy file as the policy property value on all brokers that are to 

participate
• Sample policy files are included in the product install
• Policy files are validated when set and also when used
• Each execution group uses the policy file to determine its own role, and the 

details of all catalog servers
• For each broker, list the number of catalog servers it should host (0, 1 or 2) 

and the port range it should use. Each execution group uses its broker's name 
and listener host property to find itself in the file

• When using multiple catalog servers, some initial handshaking has to take 
place between them. Start them at the same time, and allow an extra 30-90 
seconds for the cache to become available



37

Topologies – policy files, continued

• The policy file below shows two brokers being joined, with only one catalog server. 

• MQ04BRK will host up to 4 container servers, using ports in the range 2820-2839.

• JAMES will host a catalog server and up to 4 containers, using ports in the range 
2800-2819.

• All execution groups in both brokers can communicate with the cache.



38

2 Broker topology

• Demonstrates a more advance configuration which could be achieved using a policy file

Execution Group 1

Message Flows

Execution Group 2

Message Flows

Execution Group 1

Message Flows

Execution Group 2

Message Flows

Execution Group 3

Message Flows

Execution Group 4

Message Flows

Execution Group 5

Message Flows

Execution Group 6

Message Flows

Broker Broker

Catalog Server

Container

Container

Catalog Server

Container

Container

Container

Container



39

Notes

• This picture demonstrates a 2 broker topology that could be achieved by using a policy file or with manual 
configuration.

• This topology has more resilience than the previous default topology because there is more than 1 catalog server and 
they are split across multiple brokers.



40

Topologies – policy “none”
• None. Switches off the broker level policy. Use this if you want to configure each execution group 

individually. The screenshot below shows the execution group-level properties that are available with 
this setting.

• Useful for fixing specific cache roles with specific execution groups.
• You may wish to have dedicated catalog server execution groups.
• Tip – start with “Default” or policy file, then switch to “None” and tweak the settings.



41

Administrative information and tools

• Resource statistics and activity trace provide information on map interactions.
• mqsicacheadmin command to provide advanced information about the 

underlying WXS grid.
• Useful for validating that all specified brokers are participating in a multi-

broker grid.
• Also useful for checking that the underlying WXS grid has distributed data 

evenly across the available containers
• Use with the “-c showMapSizes” option to show the size of your embedded 

cache.
• Use with the “-c clearGrid -m <mapname>” option to clear data out of the 

cache.
• Example mqsicacheadmin output on the next slide.



42



43

Global Cache Summary

• WXS Client hosted inside Execution Group
• WXS Container can be hosted inside Execution Group
• Catalog Server can be hosted inside Execution Group

• Type of topology controlled by broker cache “policy” property. 
• Options for default policy, disabled policy, xml-file specified policy, or no 

policy

• All of the above available out of the box, with sensible defaults for a single-
broker cache, in terms of number of containers, number of catalogs, ports 
used

• Can be customized

• Execution group properties / Message Broker Explorer for controlling which 
types of server are hosted in a given execution group, and their properties

• Access to map available in Java Compute node



44

Gotchas

• JVM memory usage is higher with the global cache enabled
• Typically at least 40-50mb higher

• Consider having execution groups just to host the catalog and container servers

• 1 Catalog server is a single point of failure
• Define a custom policy

• Cache update is autocommitted
• Consider doing your cache actions as the last thing in the flow (after the MQOutput, for 

instance) to ensure you do not end up with data persisted after flow rollback.

• Port contention
• Common causes of failure are port contention (something else is using one of the ports in 

your range), or containers failing because the catalog has failed to start.

• In all cases, you should resolve the problem (choose a different port range, or restart the 
catalog EG) and then restart the EG.



Agenda

• Scenarios
• WebSphere eXtreme Scale concepts
• Programming model
• Operational model
• Questions?

?
45



CICS and 
WMQ - The 
Resurrection 
of Useful

Getting the best availability 
from MQ on z/OS by using 
Shared Queues

Clustering - The 
Easier Way to 
Connect Your 
Queue Managers 

06:00

WebSphere MQ Channel 
Authentication Records

MQ & DB2 – MQ 
Verbs in DB2 & Q-
Replication

What’s New in the 
WebSphere MQ Product 
Family

WebSphere MQ 
application design, 
the good, the bad and 
the ugly

04:30

Using IBM WebSphere 
Application Server and IBM 
WebSphere MQ Together

WebSphere MQ 
CHINIT Internals 

BIG Connectivity with 
WebSphere MQ and 
WebSphere Message 
Broker

First Steps With 
WebSphere Message 
Broker: Application 
Integration for the 
Messy

03:00

The Dark Side of 
Monitoring MQ - SMF 115 
and 116 Record Reading 
and Interpretation

Migration and 
maintenance, the 
necessary evil

MQ on z/OS – VivisectionIntroduction to MQ01:30

12:15

BIG Data Sharing with the 
cloud - WebSphere 
eXtreme Scale and 
WebSphere Message 
Broker integration

WMQ - Introduction 
to Dump Reading 
and SMF Analysis -
Hands-on Lab

Extending IBM 
WebSphere MQ and 
WebSphere Message 
Broker to the Cloud

11:00

Diagnosing 
Problems 
for MQ

What's New in 
WebSphere Message 
Broker

09:30

Are you running too many 
queue managers or 
brokers?

08:00

FridayThursdayWednesdayTuesdayMonday

This was session 12627 - The rest of the week ……




