
BIG Connectivity with WebSphere MQ
and WebSphere Message Broker
[z/OS & Distributed]

Chris J Andrews and Dave Gorman
IBM

Tuesday February 5th 2013
Session Number 12626

Insert
Custom
Session
QR if
Desired.

� MQ

− WebSphere MQ Extended Reach (MQXR)

− WebSphere MQ HTTP Bridge

� Message Broker

− Introduction to Worklight

− Worklight Adapters

− Message Broker Mobile Patterns

� Mobile enablement for Microsoft .NET applications
� Create flexible mobile services on top of Message Broker
� Outbound push notifications for asynchronous data delivery
� Resource handler including security and caching

Agenda

Embedded
Controllers

Sensors

Actuators

Digital devices have now been embedded into systems for over 40
years.

Typically they have used propriety interfaces, tightly coupling the
devices to their data capture systems.

Tightly Coupled Systems

The proliferation of devices has risen dramatically in recent times:

� Popularisation of custom embedded circuitry

� Appreciation by industry as to the possibilities of
making data available to the user

� Mobile Phones / Tablets

Embedded and Mobile Devices

The Internet of Things

Billions of smart
devices instrument
our world today

WWW

HTTP serves as the de-facto protocol for
communication between browsers and
the internet

HTTP

What protocol should
machines use to communicate
with each other?

A common Machine to
Machine (M2M) protocol

Internet of Things

?

Internet Communication

To save inventing a new protocol every time a new embedded device came
along, a common protocol is needed.

MQTT is that protocol. It traces its roots back to 1999, where Dr Andy
Stanford-Clark of IBM, and Arlen Nipper of Arcom (now Eurotech) devised the
protocol.

Design goals of MQTT:

� Works over unreliable communication
networks

� Minimal data overhead (low bandwidth)

� Capable of supporting large numbers of
devices

� Simple to interface the data with the traditional
IT world

� Simple to developers to write applications to use

low-bandwidth,
expensive

comms

MQ Telemetry Transport (MQTT)

■ Expect and cater for frequent network
disruption – built for low bandwidth, high
latency, unreliable, high cost networks

■ Expect that client applications may have
very limited resources available.

■ Publish/subscribe messaging paradigm
as required by the majority of SCADA and
sensor applications.

■ Provide traditional messaging qualities of
service where the environment allows.

■ Published protocol for ease of adoption
by device vendors and third-party client
software.

MQ Telemetry Transport (MQTT)

MQTT
Broker

The Andy Stanford-Clark Mouse Trap State Advisor

Medical devices in hospital equipment

MQTT
Broker

Facebook Messenger

Low latency (milliseconds)
Low battery usage
Uses data sparingly
Implemented within weeks

MQTT Sample Usage Applications

QoS 0: At most once delivery (non-persistent)
– No retry semantics are defined in the protocol.
– The message arrives either once or not at all.

QoS 1: At least once delivery (persistent, dups
possible)

– Client sends message with Message ID in the message header
– Server acknowledges with a PUBACK control message
– Message resent with a DUP bit set If the PUBACK message is not seen

QoS 2: Exactly once delivery (persistent)
– Uses additional flows to ensure that message is not duplicated
– Server acknowledges with a PUBREC control message
– Client releases message with a PUBREL control message
– Server acknowledges completion with a PUBCOMP control message

MQTT Qualities of Service

How does MQTT use power?

− HTC Android mobile phone

Protocol allows tuning to suit devices

MQTT Power Usage

MQTT Data Usage

How does MQTT compare to HTTP for data usage?

Very favourably – of the order of a 5x saving!

Supplied as a component WebSphere MQ V7.1 and v7.5,
under the component name “WebSphere MQ Extended
Reach ” (or MQXR).

MQXR brings MQTT protocol functionality to WebSphere MQ!

� Highly scaleable : 100,000+ clients
� Security : SSL channels, JAAS authentication, WMQ OAM
� Ships with reference Java and C clients

− Small footprint clients
− other APIs and implementations of MQTT available via 3rd

parties

WebSphere MQ Telemetry

MQTT homepage:
http://mqtt.org

MQTT Specification
http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html

WebSphere MQ and MQ Telemetry
http://www-01.ibm.com/software/integration/wmq/

MQTT: the Smarter Planet Protocol
http://andypiper.co.uk/2010/08/05/mqtt-the-smarter-planet-protocol/

Lotus Expeditor (micro broker)
http://www.ibm.com/software/lotus/products/expeditor/

WebSphere MQ Telemetry – Further Reading

� MQ

− WebSphere MQ Extended Reach (MQXR)

− WebSphere MQ HTTP Bridge

� Message Broker

− Introduction to Worklight

− Worklight Adapters

− Message Broker Mobile Patterns

� Mobile enablement for Microsoft .NET applications
� Create flexible mobile services on top of Message Broker
� Outbound push notifications for asynchronous data delivery
� Resource handler including security and caching

Agenda

WebSphere MQ

JEE
Application
Server
HTTP Bridge

E n
t

er p
r is e M e s s a g
i n g

B a c k b o n e

Queues and topics

Web
Browser

s

REST over
HTTP

HTTP
clients

Javascript /
AJAX

The WebSphere HTTP Bridge
grants HTTP client applications the
ability to access WebSphere MQ
messages on queues and topics.

The HTTP Bridge comprises of a JEE Web application (servlet),
which is to be installed into a JEE Application server in order to be
used.

WebSphere MQ HTTP Bridge

The WebSphere MQ HTTP Bridge provides two key benefits:

1) Zero Client Footprint .
No WebSphere MQ MQI client libraries are required on the application host.
In addition, any platform which supports HTTP can access WebSphere MQ data.

2) Simplifies access to WebSphere MQ messages from browser based internet
applications.
No WebSphere MQ programming knowledge is required to program the client
applications

Queue

WebSphere MQ HTTP Bridge

HTTP Request Result

POST Puts a message to a queue or topic (MQPUT)

GET Browses the first message on the queue (MQGET with browse)

DELETE Receives a message from the queue (destructive MQGET), or
creates a non-durable subscription from a topic

PUT Not used

How does data access work from HTTP?

The HTTP request defines the location and name of the the queue or
topic access point:

POST /msg/queue/myQueue/ HTTP/1.1
Host: myhost.mydomain

WebSphere MQ HTTP Bridge

Example 1: MQPUT
Put a messsage to a queue, with message body containing a string message:

POST /msg/queue/myQueue/ HTTP/1.1
Host: myhost.mydomain
Content-Type: text/plain
x-msg-correlID: 1234567890
Content-Length: 60

Here is my message body that is posted on the queue.

HTTP/1.1 200 OK
Date: Wed, 2 Jan 2007 22:38:34 GMT
Server: Apache-Coyote/1.1 WMQ-HTTP/1.1 JEE-Bridge/1.1
Content-Length: 0

This HTTP POST response is of the form:

WebSphere MQ HTTP Bridge

Example 2: MQGET
Destructively receive a message from a queue, waiting a maximum of 10 seconds:

DELETE /msg/queue/myQueue/ HTTP/1.1
Host: myhost.mydomain
x-msg-wait: 10
x-msg-require-headers: correlID

HTTP/1.1 200 OK
Date: Wed, 2 Jan 2007 22:38:34 GMT
Server: Apache-Coyote/1.1 WMQ-HTTP/1.1 JEE-Bridge/1.1
Content-Length: 60
Content-Type: text/plain; charset=utf-8
x-msg-correlId: 1234567890

Here is my message body from the queue.

This HTTP DELETE response is of the form:

WebSphere MQ HTTP Bridge

� MQ

− WebSphere MQ Extended Reach (MQXR)

− WebSphere MQ HTTP Bridge

� Message Broker

− Introduction to Worklight

− Worklight Adapters

− Message Broker Mobile Patterns

� Mobile enablement for Microsoft .NET applications
� Create flexible mobile services on top of Message Broker
� Outbound push notifications for asynchronous data delivery
� Resource handler including security and caching

Agenda

Worklight Overview

Worklight Architecture

Worklight Overview

Types of Mobile Application

• MQ
• WebSphere MQ Extended Reach (MQXR)
• WebSphere MQ HTTP Bridge

• Message Broker
• Introduction to Worklight
• Worklight Adapters
• Message Broker Mobile Patterns

• Mobile enablement for Microsoft .NET applications
• Create flexible mobile services on top of Message Broker
• Outbound push notifications for asynchronous data delivery
• Resource handler including security and caching

Agenda

Worklight Adapters

� Adapters provide the glue between Worklight and back-end applications
– Provides the extensibility mechanism for Worklight to call out to back-end systems

� Worklight has two built-in interfaces that adapters can use (HTTP and SQL)
– Worklight has client-side JavaScript APIs so that applications can invoke services
– Likewise, server-side JavaScript APIs are available to implement procedures (adapters)

Worklight Adapters

� An adapter contains two files for configuration and implementation
– The first file is XML and contains the overall metadata (procedure names, protocol etc)
– Second file is JavaScript and contains one function (procedure) for each entry point

� Adapters are uploaded to Worklight Server ready for mobile applications
– Once deployed, adapters are managed through the Worklight Console

Invoking Worklight adapters

� Adapters are invoked from mobile applications using HTTP/JSON
– This convention makes Worklight adapters easy to test using web browsers
– Client side applications use the XMLHttpRequest object for asynchronous calls
– Mobile toolkits (JQuery, Dojo and Sencha) wrap this in a device independent layer

• MQ
• WebSphere MQ Extended Reach (MQXR)
• WebSphere MQ HTTP Bridge

• Message Broker
• Introduction to Worklight
• Worklight Adapters
• Message Broker Mobile Patterns

• Mobile enablement for Microsoft .NET applications
• Create flexible mobile services on top of Message Broker
• Outbound push notifications for asynchronous data delivery
• Resource handler including security and caching

Agenda

Worklight to Microsoft .NET Service Enablement

� Creates a mobile-ready service around a Microsoft .NET application
– Generates a web service implementation which is deployed to Message Broker
– Builds a Worklight integration adapter and a sample mobile application
– Inbound data from the mobile application is sent to Worklight as JSON/HTTP
– The adapter converts the JSON data into/from SOAP/HTTP for the .NET web service

Configuring the Pattern Instance

� Pattern is configured with Microsoft .NET and Worklight information
– Server address is a key field as it is used to configure both ends of the connection!
– Standard set of error handling and logging options are provided by the pattern
– Adapter configured with the maximum number of concurrent (HTTP) connections
– Once this limit is reached, Worklight will queue inbound requests from applications

Configuring the Microsoft .NET Assembly

� User-defined editor allows the pattern user to select their .NET assembly
– Selection proceeds to a class and the (static) methods available in that class
– Assembly can be developed in any .NET language (for example, VB.NET or C#)
– Return value and parameters are reflected on and displayed by the user-defined editor

Generated Message Broker Projects

� The pattern generates an application and a library
– Application contains the mechanics of the pattern instance
– Library contains subflows for user customizations
– Customizations are never deleted on re-generation!

� WSDL represents the selected .NET methods
– One WSDL operation for each .NET (static) method
– Likewise one message part defined per operation
– WSDL types are defined in a separate XML schema file
– WSDL and XSD are deployed directly to Message Broker

Worklight Adapter

� Worklight adapter generated which reflects the web service methods
– Integrates the mobile application with the Message Broker .NET web service
– One procedure is generated for each operation (method) on the web service
– Adapter manages the conversion between JSON and SOAP/XML data formats
– Adapter generated in a separate project so it can be deployed to Worklight Server

Mobile Application

� Pattern also creates a mobile application to test the Worklight adapter
– Each operation has views (pages) to configure and invoke the back-end service
– Application is built using Dojo Mobile (ensures it is device independent)
– More information on the Dojo mobile toolkit here: http://dojotoolkit.org/features/mobile

Mobile Application

� The mobile application has a single mobile web environment
– Application is best suited for browsers on small screen mobile devices
– Easy to add extra environments for iOS, Android and many more!

� Android development requires a separate download (Android SDK)
– Pick and choose your target Android versions from Android SDK Manager

• MQ
• WebSphere MQ Extended Reach (MQXR)
• WebSphere MQ HTTP Bridge

• Message Broker
• Introduction to Worklight
• Worklight Adapters
• Message Broker Mobile Patterns

• Mobile enablement for Microsoft .NET applications
• Create flexible mobile services on top of Message Bro ker
• Outbound push notifications for asynchronous data delivery
• Resource handler including security and caching

Agenda

Worklight Mobile Services

� Creates a mobile-ready interface around a Message Broker service
– Services are a first class artifact in Message Broker alongside applications and libraries
– Builds an adapter to integrate Worklight and Message Broker services
– Inbound data from the mobile application is sent to Worklight as JSON/HTTP

–Makes it very simple to mobile enable a Message Broker service!
– The adapter passes the inbound request straight through to the service
– Pattern adds an HTTP/JSON message flow (binding) to the service project

Configuring the Pattern Instance

� Create a Message Broker service and then instantiate the pattern
– You choose which operations in the service are available to mobile applications
– Standard set of Worklight pattern parameters provided to configure the adapter

Configuring the Pattern Instance

� The mobile service pattern can also be launched from the Navigator
– Intuitive user experience for mobile enablement of Message Broker services
– The selected service name is passed to the pattern as the launch configuration
– Pattern instance is configured automatically and can be immediately generated

Worklight Adapter

� Generates a Worklight adapter which reflects the web service methods
– Integrates the mobile application with the Message Broker web service
– One procedure is generated for each selected operation in the service
– Request-response and one-way interactions for the service are supported

• MQ
• WebSphere MQ Extended Reach (MQXR)
• WebSphere MQ HTTP Bridge

• Message Broker
• Introduction to Worklight
• Worklight Adapters
• Message Broker Mobile Patterns

• Mobile enablement for Microsoft .NET applications
• Create flexible mobile services on top of Message Broker
• Outbound push notifications for asynchronous data deli very
• Resource handler including security and caching

Agenda

Worklight Push Notification Services

� Worklight supports asynchronous push notifications to mobile applications
– Push notifications have a measurable impact on the success of mobile applications
– There are many IT challenges in supporting push notifications (devices, delivery etc)

–Push notifications are applicable across many industry verticals
– Healthcare, retail, travel, transportation, government, insurance and more!

–All the major mobile platforms support push notification services
– Apple iOS 3, Google Android 2.2, RIM Blackberry 5 and Windows Phone 7

Worklight Push Notification Services

� Users receive notifications when the mobile application is not active
– Efficiency gain as application does not need to issue constant queries
– Saves battery life and also reduces network bandwidth (communication fees)

–Notifications are not always appropriate and have disadvantages
– Users need to subscribe on their device to receive push notifications
– Notifications are limited in the size of their payload (for example, 256 bytes on iOS)
– No quality of service is guaranteed and there is no delivery notification
– No guarantee either that the end-to-end delivery chain is secure

Worklight Push Notification from WebSphere MQ

� Creates a push notification adapter from a WebSphere MQ queue
– Generates a web service implementation which is deployed to Message Broker
– Builds a Worklight integration adapter which polls for pending notifications
– Pending notifications are written to a WebSphere MQ queue by a provider application
– The adapter converts the notifications into JSON and arranges delivery to the mobile

Configuring the Pattern Instance

� Pattern is configured with Worklight and Message Broker information
– Server address is a key field as it is used to configure both ends of the connection!
– Standard set of error handling and logging options are provided by the pattern

–Application specific fields can be delivered in the push notification
– Configured as part of the pattern instance so that an accurate schema can be created

Worklight Adapter

� Worklight adapter generated which periodically checks for notifications
– Integrates Worklight with a queue of notifications managed by Message Broker
– Generated pattern instance project includes a schema for the notification messages
– Adapter manages the conversion from XML to JSON for the Worklight server-side calls

–Polling interval for pending notifications is configurable in the pattern
– Adapter greedily processes all pending notifications each time it wakes up

• MQ
• WebSphere MQ Extended Reach (MQXR)
• WebSphere MQ HTTP Bridge

• Message Broker
• Introduction to Worklight
• Worklight Adapters
• Message Broker Mobile Patterns

• Mobile enablement for Microsoft .NET applications
• Create flexible mobile services on top of Message Broker
• Outbound push notifications for asynchronous data delivery
• Resource handler including security and caching

Agenda

Worklight Resource Handler

� Resource oriented architecture is a well known implementation pattern
– Provides a common set of functions (CRUD – Create Read Update and Delete)
– This pattern provides an adapter which implements CRUD operations
– A Message Broker service is generated with subflows for each operation
– The service integrates security authorization and authentication (LDAP)
– Operations optionally integrate with the Message Broker Global Cache (WXS)

Implementing Resource Handlers

� Complete the pattern instance by implementing the resource handlers
– Subflows are generated for each CRUD operation in a customization project
– Pattern generates a reference implementation of a back end system in ESQL

� Message Broker has excellent support for enterprise applications
– Common design pattern to integrate with SAP, Siebel, JDEdwards and PeopleSoft
– Wizards makes it easy to discover the application content (for example, SAP iDocs)
– Rich SAP support includes iDocs, ALE, BAPI and query SAP tables (QISS)

WebSphere Extreme Scale (WXS)

� WebSphere Extreme Scale is tightly integrated with Message Broker
– Provides a highly scalable, fault tolerant, elastic in-memory data grid
– One or more execution groups manage a single logical cache of key-value data
– WXS components are hosted within the execution group processes
– Default scope is one cache per broker but this can be extended to multiple brokers

–Vital for mobile applications where the number of devices can be huge
– Caching fits perfectly with a CRUD model of many readers and (generally) few writers
– Message Broker activity log shows the cache activity as CRUD operations complete

Authorization and Authentication

� Patterns provides a security model based around LDAP
– Caching fits perfectly with a CRUD model of many readers and (generally) few writers
– Users are authenticated using HTTP basic authentication by the HTTP Input node
– Authorization is then done by splitting the users into two groups (readers/writers)
– A user is authorized if they are a member of the group in the LDAP directory
– The LDAP queries are issued by the message flow using the Security PEP node
– Caching changes are made through WXS after the user has cleared security

Monday Tuesday Wednesday Thursday Friday

08:00 Are you running too many
queue managers or
brokers?

09:30 What's New in
WebSphere Message
Broker

Diagnosing
Problems
for MQ

CICS and
WMQ - The
Resurrection
of Useful

11:00 Extending IBM
WebSphere MQ and
WebSphere Message
Broker to the Cloud

WMQ - Introduction
to Dump Reading
and SMF Analysis -
Hands-on Lab

BIG Data Sharing with the
cloud - WebSphere
eXtreme Scale and
WebSphere Message
Broker integration

Getting the best availability
from MQ on z/OS by using
Shared Queues

12:15

01:30 Introduction to MQ MQ on z/OS – Vivisection Migration and
maintenance, the
necessary evil

The Dark Side of
Monitoring MQ - SMF 115
and 116 Record Reading
and Interpretation

03:00 First Steps With
WebSphere Message
Broker: Application
Integration for the
Messy

BIG Connectivity with
WebSphere MQ and
WebSphere Message
Broker

WebSphere MQ
CHINIT Internals

Using IBM WebSphere
Application Server and IBM
WebSphere MQ Together

04:30 WebSphere MQ
application design,
the good, the bad and
the ugly

What’s New in the
WebSphere MQ Product
Family

MQ & DB2 – MQ
Verbs in DB2 & Q-
Replication

WebSphere MQ Channel
Authentication Records

06:00 Clustering - The
Easier Way to
Connect Your
Queue Managers

This was session 12626 - The rest of the week ……

