
S12622 – Are you running too Many
Queue Managers or Brokers?

Ralph Bateman and David Gorman
IBM Hursley

S12622

Insert
Custom
Session
QR if
Desired.

Agenda

2

What should we look at first

Server

MEMORY CPU NetworkI/O

Syncpoints Persistance

Heavy MQI calls

Message Channel
Agent

Communications
InterfaceCommand Server

MQI

Queue Manager
Kernel

Data Abstraction and Persistence

Object
Authority
Manager

Application Interface

Log Manager

Applications

SPI

Common Services

Queue Manager: Functional View

Queue Manager: Functional View

• The queue manager has the following major components:
• Application Interface provides the environment and mechanism for execution of MQI calls.
• Queue Manager Kernel provides most of the function of the MQI. For example, triggering is implemented

here along with message location.
• Object Authority Manager provides access control for the queue manager and its resources. It allows

specification of which users and groups are permitted to perform which operations against which resources.
• Data Abstraction and Persistence provides storage and recovery of the data held by the queue manager.
• Log Manager maintains a sequential record of all persistent changes made to the queue manager. This

record is used for recovery after a machine crash and for remembering which operations were in which
transaction.

• Message Channel Agents are special applications using the SPI for the majority of their operations. They
are concerned with reliable transmission of messages between queue managers.

• SPI is a lower-level API similar to MQI but only available to Queue Manager processes offering greater
performance and functionality.

• Command Server is a special application. It is concerned with processing messages containing commands
to manage the queue manager.

• Common Services provides a common set of operating system-like services such as storage management,
NLS, serialisation and process management. This isolates the Queue Manager from platform differences.

Syncpoint – Are they that important?

• Do you need it?
• Yes, when a set of work needs to either all be performed, or all not

performed
• Maximum Size of UOW can be limited

• QMGR MAXUMSGS parm
• Set to sensible value to avoid runaway applications

• Make sure you keep the size of your UOWs small
• Don’t forget to end the UOW

• Cheaper to process in syncpoint for persistent messages
• Up to a point, not huge UOWs
• Log not forced after every MQPUT/MQGET

• Useful even when only a single message inside syncpoint
• And running multiple parallel applications

Syncpoint

• The size of a UOW (number of messages in it) can be controlled via
the MAXUMSGS queue manager parameter. This however has no
impact on the duration of the UOW, it simply controls the maximum
number of messages that a UOW can contain. It prevents runaway
applications

• It can be considerably cheaper to process multiple persistent
messages inside syncpoint rather than processing them outside
syncpoint. This is because if persistent messages are being used
outside of syncpoint, it is necessary to force them to the log as soon as
they are put, to ensure that they are available if a failure occurs. If they
are processed inside syncpoint it is only necessary to force the log
when the UOW is committed. This means that we will spend less time
waiting for the pages to be forced out to disk. In effect the cost of
forcing the UOW out to disk is shared between all of the messages put
and got, rather than each one having to bear the cost. Syncpoint
should not be considered as an ‘overhead’.

Heavyweight MQI Calls

• MQCONN is a “heavy” operation
• Don’t let your application do lots of them
• Wrappers and OO interfaces can sometimes hide what’s really happening
• Lots of MQCONNs can drop throughput from 1000s Msgs/Sec to 10s Msgs/Sec

• MQOPEN is also ‘heavy’ compared to MQPUT/MQGET
• Depends on the type of queue and whether first use

• Loading pre-existing queue; creating dynamic queue
• It’s where we do the security check

• Try to cache queue handles if more than one message
• If you’re only putting one message consider using MQPUT1

• Particularly client bindings

• Try to avoid exclusive access to the Queue
• Makes it harder to scale the solution

• For example adding more instances of application
• Implies that reliance on message order is not required

• Partition the data to allow parallel processing?

Heavyweight MQI Calls

• MQCONN is a very heavyweight operation. Doing lots of these calls could cause throughput to suffer. Make
sure that you don’t connect and disconnect a lot in your application, rather, connect once and then use this
connection for all subsequent operations. Think carefully about any encapsulation you might do in your OO
applications, make sure that the encapsulation does not cause you to do lots of MQCONNs and MQDISCs.

• MQPUT1
If just putting a single message to a queue, MQPUT1 is going to be cheaper than MQOPEN, MQPUT and
MQCLOSE. This is because it is only necessary to cross over from the application address space into the
queue manager address space once, rather than the three times required for the separate calls. Under the
covers inside the queue manager the MQPUT1 is implemented as an MQOPEN followed by MQPUT and
finally the MQCLOSE. The cost saving for a single put to a queue is the switching from application to queue
manager address space. Of course, if multiple messages need to be put to the queue then the queue should
be opened first and them MQPUT used. It is a relatively expensive operation to open a queue.

• Exclusive use of queues
Opening queues for exclusive use can help with sequencing issues, but it is a good idea to investigate
whether other solutions are available. Exclusive use will make it harder to add extra tasks to process more
work if needed in the future. Possible solutions are partitioning the data on the queue so that different tasks
can work on different parts of the queue data (get by CorrelID can be used for this). This will enable more
tasks to process the queue while maintaining ordering within the partitioned part of the data.

Persistence – do you need it?

• Log bandwidth is going to restrict throughput
• Put the log files on the fastest disks you have

• Persistent messages are the main things requiring recovery after an
outage
• Can significantly affect restart times

• Why use persistence?
• False assumption that persistence is for "important" data and nonpersistent for

when you don't care
• The real reason for persistent messages is to reduce application complexity
• With persistent, apps do not need logic to detect and deal with lost messages
• If your app (or operational procedures) can detect and deal with lost messages,

then you do not need to use persistent messages

MQPUT
Queue File

Log

Persistence

• If persistent messages are used then the maximum rate that messages can be put is typically
going to be limited by the logging bandwidth available. This is normally the over riding factor
as to the throughput available when using persistent messages.

• As persistent messages need to be made available when a queue manager is restarted, they
may need to be recovered if there has been a failure (could be queue manager or system etc).
The persistent workload that has been done is the main key as to how long it is going to take
to restart the queue manager after a failure. There are other factors involved which include the
frequency of checkpoints etc, but ultimately it all comes down to the fact that persistent
messages have been used. If there has been a failure then no recovery is required on non-
persistent messages, the pages that contained them are simply marked as not used.

• If your application (or operational procedures) can detect and deal with lost messages, then
you do not need to use persistent messages.

• Consider:
• A bank may have sophisticated cross checking in its applications and in its procedures to ensure

no transactions are lost or repeated.
• An airline might assume (reasonably) that a passenger who does not get a response to a

reservation request within a few seconds will check what happened and if necessary repeat or
cancel the reservation.

• In both cases the messages are important but the justification for persistence may be weak.

What can you look at ?
Statistics and Accounting

• MQ collects sets of data to be written as messages to predefined
queues
• Very similar concepts to SMF 116 reports for z/OS but using MQ

facilities
• Data can be post-processed to give information on the activity of the

system
• Statistical Data collection is split into 3 classes

• QMGR statistics - statistics based on the activity of the whole system
• Queue statistics - statistics on the activity of the queue (per queue)
• Channel statistics - statistics on the activity of the channel (per

channel)
• Accounting Data collects information about MQI applications

• PCF message is written upon MQDISC
• Or at regular intervals for long running tasks

• Collection of data for each class may be selected independently

Formatting Statistics/Accounting Events

• Sample program amqsmon to format
• Source code provided

amqsmon –m SHARE –t accounting
QueueManager: SHARE
IntervalEndDate: 2013-01-10
IntervalEndTime: 14:39:50
CommandLevel: 600
SeqNumber: 0
ApplName: amqsput.exe
ApplicationPid: 9408
ApplicationTid: 1
UserId: 'metaylor'
ObjectCount: 1

OBJECTS:
QueueName : ‘APP.QUEUE.X'
QueueType: Predefined
QueueDefType: Local
OpenCount: 1
OpenDate: 2013-01-10
OpenTime: 14:39:49
CloseCount: 1
CloseDate: 2013-01-10
CloseTime: 14:39:50

PutCount: [0, 1]*
PutFailCount: 0
Put1Count: [0, 0]
Put1FailCount: 0
PutBytes: [0, 4]
PutMinBytes: [0, 4]
PutMaxBytes: [0, 4]

*array shows non-persistent, persistent

What should we look at next?

Network

MEMORY CPU NetworkI/O

Single or Batch of Messages

Network

• Batchsize parameter determines maximum batch size
• Actual batchsize depends on

• Arrival rate
• Processing speed

• Low Batchsize may cause XmitQ to build up
• Scratchpad housekeeping uses equiv of 3 Persistent messages
• High Batchsize will make little difference - self throttling

• Use high (~50) Batchsize unless there are issues with:
• Data visibility - throughput
• Communication link reliability
• Message Size: Can use BatchLimit with V7.1

• Batchint can increase effective batch size towards Batchsize
• Delays message availability to application
• Reduces CPU cost per message

Channel Batch Size

• Setting an appropriate Batchsize (BATCHSZ) is a difficult issue and is related to the following factors:
• Applications write messages to XMIT queues for moving over channels to remote systems. Channels take

batches of messages from XMIT queues and move to destination. The overhead per batch (commit, CPU and
disk activity) is divided by the #messages in the batch to give the cost per msg. If the commit process occurs less
often then the message transfer rate is increased.

• A batch is ended when one of two things happen - either the number or size of messages transferred has
reached the maximum allowed for the batch or the transmission queue is empty and the Batchint has expired. If
the message arrival rate is lower than the message transfer rate then the effective batch size is dynamically
reduced as a drained transmission queue implies 'end of batch'. This reduction in batch size will reduce the
message transfer rate as commit processing is more frequent and increases the cost of processing each
message by the channel.

• Messages arriving at the receiving MCA are placed on the target application queues under syncpoint control.
This means that they are not visible to any receiving applications until the commit is performed. If the batch size
is large, messages may not be made available to receiving applications for some time which may have a severe
impact on the message throughput of the overall system.

• Because the batch size is so greatly influenced by the message arrival rate on the transmission queue, it is
generally recommended to set the Batchsize quite high(ie leave at default of 50) - unless there are contrary
factors, which are:

• Data visibility - due to (outstanding) commit processing.
• Unreliable, slow or costly communication links, making frequent commit processing a necessity.
• Large Messages. Upon restart it may be necessary to resend the last batch.

• Entirely non-persistent message batches do not use disk for hardening batch information
(NPMSpeed(FAST)) but still cause a line turnaround.

• With MQ V7.1 you can also use BatchLimit as an additional control on the amount of data transferred in
each batch. This can be helpful when the size of messages on a transmission queue varies significantly.

One or Multiple Channels

• Use one channel if it can handle the throughput
• Monitor depth of XMIT queue
• One high-use channel is more efficient than two low-use channels

• The actual batch size will be larger
• Multiple channels can yield some performance benefit

• Depends on network and arrival rate
• Multiple channels for separate classes of work

• Large messages only delay large message
• Encryption cost on taken on worthwhile messages
• Small interactive messages do not get delayed

MCA MCA
Message Flow

MCA MCA
Message Flow

One or Multiple Channels

• For the reasons previously outlined, it is most appropriate to have as high a channel utilization
as possible. This means that it is appropriate to have as few channels as can handle the load
between any two queue managers.

• However, where there are different classes of message being moved around the MQ network,
it may be appropriate to have multiple channels to handle the different classes.

• Messages deemed to be 'more important' may be processed by a separate channel. While
this may not be the most efficient method of transfer, it may be the most appropriate. Note that
a similar effect may be achieved by making the transmission queue a priority order queue and
placing these message at the head of the transmission queue.

• Very large messages may hold up smaller messages with a corresponding deterioration in
message throughput. In this instance, providing a priority transmission queue will not solve
the problem as a large message must be completely transferred before a high priority
message is handled. In this case, a separate channel for large messages will enable other
messages to be transferred faster.

• If it is appropriate to route message traffic through different parts of the underlying network,
multiple channels will enable those different network routes to be utilized.

What should we look at next?

Client

MEMORY CPU NetworkI/O

Clients

• Section on MQ Clients

MQ Client Architectures

• Large systems have been built with clients
• 50,000 clients per server

• Similar considerations to synchronous architectures
• Request / response time critical
• MQ Transport cost can be < 1 milli second
• 256 byte user message causes 1420 bytes flow with serialised MQI

parameters
• Scalability considerations

• Large number of processes on server
• Trusted bindings (Channel programs)
• Overheads of per-client ReplyToQ

• Share queues, using CorrelId/MsgId to select correct response
• Recovery processing

• If the queue manager fails, all clients reconnect at the same time

MQ Client Architectures

• MQ clients offer lightweight, low overhead, low cost and low administration access to MQ
services. Clients reduce the requirements for machine resources on the client machine, but
there are tradeoffs: Resources on the server are required for the MCAs to handle the client
connections - 1 per client connection (MQCONN).

• Application architectures built around thin clients often feature large numbers of connections.
MQ has been proven with large configurations of up to 50,000 clients concurrently attached to
a single AIX server. However, there are some points to consider to achieve the best
performance with thin clients:

• Large configurations (ie many client attachments) result in a large number of MQ processes:
• Each client connection requires a channel. Each channel requires a receiver and an agent.

• The number of processes can be reduced by using trusted bindings for the receiver,
eliminating the agent processes.

• Since each queue requires control structures in memory, having a ReplyToQ for each client
will result in a large number of queues and high memory usage. You can reduce the number
of queues, and therefore memory requirements, by sharing a ReplyToQ between some (or all)
of the clients, and referencing reply messages using MsgId and/or CorrelId.

• Each API call is transferred (without batching) to the server, where the call is executed and the
results returned to the client. The MQMD has to be passed on input and output flow. Similarly
the MQGMO/MQPMO.

ClientClient

Asynchronous Put Response

MQCONN

MQOPEN

MQOPEN

MQPUT

MQPUT

MQPUT

MQPUT

MQCMIT

ServerServer

Asynchronous Put Response

• Asynchronous Put (also known as 'Fire and Forget') is a recognition of
the fact that a large proportion of the cost of an MQPUT from a client is
the line turnaround of the network connection. When using
Asynchronous Put the application sends the message to the server but
does not wait for a response. Instead it returns immediately to the
application. The application is then free to issue further MQI calls as
required. The largest speed benefit will be seen where the application
issues a number of MQPUT calls and where the network is slow.

• Once the application has competed its put sequence it will issue
MQCMIT or MQDISC etc which will flush out any MQPUT calls which
have not yet completed.

• Because this mechanism is designed to remove the network delay it
currently only has a benefit on client applications.

Read-ahead of messages

ClientClient

MQCONN

MQOPEN

MQGET

MQGET

MQGET

ServerServer

Request for
‘n’ messages

Read-ahead of messages

• Read Ahead (also known as 'Streaming') is a recognition of the fact that a large proportion of
the cost of an MQGET from a client is the line turnaround of the network connection. When
using Read Ahead the MQ client code makes a request for more than one message from the
server. The server will send as many non-persistent messages matching the criteria (such as
MsgId) as it can up to the limit set by the client. The largest speed benefit will be seen where
there are a number of similar non-persistent messages to be delivered and where the network
is slow.

• Read Ahead is useful for applications which want to get large numbers of non-persistent
messages, outside of syncpoint where they are not changing the selection criteria on a regular
basis. For example, getting responses from a command server or a query such as a list of
airline flights.

• If an application requests read ahead but the messages are not suitable, for example, they are
all persistent then only one message will be sent to the client at any one time. Read ahead is
effectively turned off until a sequence of non-persistent messages are on the queue again.

• The message buffer is purely an 'in memory' queue of messages. If the application ends or the
machine crashes these messages will be lost.

• Because this mechanism is designed to remove the network delay it currently only has a
benefit on client applications.

Clustering

27

Clustering – How Many FRs
• Whenever an application tries to use a queue, that queue manager will

have to register its interest with the full repositories.
• The more of these ‘subscriptions’ there are in the system, the bigger the

overhead when changes occur
• Minimise unnecessary traffic and FR load by hosting similar applications

(those that work with same queues) in the same location
• Already mentioned admin overhead of many overlapping clusters.

• Also has a cluster performance implication, subscriptions have to be made
in every cluster (even if these end up flowing to the same place)

• Sometimes an advantage to having ‘parallel’ channels within a
cluster…
• But don’t rush to do that. As well as adding complexity, may result in

channels being underutilised which will actually reduce performance

• Generally keep separate cluster receivers for separate QOS
• For example separating security domains, see later

Considerations for Full Repositories
(FRs)

• More often than not, problems hit by administrators are caused
by the interactions between multiple WLM parameters.

• This is another area where a large number of overlapping
clusters can cause issues – probably confusion in this case.

• On the other hand, remember that most balancing is per-
channel. As well as the points on the main slide, this means
that separating applications into separate channels (therefore
clusters) will stop messages from one altering balancing for
another.

Considerations for Full Repositories (FRs)
• FRs should be highly available

• Avoid single point of failure - have at least 2
• Recommended to have exactly 2 unless

you find a very good reason to have more
• Put them on highly available machines

• FRs must be fully inter-connected
• Using manually defined cluster sender

channels

• If at least one FR is not available or they are not
fully connected
• Cluster definition changes via FRs will not

flow
• User messages between Partial Repositories

over existing channels will flow

Considerations for Full Repositories
(FRs)

• Full Repositories must be fully connected with each other using manually defined cluster
sender channels.

• You should always have at least 2 Full Repositories in the cluster so that in the event of a
failure of a Full Repository, the cluster can still operate. If you only have one Full Repository
and it loses its information about the cluster, then manual intervention on all queue managers
within the cluster will be required in order to get the cluster working again. If there are two or
more Full Repositories, then because information is always published to and subscribed for
from 2 Full Repositories, the failed Full Repository can be recovered with the minimum of
effort.

• Full Repositories should be held on machines that are reliable and highly available. This said,
if no Full Repositories are available in the cluster for a short period of time, this does not affect
application messages which are being sent using the clustered queues and channels,
however it does mean that the clustered queue managers will not find out about administrative
changes in the cluster until the Full Repositories are active again.

• For most clusters, 2 Full Repositories is the best number to have. If this is the case, we know
that each Partial Repository manager in the cluster will make its publications and
subscriptions to both the Full Repositories.

• It is possible to have more than 2 Full Repositories.

Considerations for Full Repositories
(FRs)

• The thing to bear in mind when using more than 2 Full Repositories is that queue managers within the
cluster still only publish and subscribe to 2. This means that if the 2 Full Repositories to which a queue
manager subscribed for a queue are both off-line, then that queue manager will not find out about
administrative changes to the queue, even if there are other Full Repositories available. If the Full
Repositories are taken off-line as part of scheduled maintenance, then this can be overcome by altering the
Full Repositories to be Partial Repositories before taking them off-line, which will cause the queue managers
within the cluster to remake their subscriptions elsewhere.

• If you want a Partial Repository to subscribe to a particular Full Repository queue manager, then manually
defining a cluster sender channel to that queue manager will make the Partial Repository attempt to use it
first, but if that Full Repository is unavailable, it will then use any other Full Repositories that it knows about.

• Once a cluster has been setup, the amount of messages that are sent to the Full Repositories from the
Partial Repositories in the cluster is very small. Partial Repositories will re-subscribe for cluster queue and
cluster queue manager information every 30 days at which point messages are sent. Other than this,
messages are not sent between the Full and Partial Repositories unless a change occurs to a resource
within the cluster, in which case the Full Repositories will notify the Partial Repositories that have subscribed
for the information on the resource that is changing.

• As this workload is very low, there is usually no problem with hosting the Full Repositories on the server
queue managers. This of course is based on the assumption that the server queue managers will be highly
available within the cluster.

• This said, it may be that you prefer to keep the application workload separate from the administrative side of
the cluster. This is a business decision.

Considerations for Full Repositories
(FRs)

• Should applications run on full repositories?
(Should they host ‘data’ queues?)
• Best Practice hat on: No
• consider the risks (see Notes) and decide on

what is appropriate given your environment

• What if I need to take them down for
maintenance?
• Use the fact that you have two!

• What if I need to move them?
• It will depend on what is changing, see next

section

Considerations for Full Repositories
(FRs)

• The previous slide gave the ‘standard’ rules and reasons for working with full repository,
but here are some tips based on the way people really tend to work with them and some
common issues:

• There is no reason applications cannot happily run on a queue manager which is acting
as a full repository, and certainly the original design for clustering assumes this will
probably be the case. HOWEVER, many people actually prefer to keep FRs dedicated
to just maintaining the cluster cache, for various reasons:

• When any application in the cluster wants to use new features, can upgrade FRs without having to test ALL co-
located applications

• If for some reason you need to apply urgent maintenance to your full repositories they can be restarted or
REFRESHed without touching applications

• As clusters grow and demands on cache maintenance become heavier, there is no risk of this affecting
application performance (through storage, CPU demands for example)

• Full repositories don’t actually need to be hugely powerful – a simple Unix server with a good expectation of
availability is sufficient.

• Maintenance:
• This is precisely the sort of reason you want 2 full repositories. The cluster will continue to function quite happily

with one repository, so where possible bring them down and back up one at a time. Even if you experience an
outage on the second, running applications should be completely unaffected for a minimum of three days

• Moving full repositories
• Is a bit trickier than moving a regular queue manager. The migration foils look into this further

Publish / Subscribe

• Location of Publishers
• Location of Subscribers
• Clustered pubsub

35

NEW: Publish Subscribe Cluster controls

• Publish Subscribe clusters introduced in WMQ Version 7 give a
powerful way to combine the ‘topic space’ – pub/sub domain -
across multiple queue managers

• However, publish subscribe is a much more dynamic
environment than traditional point to point messaging, and this
means in large or tightly stretched deployments the additional
overhead can be undesirable

• Therefore for existing large point to point clusters the
recommendation has been to avoid suddenly introducing
clustered Topic objects (instead creating new cluster networks
for any pub/sub activity), and many customers have taken this
advice on board in their internal processes.

• However, until now there has been no way to enforce this…

Notes: Pub sub cluster controls

• Conference sessions previously have advised against using
topics in ‘large’ clusters. 100 queue managers is a very
approximate suggestion for ‘large’, but in reality what problems
will be seen varies hugely depending on the usage and load on
the system – 5 QMs may be ‘large’, or 500 may run acceptably.

• Things to consider
• Rate of change of subscriptions – huge factor if lots of new subscriptions

constantly trigger new proxy subs.
• Existing interconnectivity (from p2p traffic). Full repositories probably already

connected to everyone for example!
• Publication rates
• Number of channels supported / required. Any QM hosting subscriber will need

sender channel to every other QM.

• Strong recommendation to create new pub sub infrastructure
and scale gradually bearing all these considerations in mind.

Publish Subscribe Cluster controls

• New attribute at queue manager level controls whether or not
this QM will participate in pub/sub clustering.
• PSCLUS (ENABLED/DISABLED)

• Disables the definition of cluster topic objects, and the
sending/receiving of proxy subscriptions.

• Cannot be disabled if cluster topics already present (even
defined elsewhere in the cluster).
• This is an up front ‘policy enforcement’ measure, not a quick fix!

• Ideally set on every queue manager if no pub sub to be used.
• However configuring at least full repositories gives majority of

protection. This also disables the ‘everybody learns about
everybody’ aspect of a publish/subscribe cluster.

Publish Subscribe Cluster controls
Existing Point to point cluster
(no pub sub).

Full repositories for
existing cluster –
PSCLUS(DISABLED)

Partials in
existing cluster –
PSCLUS(either)

New cluster
(pub sub).

Full repositories for
new cluster –
PSCLUS(ENABLED)

Partials in
Pub sub cluster or overlap
PSCLUS(ENABLED)

Notes: Pub sub cluster controls

• This slide gives an example of how an administrator could
choose to overlay a new pub sub cluster on their existing point
to point infrastructure. Key points are:
• Separate full repositories for existing and new clusters. If desired to keep

entirely as a subset of existing cluster, the new FRs _could_ also be in the
point to point cluster – but they must be separate queue managers to the
existing FRs.

• PSCLUS disabled on non-pub/sub full repositories
• PSCLUS enabled on all queue managers participating in pub sub clusters.

NOT recommended to belong to a pub sub cluster and disabled, this is an
‘error’ and will trigger warning messages in logs.

• PSCLUS can be disabled if desired on non pub sub partial repositories in the
non pub sub cluster. Doing so is desirable as it will make errors more obvious
more quickly and directly to the responsible administrator. If this is not
practical, it is not mandatory.

• Partial repositories which need to participate in pub sub are added to the pub
sub cluster over time, and PSCLUS enabled. Some queue managers may only
be participating in the pub sub cluster.

Message Broker

41

Agenda

• Planning your Message Broker deployment topology

• Broker modes

• Execution Groups vs Additional instances
• Scaling

• Applications and Libraries

• Operational environment
• HA multi instance

• Global cache

• Understanding your broker’s behaviour

• Other tools
• Performance statistics

• Resource Statistics

• Activity Log
• Making changes

42

Why should you care about the topology
• Optimising your broker’s performance can lead to real $$

savings… Time is Money!
• Lower hardware requirements, lower MIPS
• Maximised throughput… improved response time
• Ensure your SLAs are met

• WebSphere Message Broker is a sophisticated product
• There are often several ways to do things… which is the

best?
• Understanding how the broker works allows you to write

more efficient message flows and debug problems more
quickly

• It’s better to design your message flows to be as efficient as
possible from day one

• Solving bad design later on costs much more
• Working around bad design can make the problem worse!

Broker modes

The operation mode that you use for your broker is determined
by the license that you purchase.

The following modes are supported:

• Trial Edition
• All features are enabled, but you can use the product for only 90 days after installation.

• Express Edition
• Limited number of features are enabled for use within a single execution group. Message

flows are unlimited.
• Standard Edition

• All features are enabled for use with a single execution group. The number of message
flows that you can deploy are unlimited.

• Advanced mode
• All features are enabled and no restrictions or limits are imposed. This mode is the default

mode, unless you have the Trial Edition.
• Remote Adapter Deployment

• Only adapter-related features are enabled, and the types of node that you can use, and
the number of execution groups that you can create, are limited.

Message Flow Deployment Algorithm
How many Execution Groups should I have?

How many Additional Instances should I add?

Additional Instances

• Results in more processing threads
• Low(er) memory requirement
• Thread level separation
• Can share data between threads
• Scales across multiple EGs

Execution Groups

• Results in a new process/address-space
• Increased memory requirement
• Multiple threads including management
• Operational simplicity
• Gives process level separation
• Scales across multiple EGs

Recommended Usage

• Check resource constraints on system
• How much memory available?
• How many CPUs?

• Start low (1 EG, No additional instances)
• Group applications in a single EG
• Assign heavy resource users to their own EG
• Increment EGs and additional instances one at a tim e

• Keep checking memory and CPU on machine
• Don’t assume configuration will work the same on di fferent machines

• Different memory and number of CPUs

Ultimately
have

to
balance

Resource
Manageability

Availability

Consider how your message flows will scale

• How many execution groups ?

• As processes, execution groups provide isolation

• Higher memory requirement than threads

• Rules of thumb:
• One or two execution groups per application
• Allocate all instances needed for a message flow over those execution groups
• Assign heavy resource users (memory) to specialist execution groups

• How many message flow instances ?

• Message flow instances provide thread level separation

• Lower memory requirement than execution groups

• Potential to use shared variables
• Rules of thumb:

• There is no pre-set magic number
• What message rate do you require?
• Try scaling up the instances to see the effect; to scale effectively, message flows should be

efficient, CPU bound, have minimal I/O and have no affinities or serialisation.

Applications and Libraries

• WMB V8 introduces the concepts of Applications and Libraries as means of developing,
deploying and managing your integration solutions:

Application
• means of encapsulating resources to solve a specific

connectivity problem
• application can reference one or more libraries

Library
• a logical grouping of related routines and/or data
• libraries help with reuse and ease of resource management
• library can reference one or more libraries

• These concepts span all aspects of the Toolkit and broker runtime, and are designed to
make the development and management of WMB solutions easier.

Consider your operational environment

• Network topology

• Distance between broker and data

• What hardware do I need?
• Including high availability and disaster recovery requirements

• IBM can help you!

• Transactional behaviour

• Early availability of messages vs. backout

• Transactions necessitate log I/O – can change focus from CPU to I/O

• Message batching (commit count)

• What are your performance requirements?

• Now… and in five years…

High Availability with MQ Multi-Instance
Brokers

• MB Exploits MQ Multi-instance queue manager capabil ity
• MQ provides basic failover without HA coordinator

• HACMP, VCS, HA Linux no longer required in many scenarios to restart MQ and MB!
• MB SAP Input node exploits for state management to give multi-broker and HA SAP

support

• Active and Stand-by Queue Manager and Brokers
• Start multiple instances of a queue manager on different machines

• One is “active” instance; other is “standby” instance
• Shared data is held in networked storage (NAS, NFS, GPFS) but owned by active

instance
• Automatic MQ Client reconnect will attempt to make failures transparent as possible

• MB Exploitation

1.Standby MB not running; an MQ service can restart MB once MQ recovery complete

2.Standby MB is running, but not fully initialized until MQ recovery complete

MB

MQ
Active Standby

Global Cache
• New Built-in facility to share data between multiple brokers

• Global cache shared between flows, execution groups & brokers
• Seamless access to global cache using from all message broker flows and nodes
• Typical scenarios include multi-broker request-reply and multi-broker aggregation
• Improve mediation response times and dramatically reduce application load
• Uses WebSphere Extreme Scale coherent cache technology to replace existing IA91 Support Pac

• Easy Read and Write Access to Global Cache
• Accessed via global map data type corresponding to MB global cache
• Read and write access in same way as other data types e.g. LocalEnvironment, MyVariable
• Broker has own system cache for inter-broker information sharing
• Support for external caches through embedding WXS JARs in JavaCompute node

• Simple to Configure and Manage
• MB Cache completely contained within MB OS processes – no extra moving parts to configure
• Flow write to global cache is replicated to other cache members using WXS technology
• MB local cache can be administered via Explorer, command line & management API

• Monitoring and Reporting
• Full resource manager statistics shows cache interactions and other relevant statistics
• Activity log shows cache agent operations for write and read

Broker 1 Broker 2

MyVar = Cache.Value;Cache.Value = 42 ;

P S

Agenda

• Planning your Message Broker deployment topology

• Understanding your broker’s behaviour

• Other tools
• Performance statistics

• Resource Statistics

• Activity Log
• Making changes

51

Some tools to understand your broker’s
behaviour

• PerfHarness – Drive realistic loads through the broker
• http://www.alphaworks.ibm.com/tech/perfharness

• OS Tools
• Run your message flow under load and determine the limiting factor.
• Is your message flow CPU, memory or I/O bound?
• e.g. “perfmon” (Windows), “vmstat” or “top” (Linux/UNIX) or “SDSF” (z/OS).
• This information will help you understand the likely impact of scaling (e.g. additional

instances), faster storage and faster networks

• Third Party Tools
• RFHUtil – useful for sending/receiving MQ messages and customising all headers
• NetTool – useful for testing HTTP/SOAP
• Filemon – Windows tool to show which files are in use by which processes
• Java Health Center – to diagnose issues in Java nodes

• MQ Explorer
• Queue Manager administration
• Useful to monitor queue depths during tests

• Message Broker Explorer
• Understand what is running
• Offload WS-Security processing onto XI50 appliance
• performance and resource statistics

• The Message Broker
Explorer enables you to
start/stop message flow
statistics on the broker, and
view the output.

• Warnings are displayed
advising there may be a
performance impact
(typically ~3%)

Broker performance statistics

Broker resource statistics

• The Message Broker Explorer
enables you to start/stop
resource statistics on the
broker, and view the output.

• Warnings are displayed
advising there may be a
performance impact (typically
~1%)

Activity Log
• New Activity Logging Allows users to understand wha t a message flow is doing

• Complements current extensive product trace by providing end-user oriented trace
• Can be used by developers, but target is operators and administrators
• Doesn’t require detailed product knowledge to understand behaviour
• Provides qualitative measure of behaviour

• End-user oriented with external resource lifecycle
• Focus on easily understood actions & resources
• “GET message queue X”, “Update DB table Z”…
• Complements quantitative resource statistics

• Flow & resource logging
• User can observe all events for a given flow

• e.g. “GET MQ message”, “Send IDOC to SAP”, “Commit transaction”…

• Users can focus on individual resource manager if required
• e.g. SAP connectivity lost, SAP IDOC processed

• Use event filters to create custom activity log
• e.g. capture all activity on JMS queue REQ1 and C:D node CDN1

• Progressive implementation as with resource statistics, starting with JMS, C:D and SAP resources

• Comprehensive Reporting Options
• Reporting via MB Explorer, log files and programmable management (CMP API)
• Extensive filtering & search options, also includes save data to CSV file for later analysis

• Log Rotation facilities
• Rotate resource log file when reaches using size or time interval

Agenda

• Planning your Message Broker deployment topology

• Understanding your broker’s behaviour

• Making changes

56

Testing and Optimising Message Flows

• Run driver application (e.g. PerfHarness) on a machine separate
to broker machine

• Test flows in isolation
• Use real data where possible

• Avoid pre-loading queues

• Use a controlled environment – access, code, software, hardware

• Take a baseline before any changes are made
• Make ONE change at a time.

• Where possible retest after each change to measure impact

• Start with a single flow instance/EG and then increase to
measure scaling and processing characteristics of your flows

Thank You!

Monday Tuesday Wednesday Thursday Friday

08:00 Are you running too many
queue managers or
brokers?

09:30 What's New in
WebSphere Message
Broker

Diagnosing
Problems
for MQ

CICS and
WMQ - The
Resurrection
of Useful

11:00 Extending IBM
WebSphere MQ and
WebSphere Message
Broker to the Cloud

WMQ - Introduction
to Dump Reading
and SMF Analysis -
Hands-on Lab

BIG Data Sharing with the
cloud - WebSphere
eXtreme Scale and
WebSphere Message
Broker integration

Getting the best availability
from MQ on z/OS by using
Shared Queues

12:15

01:30 Introduction to MQ MQ on z/OS – Vivisection Migration and
maintenance, the
necessary evil

The Dark Side of
Monitoring MQ - SMF 115
and 116 Record Reading
and Interpretation

03:00 First Steps With
WebSphere Message
Broker: Application
Integration for the
Messy

BIG Connectivity with
WebSphere MQ and
WebSphere Message
Broker

WebSphere MQ
CHINIT Internals

Using IBM WebSphere
Application Server and IBM
WebSphere MQ Together

04:30 WebSphere MQ
application design,
the good, the bad and
the ugly

What’s New in the
WebSphere MQ Product
Family

MQ & DB2 – MQ
Verbs in DB2 & Q-
Replication

WebSphere MQ Channel
Authentication Records

06:00 Clustering - The
Easier Way to
Connect Your
Queue Managers

This was session 12622 - The rest of the week ……

