
1

2

Level Set

SQL: special-purpose programming language designed for managing

data in a relational database management system (RDBMS)

SQL/PL: A set of SQL statements introduced in DB2 UDB Version 7.

Provides procedural constructs necessary for implementing control flow

logic around traditional SQL queries and operations.

Supports comprehensive high-level programming in SQL.

SQL PL is a subset of the SQL Persistent Stored Modules (SQL/PSM)

language standard. The specification of the current SQL/PSM standard

can be found in ANSI/ISO/IEC 9075-4:1999 Information Technology,

Database Language SQL, Part 4: Persistent Stored Modules (SQL/PSM).

Native vs. External:

Native: Definition + Executable are stored in the DBMS

External: Definition in DBMS, Executable in File System

- zOS Library (COBOL)

- Unix file system (Java)

3

Today we’ll talk about 3 major topics:

1. How we convinced Java developers to give SQL/PL native procedures

a try.

2. What were the next steps after our DB2 access technologies throw-

down, aka the Java DB2 Access Options Project

3. What is the current status of Shelter’s adoption of SQL/PL Native

Procedures?

4

5

1. With this much buzz in the DB2 community about SQL/PL stored

procedures, how could Java developers were so skeptical?

2. And how did we convince them to give SQL/PL stored procedures a

try?

3. This presentation is really about two things:

• Our “discovery” of SQL/PL native stored procedures at Shelter when

we were looking for alternatives to JDBC that would provide more

predictable, governable performance then dynamic SQL

 and

• The story of taking a technology much touted by IBM and DB2

experts and meeting Shelter’s requirements for enterprise-quality

technology adoption.

6

1. We began the Java DB2 Access Options Project in 2009.

2. The landscape at Shelter at the time included these factors:

• An interest in services and service-oriented architecture, including

answering the question, What criteria should be used to judge the

effectiveness of a particular technology used for service enablement?

• A few highly visible production issues where the performance of

dynamic SQL coming from distributed Java applications surprised

everyone (in a bad way) and people were put under great pressure to

solve those issues in live fire .

 (Raise your hand if you’ve been a witness to something similar!)

3. These two factors influenced the business objectives for the Java

DB2 Access Options Project

7

1. Why did we choose these technologies to evaluate?

• JDBC had been in use at Shelter since Shelter developed its first

browser-based web application server application, around 1999

• COBOL stored procedures were adopted in the mid-2000s

• We began exploring COBOL stored procedures because the

approach chosen for the early JDBC applications was to

replicate IMS/DB or denormalized DB2 structures into more

normalized DB2 tables

• The process of replication was becoming prohibitive and we

wanted an alternative

• We wanted to check out the WSDL-based interface for CICS Web

Services. Shelter did not have a large inventory of CICS transactions

that it was interested in reusing.

• We heard a good deal about SQLJ in the mid- to late 2000s. We

were interested in it because it allowed Java developers to stay within

the Java API for SQL development (like JDBC) but with the potential

advantage of the static SQL model.

• For the same reason we wanted to check out pureQuery (and of

course IBM encouraged us to evaluate it).

8

1. [At this point perhaps half the room is cheering or at least laughing and the

other half is hissing.]

2. Does it sound like I have a chip on my shoulder about Java?!

3. Quite the contrary! I am a fan of Java and am even paying my own money

to take online classes to learn Java! I want to be respected and look people

straight in the eye and say words like “interface” “encapsulation”

“inheritance” and “iterate.” Oh, and don’t forget “method signature,”

“primitive,” and “enumeration.” Anyway ….

9

1. Frameworks (such as Spring and Hibernate) are extremely important to

Java developers. One of the advantages Java developers see in

frameworks is that they can “introspect” relational tables and map tables and

columns to objects. This is called object-relationship mapping (“ORM”).

Apparently, frameworks do not support ORM of stored procedure result

sets. My observation is that Java developers place high value on

frameworks because frameworks are perceived to enable speed of

development; and that, at least for some Java developers, speed of

development can be valued above efficiency of execution.

2. Java developers have also objected to COBOL stored procedures because

they are too “black box” – “I don’t know what’s going on inside it, so I don’t

trust it.” Java developers place a high value on the effectiveness of Java

methods of unit testing. Apparently JDBC works well with Java unit testing,

and stored procedures are perceived to not work as easily.

3. With SQL/PL stored procedures, we wanted to be able to provide a stored

procedure vehicle that Java developers would trust as much

 as they trust their own Java code.

10

1. Perhaps we cannot address all the philosophical questions, but we

can measure performance. To do this, we built a Test Harness

application to drive our DB2 Access Options and enable fair and equal

comparisons.

2. Test scripts

• Run this combination of DB2 Access Options this many times.

• Record results, start / stop times. That enabled us to correlate

to SMF data for performance reporting.

11

1. This diagram shows a conceptual diagram of the application we built

to measure the 10 different access technologies: The Test Harness

2. Notice from the diagram:

1. Test Harness on Web Sphere Application Server – distributed

platform – in our case, Windows

2. DB2 for z/OS

1. JDBC talks directly to DB2 for z/OS tables

2. JDBC talks directly to SQL/PL native stored procedures,

which run within DB2

3. External stored procedure address space (COBOL, JDBC,

SQLJ, SQL/PL external stored procedures)

• WLM-managed

• Test Harness calls SP via JDBC. Stored Procedures

talk to DB2 for z/OS tables

4. CICS Web Services

1. Test Harness speaks WSDL to CICS Web Services

2. CICS region talks to DB2 for z/OS tables

• We used different DB2 AUTHIDs depending on whether the

DB2 Access Method used static or dynamic SQL

• For dynamic SQL, the BINDer of the SQL statement requires

SELECT, INSERT, UPDATE, DELETE authority to the DB2

object based on the statement it is BINDing

• For static SQL, the BIND authid and the EXECUTE authid are

12

ITCAM = IBM Tivoli Composite Application Manager

13

Excerpt from Test Script to put test database in a consistent state:

Instructions

1. For each of the 9 DB2 Access Methods, execute Retrieve Test 1

followed by Retrieve Test 2.

2. Before each pair of tests:

a. Stop spaces

b. Start spaces

c. Run Access Database command to open spaces

d. Run RUNSTATS UPDATE NONE REPORT NO to flush DSC

14

1. We wanted to be able to compare DB2’s version of Application Elapsed Time to the

application’s measurement.

2. There was an urban legend floating around that asserted that the application

elapsed time did not necessarily correlate to the “mainframe” or DB2 elapsed time.

We found that these two measurements were generally correlated although there

were a couple of exceptions.

15

1. At our shop, the RACF administrators tend to prefer having fewer

rather than more RACF userids. RACF userids tend to be at the

application level rather than a more granular level.

2. This makes it difficult to measure, monitor, and isolate a particular

function within a large application.

3. What we were trying to accomplish in this project was what we get

easily with statically bound applications, where it’s very easy to

measure/monitor at the DB2 package level.

4. We discovered the clientApplicationName property of the IBM data

server driver. A Java application can set this value which is stored in

DB2’s accounting data. In turn, DB2 Accounting Reports can then be

used to group reporting by this property. The information how to set

this property is documented in the DB2 Application Programming

Guide for Java.

5. The ability to set this property was subsequently incorporated into

many of Shelter’s Java DB2 applications since it was so useful in

allowing us to report on more granular pieces of our applications.

6. In a subsequent project, one of our developers discovered that this

(formerly IBM proprietary) feature was moved into JDBC API.

16

1. We measured 3 components of Elapsed Time

1. Test Harness, DB2 Class 1, and DB2 Class 2

2. See DB2 Elapsed Time chart on next slide

2. CPU time

1. We wanted to see how DB2 CPU time compared among the

three options

2. We were not interested in comparing the different application

languages

or transaction managers.

3. We were interested in seeing which of our applications used

the General Purpose Processor the least,

so we computed the percentage use of general processor for each

DB2 Access Option

17

1. This is the definitive IBM diagram explaining the components to user

response time for DB2 applications

2. Class 1 (Application Elapsed Time) is shown in green

1. This includes the time from when the application connects to

DB2 until it disconnects.

2. Class 1 time includes Class 2 time

3. Class 2 (DB2 Elapsed Time) is show in blue

1. This is the time spent executing SQL statements

18

19

Elapsed Time Metrics

Test Harness Elapsed Time

Average elapsed time in milliseconds (1/1,000 of a second)

for the execution of a transaction

Calculated by the Test Harness application using the Java

API and averaged using Microsoft Excel functions

Mainframe Elapsed Time (DB2 Accounting Class 1 Elapsed)

 Average elapsed time in milliseconds

Time application is connected to DB2

DB2 Elapsed Time (DB2 Accounting Class 2 Elapsed)

Average elapsed time in milliseconds

Time spent performing SQL statements

20

21

CPU Consumption Metric

Mainframe Service Units

 A measure of the CPU used performing SQL statements in

DB2

Service units are a way of measuring CPU usage in z/OS in

a consistent way that is independent of processor model or

CPU speed.

CPU time varies across processor model, while number of

service units should remain constant across process

models for a given workload

DB2 Accounting Long Report, DB2 Class 2 Service Units

The lower the Mainframe Service Units, the less CPU the

application uses

Therefore, Mainframe Services Units are a measure of

efficiency (CPU resource usage) or performance

22

1. Use of specialty engines can be important to enterprises using z/OS

because of their cost model.

2. An enterprise pays for a specialty engine once. There is no capacity-

based licensing model for specialty engines as there is for general

purpose processes.

3. A capacity-based licensing model can be thought of as a variable cost

because as the enterprise increases (or decreases)

its available mainframe computing capacity, software licensing charges

will also increase (or decrease).

4. On the other hand, work running on the specialty engine incurs a fixed

cost, the one-time cost of procuring the specialty engine processor.

Note: I have found there is a tendency to confuse efficiency of execution

with cost of computing.

• Remember, regardless of whether work runs on the specialty engine or

the general purpose processor, the lower the total Mainframe Service

Units, the less CPU the work uses, and the more efficient it is.

23

1. Highest possible score = 600 (6 tests * 100% = 600%)

2. A lower score can be considered “better” if your goal is to exploit the

zIIP

3. Notice:

a. CICS had the highest GP usage – all its workload ran on the

GP Processor.

b. JDBC had the lowest GP usage followed by SQL/PL native

procedures

24

1. The idea for a “Combined Score Metric” came from one of my co-

workers who had worked for the public schools in our town.

2. She told me that teachers would use a similar approach as an

alternative to assigning percentages for assignments. The idea is that

every assignment receives a certain number of points which are

summed to provide an overall student score for a set of assignments

for the grading period.

3. Here we are combining dissimilar measurements to provide a

combined score.

4. The overall goal is to be able to provide a measure of “overall

goodness”

5. Lower is better:

 - Elapsed time

 - Service Units

 - GP Usage

25

1. The Service Units reported here are the DB2 Class 2 Service Units.

2. This chart reflects DB2 CPU Usage for JDBC compared to stored

procedures.

3. The points I want to emphasize are:

• SQL/PL Native Procedures in our test workload used 11% less

CPU than JDBC.

• COBOL stored procedures in our test workload used 7% less

CPU than JDBC.

• For our test workload where we made very sure to control for

all the factors that could sway the results, this is very

convincing evidence of the performance advantages of both

SQL/PL and COBOL stored procedures over JDBC direct

access to tables.

• JDBC using direct access to tables is highly efficient, but the

evidence from our project is that SQL/PL Native Procedures

offer a considerable opportunity for CPU savings.

26

1. Here are some factors over and above metrics that influenced our decision:

• Our research indicated that pureXML would be supported in SQL/PL

native procedures.

2. SQL/PL external vs native – WLM effect

• There is a WLM queuing effect for external stored procedures.

• This is discussed in the Peggy Zagelow blog post cited in

References.

3. Some Java developers were familiar with use of PL/SQL procedures from

working in Oracle shops and were receptive to the idea of using a similar

technology in DB2.

4. Recognition that IBM was not pushing SQLJ as they had 3-5 years earlier

• Perception that SQLJ was a dead-end technology

5. Consideration of pureQuery

• Shelter does not invest lightly in a new technology

• Too many hands in the deployment pie

• DBAs and WebSphere Administrators would need to be

involved in code deployment as well as Java developers

• Specialized skill required – not a typical DBA skill

• “Recording” on WAS; XML file imported into Data Studio,

then put back into WAS; custom properties in WAS

27

28

29

30

31

32

33

34

1. We initially assumed we would manage SQL/PL source code with Serena

Dimensions like we do for Java source code, and that we would use

separate products and processes to manage source code and deployment

for SQL/PL like we do for Java. In that scenario, we would manage SQL/PL

source code with Serena Dimensions, initially deploy SQL/PL stored

procedures into UNIT using Data Studio, then DEPLOY into higher testing

levels and production using Serena Changeman ZMF.

2. In September 2012 Serena came onsite at Shelter and demonstrated the

Serena Client Pack. Following the demo, the project team reconsidered the

initial assumptions.

3. We looked at integration considerations and the licensing costs for Serena

Dimensions seat licenses vs. Client Pack licenses. We looked at our target

developer audience. Although our initial audience is Java developers, we

are also targeting COBOL developers as SQL/PL procedure developers. It

made sense to have management of SQL/PL stored procedures entirely

under Serena Changeman. The price of a Serena Client Pack seat license

is approximately ¼ the cost of a Dimensions seat license, so it makes sense

to consider the Serena Client Pack if our target developers are COBOL as

well as Java developers. (All Java Developers have Serena Dimensions

seat licenses, but no COBOL developers have Serena Dimensions Seat

licenses).

4. Note, we plan to completely implement Serena Changeman ZMF SQL/PL

support before embarking on the Client Pack.

35

36

37

1. This example illustrates the use of BIND PACKAGE … DEPLOY for a

stored procedure called SQPDDR01.

2. It is compiled / initially created in the UNIT testing level

using DB2 subsystem DSNT.

3. DB2 object qualifiers correspond to the testing level or

Production.

- UNIT uses a qualifier of SHELTRU

- TEST uses a qualifier of SHELTRT

- PROD uses a qualifier of SHELTRP

4. DSNT is Shelter’s main development DB2 subsystem, and

DSN is Shelter’s main production DB2 subsystem.

38

1. Despite our Changeman administrator’s initial preference for the

Compile Once Model, there are issues with the use of this model for

SQL/PL stored procedures.

2. The Security team does not really like production and DB2

subsystems to be able to communicate with each other.

• This is still possible at Shelter because we use some DB2 replication

techniques between production and test that require this

communication (the DB2 Crossloader for one).

• So we were able to successfully test BIND PACKAGE … DEPLOY

from the test DB2 subsystem to production.

3. We found out that Changeman ZMF 7.1.2 (the first release Shelter

 has used that supports SQL/PL native procedures) uses the Compile

Many model. It performs a DROP PROCEDURE followed by a

CREATE PROCEDURE when promoting or installing.

• Since our administrators also prefer as little customization as

possible, that sealed the deal for the Compile Many Model.

39

1. I had hoped to have the project completely wrapped by the time I

needed to have the presentation ready for SHARE in December 2012!

2. Oh well!

40

41

42

1. SQLPLGRP is the RACF group we designated for SQL/PL stored

procedure development.

43

44

45

46

47

48

49

50

51

52

