
CICS Java

CICS and Java: How the JVM Server
Transforms Java in CICS

Catherine Moxey

IBM

Thursday, February 7, 2013

Session Number 12446

Insert

Custom

Session

QR if

Desired.

CICS Java

© IBM Corporation 2013. All Rights Reserved.

IBM's statements regarding its plans, directions, and intent are subject to change or withdrawal at IBM's sole discretion.
Information regarding potential future products is intended to outline our general product direction and it should not be relied
on in making a purchasing decision. Any information mentioned regarding potential future products is not a commitment,
promise, or legal obligation to deliver any material, code or functionality. Information about potential future products may not
be incorporated into any contract. The development, release, and timing of any future features or functionality described for

our products remains at our sole discretion.

The session and materials has been prepared by IBM or the session speaker and reflect their own views. They are provided
for informational purposes only, and are neither intended to, nor shall have the effect of being, legal or other guidance or
advice to any participant. While efforts were made to verify the completeness and accuracy of the information contained in
this presentation, it is provided AS IS without warranty of any kind, express or implied. IBM shall not be responsible for any
damages arising out of the use of, or otherwise related to, this presentation or any other materials. Nothing contained in this
presentation is intended to, nor shall have the effect of, creating any warranties or representations from IBM or its suppliers or
licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM software.

References in this presentation to IBM products, programs, or services do not imply that they will be available in all countries
in which IBM operates. Product release dates and/or capabilities referenced in this presentation may change at any time at
IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future
product or feature availability in any way. Nothing contained in these materials is intended to, nor shall have the effect of,
stating or implying that any activities undertaken by you will result in any specific sales, revenue growth or other results.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The
actual throughput or performance that any user will experience will vary depending upon many factors, including
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve results
similar to those stated here. All customer examples described are presented as illustrations of how those customers have
used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics may

vary by customer.

Disclaimers

CICS Java

3

Trademarks

IBM, the IBM logo, ibm.com, AppScan, CICS, Cloudburst, Cognos, CPLEX, DataPower, DB2,
FileNet, ILOG, IMS, InfoSphere, Lotus, Lotus Notes, Maximo, Quickr, Rational, Rational Team
Concert, Sametime, Tivoli, WebSphere, and z/OS are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries, or both. If
these and other IBM trademarked terms are marked on their first occurrence in this information
with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law
trademarks owned by IBM at the time this information was published. Such trademarks may
also be registered or common law trademarks in other countries.

A current list of IBM trademarks is available on the Web at “Copyright and trademark
information” at ibm.com/legal/copytrade.shtml.

Coremetrics is a trademark or registered trademark of Coremetrics, Inc., an IBM Company.

SPSS is a trademark or registered trademark of SPSS, Inc. (or its affiliates), an IBM Company.

Unica is a trademark or registered trademark of Unica Corporation, an IBM Company.

Java and all Java-based trademarks and logos are trademarks of Oracle and/or its affiliates.
Other company, product and service names may be trademarks or service marks of others.
References in this publication to IBM products and services do not imply that IBM intends to
make them available in all countries in which IBM operates.

CICS Java

Session Abstract

• CICS has for a long time provided a Java environment for application
development. In recent releases of CICS the JVM Server has
transformed CICS into a first-class hosting environment for Java. This
session will provide a brief history of the development of the Java
environment within CICS, followed by a detailed look at the capabilities
offered by CICS version 5. In particular we will look at how the OSGi
framework provides excellent lifecycle management of Java
applications without having to restart the JVM Server, how Java
applications can be eligible for zAAP offload thereby reducing the cost
of a transaction, and how the JVM Server supports multiple concurrent
transactions, reducing the storage requirements and the need for
multiple JVM instances in a single region.

CICS Java

CICS and Java – Agenda

• Java, and why Java on z

• Java on z roadmap

• Java in CICS

• Pooled JVM and JVM server

• Support for 64-bit JVMs

• Introduction to OSGi

• OSGi in CICS

• Other CICS Java enhancements

• Exploiters of CICS JVM server

• WebSphere Liberty profile

• WebSphere Operational Decision Management

CICS Java

6

A Java Analogy

CICS Java

CICS and Java – Agenda

• Java, and why Java on z

• Java on z roadmap

• Java in CICS

• Pooled JVM and JVM server

• Support for 64-bit JVMs

• Introduction to OSGi

• OSGi in CICS

• Other CICS Java enhancements

• Exploiters of CICS JVM server

• WebSphere Liberty profile

• WebSphere Operational Decision Management

CICS Java

8

What is Java and what makes it different from
traditional languages on z ?

Java is
What makes Java different

Java differes from traditional languages like assembler,

PL/I or COBOL:

� Java is not compiled into executable code, it is

compiled to bytecode which runs in a virtual machine

� The virtual machine uses the just-in-time compiler

(JIT) to execute the code

� Java is based on classes rather than programs

� Java uses a garbage collector, which removes

unused objects from the storage

� Java development is often based on existing

programming patterns (Design Patterns)

� Most of the built-in funtionality of Java is based on

class libraries, that are part of the Java Runtime

(JRE)

� Java contains a library for user interface development

� Java has type-safe variable declaration

� Java uses JNI for native system calls and JDBC for

database calls

Java is

� an object oriented,

� platform independent,

� broadly supported and prevalent

� state of the art language

� [and an Island in Indonesia]

� Something YOU should care about

Java is not

� something new and unreliable

� an error-prone language

� the only solution for good code

� something that only the distributed world
should care about

� a composable workbox full of libraries

CICS Java

9

Java on z – why run here?

• IBM uses its own implementation of a
JVM on mainframes that uses the
underlying platform architecture

• The Java workload can be offloaded to a
zAAP processor

• The Java logic can be a bridge between
the mainframe and the distributed world

• Java is a common language on
many platforms so can help build
dialog between departments

• Java is a language that is well known by
many new professionals, so a good
common ground when they start to
develop for mainframe applications

• The language encourages good design
and loose coupling of components
(although does not ensure it!)

IBM JDK for z/OS

Standard JSE
(JDK specification)

zOS
Extensions

Just In Time Compiler (JIT)
Exploitation of the Hardware Architecture

z/OS Operating System
and System z Hardware

CICS Java

CICS and Java – Agenda

• Java, and why Java on z

• Java on z roadmap

• Java in CICS

• Pooled JVM and JVM server

• Support for 64-bit JVMs

• Introduction to OSGi

• OSGi in CICS

• Other CICS Java enhancements

• Exploiters of CICS JVM server

• WebSphere Liberty profile

• WebSphere Operational Decision Management

CICS Java

11

Java on System z – 15 Years of History

1999

2009

2003

2005

Java 1.4
GA 4Q2002
z/OS EOM September, 2008

31-bit z/OS and 31-bit and 64-bit Linux on z

31-bit and 64-bit Java 5
J9/TR Technology
GA 4Q2005
z/OS and Linux on z

31-bit Java 1.1.8
GA 1999

31-bit and 64-bit Java 6
1. J9/Testarossa Technology
2. GA 4Q2007

3. z/OS and Linux on z

31-bit Java 1.3.1
z/OS and Linux on z
GA 3Q2000

z/OS 64-bit Java 1.4.2
J9/TR Technology (1st product use)
GA 4Q2004

31-bit Java 1.1.1, then 1.1.4 and 1.1.6
First z/OS Java product – GA 1997

2010

2011

1998

2004

31-bit and 64-bit
Java601/7.0

1. J9/TR Technology
2. GA 1Q2011/4Q2011
3. z/OS & zLinux (7.0 only)

2000

2001

2002

2006

2007

2008

2012

CICS Java

12

IBM J9 2.6 Technology Enhancements:
System zEnterprise 196 and Java6.0.1/Java7

70+ new instructions used by Java
• Register high-word facility

– Facilitates use of upper 32-bits of registers

• Interlock facility update

– Better Java concurrency

• Non-destructive operands

– Reduce path-length

• Conditional-load/store

– Remove expensive branches

• Instruction scheduler for Out-of-Order pipeline

Hardware for Java

� New Out-Of-Order pipeline design

� New larger cache structure

� Higher clock speed (~5.2GHz)

z196 and Java6.0.1/Java7: Engineered Together

� Up-to 2.1x improvement to Java throughput

� Reduced footprint

� Tighter integration with z/OS facilities

� Improved responsiveness in application behavior

CICS Java

13

zEC12 – Java as a workload-optimized system

Continued aggressive investment in Java on z

Significant set of new hardware features tailored and
co-designed with Java

Hardware Transaction Memory (HTM)
Better concurrency for multi-threaded applications
eg. ~2X improvement to juc.ConcurrentLinkedQueue

Run-time Instrumentation (RI)
Innovative new h/w facility designed for managed runtimes
Enables new expanse of JRE optimizations

2GB page frames
Improved performance targeting 64-bit heaps

Pageable 1MB large pages using flash
Better versatility of managing memory

New software hints/directives
Data usage intent improves cache management
Branch pre-load improves branch prediction

New trap instructions
Reduce over-head of implicit bounds/null checks

New 5.5 GHz 6-Core Processor Chip

Large caches to optimize data serving

Second generation OOO design

Up-to 45% improvement in throughput amongst Java
workloads measured with zEC12

IBM SDK7 for z/OS Service Refresh3 (IBM Java 7 SR3) –Xaggressive command-line
option enables a variety of new optimizations and zEC12 exploitations

CICS Java

• Modularity

– Strong, standard, language-integrated module interoperability and encapsulation

– Easier re-use, higher security, clearer governance, improved reliability, lower
costs, reduced maintenance and shorter downtimes

• New I/O

– Meets the increasingly I/O intensive demands of data mining and analytics
workloads

– Significant performance and footprint gains from async I/O

• Concurrency Libraries

– Exploit larger multi-core systems, such as next generation Power and System z,
by providing better scalability, higher throughput and lower total cost of ownership
from server consolidations

• Dynamic language support

– Leverage the advantages of a single runtime for dynamic language applications
written in PHP, Groovy, jRuby and jython

• Language improvements

– Improved efficiency through simplified day-to-day programming tasks

– Protect developer commitment to, and customer/ISV investment in, the Java
ecosystem.

Java 7.0

CICS Java

CICS and Java – Agenda

• Java, and why Java on z

• Java on z roadmap

• Java in CICS

• Pooled JVM and JVM server

• Support for 64-bit JVMs

• Introduction to OSGi

• OSGi in CICS

• Other CICS Java enhancements

• Exploiters of CICS JVM server

• WebSphere Liberty profile

• WebSphere Operational Decision Management

CICS Java

16

Overview of Java program support in CICS

• “Traditional” pooled JVMs

– Multiple JVMs in a CICS region

– Single-thread, program isolation

– J8 (CICS Key) or J9 (User key) TCBs

– MAXJVMTCBs in SIT

– No JVM definition except in JVM profile via PROGRAM

– EJB and CORBA support

• “New” JVM servers

– Supports JCICS interfaces for CICS Java programs

– Can have multiple JVM servers per region

– Multi-threaded, up to 256 parallel tasks

– Facilitates data-sharing between Java applications

– Industry-standard

– T8 TCBs

– JVMSERVER and PROGRAM definitions required

– Requires deployment as OSGi bundle within a CICS BUNDLE

– No EJB or CORBA support

CICS Java

17

CICS Pooled JVM model

CICS Java

18

CICS

Task

Thread

JVM

LE enclave

JVM

thread

JVM Pool Architecture - CICS TS V3 (and V2)

CICS TS v3

JVM
LE enclave

CICS

Task
J8 OTE
Thread

JVM

thread

A single CICS
task dispatched
into a JVM in the
pool at a time. So
concurrent task
count limited to
the number of
JVMs that can fit
in the 31-bit
address space.

Each JVM 'costs'
~20Mb plus the
application heap
value.

JVM

Heap &

Classes

LE enclave

CICS

Task
J8 OTE
Thread

JVM

JVM

thread

Heap &

Classes

Heap &

Classes

Shared
Classes

CICS Java

19

CICS zFS

SIT

RDO

USS
Directory

with Class
Files

ProgramTransaction

JVMJVMJVMJVM JVM

CICS JVM Pooled Architecture

Profile

CICS Java

20

CICS JVM server model

CICS Java

21

CICS JVM server

• CICS requests storage from MVS, sets
up a Language Environment enclave,
and launches the 64-bit JVM in the
enclave

• IBM® 64-bit SDK for z/OS, Java
Technology Edition, Version 6.0.1 or
Version 7

• Up to 256 parallel tasks (threads) per
JVM & 2000 threads per CICS

• Applications

–Must be threadsafe

–Must be deployed as OSGi bundles

(in CICS bundles)

• Dynamic updates without restart

• No EJB support

CICS TS V4.2+

JVM
LE enclave

CICS
Task PThread

JVM
thread

CICS
Task PThread

JVM
thread

CICS
Task PThread

JVM
thread

Heap &
Classes

CICS Java

22

CICS zFS

SIT

RDO

Profile

Directory CICS Bundles

Transaction

Program

CICS Bundle

com.test.messaging

JVM

OSGi Bundle

com.test.billing

com.test.helloworld

CICS JVM server architecture

Bundle

CICS Java

23

JVM server Architecture

•New CICS OTE “T8” TCB mode, dubbed as both a CICS TCB and an

LE “pthread”

•JNI call to attach a pthread to an existing JVM

•Can attach multiple pthread/T8/CICS tasks to the JVM at the same

time

• Serve many more requests using a single JVM

•JVM server thread “cost” is very small, result is hundreds of tasks

concurrently per region

•Also architected to allow multiple JVM servers in a single CICS

• For different types of work, or just a degree of isolation

CICS Java

24

Defining a JVM server

• JVM Profile

– JVM profile in zFS in

JVMPROFILEDR

– DFHJVMAX is default

• LE Runtime Options

– LE storage options

– Defaults to DFHAXRO

• Threadlimit

– Max number of T8 threads

CICS Java

25

JVM server: Threadsafety and OTE

• Java and Threadsafety – yes, it may be a concern

– In a pooled JVM, static objects are 'mine' – there's only one

application thread

– In a JVM server, static objects are shared (visible and accessible)

with all the other threads/tasks/transactions in the same server

– Validate whether objects should be thread-local or static

– Ensure the concurrent versions of library classes are used

• OTE – T8 and L8 threads

– In V4.2, T8 TCBs are for Java server threads, L8 TCBs are

required for DB2 → TCB switch for every JDBC command

– New in V5.1, T8 TCBs can be used for DB2 so the TCB switch is

saved.

CICS Java

26

• CICS TS V4.2 announce letter

• A future release of CICS TS intends to discontinue support for session
beans using Enterprise Java Beans (EJB), and the Java pool
infrastructure. Customers are encouraged to migrate Java applications to
the new JVM server infrastructure, and to migrate EJB applications to Java
SE components and make them available through web services or the JEE
Connector Architecture (JCA).

• CICS will continue to support Java as a first class application
programming language for CICS applications, including enhancements
to the CICS interfaces, the deployment infrastructure, and Java runtime

environment.

Java Pool and EJB Statement of Direction

GONE IN
 V5.1 !!!

GONE IN
 V5.1 !!!

CICS Java

CICS and Java – Agenda

• Java, and why Java on z

• Java on z roadmap

• Java in CICS

• Pooled JVM and JVM server

• Support for 64-bit JVMs

• Introduction to OSGi

• OSGi in CICS

• Other CICS Java enhancements

• Exploiters of CICS JVM server

• WebSphere Liberty profile

• WebSphere Operational Decision Management

CICS Java

28

Support for Java 64-bit JVMs

• CICS now supports 64-bit JVMs

– Java 6.0.1 (CICS V4.2) or Java 7 (CICS V5.1)

• If JAVA_HOME points to unsupported Java version

–Error message DFHSJ0900 (pooled),
DFHSJ0210 (JVM server)

– Java byte codes do not need recompilation (write
once run anywhere)

– Support for 31-bit JVMs dropped (as of CICS V4.2)

CICS Java

29

Support for Java 6 64-bit JVMs

• Pooled JVMs (V4.2 only)

– Support for many more JVMs per CICS region

• 100+ can be possible

– Larger heap sizes

• Reduces impact of Garbage Collection

– Profile changes

• JAVA_HOME=/usr/lpp/java6_64/J6.0_64

• USSHOME replaces CICS_HOME system initialization parameter

CICS Java

30

Support for 64-bit JVMs

• JVM server

– Much larger heaps possible

– Garbage Collection runs after an allocation failure

• CJGC transaction is no longer used

• Default GC policy uses more efficient gencon model

• Heap dynamically sized by JVM

– -Xcompressedrefs option uses 32-bit pointers to address 64-bit storage

• Works for heaps up to 25GB

– Reduces CPU consumption but only recommended for use with single

JVM server regions

CICS Java

31

Support for 64-bit JVMs

• MEMLIMIT
– Java stack and heap now allocated in above the bar storage

– Above the bar requirement per Pooled JVM

• –Xmx value in JVM profile

• HEAP64 value in DFHJVMRO (default 8M)

• LIBHEAP64 value in DFHJVMRO (default 1M)

• STACK64 value in DFHJVMRO (default 1M) times 5 (application
thread plus system threads)

• Above the bar requirement per JVM server

• –Xmx value in JVM profile (default 512M)

• HEAP64 value in DFHAXRO (default 50M)

• LIBHEAP64 value in DFHAXRO (default 1M)

• STACK64 value in DFHAXRO (default 1M) times number of threads

• THREADLIMIT plus system threads

• Number of GC helper threads depends on –Xgcthreads parameter

• Default is one less than the number of physical CPUs available

CICS Java

32

Support for 64-bit JVMs

• JDBC and SQLJ

– DB2 8.1 or 9.1 required to support 64-bit applications

– DB2 FP4 required for CICS TS 4.2 Java

– Make sure you have the latest DB2 JDBC (JCC) Fixpack

• WebSphere MQ

– 64-bit driver required

– OSGi bundle required for JVM server

• Middleware bundles (MQ and DB2)

– Need to be added to JVM servers using OSGI_BUNDLES and
LIBPATH_SUFFIX settings in JVM profile

• Native DLLs (JNI)

– All native DLLs must be recompiled with LP64 compiler option and bound
as AMODE(64)

– LE will not allow an AMODE(31) DLL to be loaded by an AMODE(64) DLL

CICS Java

CICS and Java – Agenda

• Java, and why Java on z

• Java on z roadmap

• Java in CICS

• Pooled JVM and JVM server

• Support for 64-bit JVMs

• Introduction to OSGi

• OSGi in CICS

• Other CICS Java enhancements

• Exploiters of CICS JVM server

• WebSphere Liberty profile

• WebSphere Operational Decision Management

CICS Java

34

OSGi – A dynamic module System for Java

provides a general-purpose, secure,

and managed Java framework that

supports the deployment of extensible

and downloadable applications known

as bundles.

The OSGi Alliance, Core Specification

Sounds familiar? Isn't that already possible with Java?

CICS Java

35

Java packaging and class hierarchies

• Java modularity:

–Classes contain data and logic

–Packages contain these classes and

organize them

• This is just a virtual form of
organization

–Jar files contain the classes and are the

base for enterprise applications

• Java visibility settings:

–Private, protected, package private,

public

• At runtime, there are just a lot of classes
on a classpath

jar file

java packages

class files

There are some features missing: jar visibility, versioning, dependencies

CICS Java

36

Java VM

log4j

barcode4j

axis

batik

commons

derby

fop

ezmorph

freemarker

httpunit

jakarta

jcl

json

jdbm

jdom

jenks

jpos18

jython

looks

lucene

mail

mx4j

naming

jetty

poi

resolver

rome

serializer

servlets

tomcat

velocity

ws-commons

xalan

wsdl4j

xerces

xmlgraphics

xmlrpc

xmlapis

..

geronimo

bsh

bsf

guiapp

hhfacility

manufact.

marketing

minerva

accounting

assetmaint

base

bi

catalina

common

oagis

order

ebay

content

datafile

ecommerce

entity

googlebase

ofbiz

widget

minilang

party

pos.

product

workeffort

workflow

…

sunjce_prov.

plugin

jsse

jce

rt

dnsns

..

…

Class

Not

Found

Exception

BeginBegin

HereHere

The Global Classpath

CICS Java

37

Class loading with OSGi

Bundle A
Import-Package: package.b

Package.c

Export-Package: package.a

package.a

Bundle B
Export-Package: package.a

package.b

Bundle C
Export-Package: package.c

package.c

• No more CLASSPATH

– Each bundle has its own class loader

• Class space is the classes required for the bundle

• Smallest unit is a package

CICS Java

38

What does OSGi provide?

• The OSGi Service Platform specifies
a modular architecture for dynamic
component based systems

– Execution Environment

– Module Layer

– Life Cycle Layer

– Service Layer

– Security-Layer (optional)

• Runs on a variety of standard Java
profiles.

• Introduces Bundles as modules

CICS Java

39

OSGi bundles

JAR file
Manifest.mf

+ entries =
OSGi bundle

(JAR file)+

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Hello Plug-in

Bundle-SymbolicName: com.ibm.cics.server.examples.hello

Bundle-Version: 1.0.0

Bundle-RequiredExecutionEnvironment: J2SE-1.4, J2SE-1.5, JavaSE-1.6

Import-Package: com.ibm.cics.server;version="[0.0.0,2.0.0)“

Export-Package: examples.hello

OSGi Bundle – A jar containing:

• Classes and resources

• OSGi Bundle manifest

– Bundle-Version: Multiple versions of bundles can live concurrently

– Import-Package: What packages from other bundles does this bundle depend upon?

– Export-Package: What packages from this bundle are visible and reusable outside of the

bundle?

CICS Java

40

OSGi Class Loader Model

Bundle A
Import-Package: package.b

Package.c

Export-Package: package.a

package.a

Bundle B
Export-Package: package.b

package.b

Bundle C
Export-Package: package.c

package.c

When bundles are installed into OSGi framework,
the module layer

1. Processes metadata in the manifest file

2. Reconciles declared external dependencies
against exports & version information declared
by other installed modules

3. Works out all dependencies and calculates
independent required class path for each bundle

Ensure that
• Each bundle provides visibility only

to Java packages that it explicitly
exports - export at specific versions
possible

• Each bundle declares its package
dependencies explicitly - import at
specific / range of versions possible

• Multiple versions of a package can
be available concurrently to different
clients

CICS Java

CICS and Java – Agenda

• Java, and why Java on z

• Java on z roadmap

• Java in CICS

• Pooled JVM and JVM server

• Support for 64-bit JVMs

• Introduction to OSGi

• OSGi in CICS

• Other CICS Java enhancements

• Exploiters of CICS JVM server

• WebSphere Liberty profile

• WebSphere Operational Decision Management

42

CICS Java

CICS OSGi Support Overview

• OSGi

– OSGi development and packaging now required to deploy CICS applications to a JVM

server1

– Existing CICS Java applications using main() method linkage can run unchanged if

wrapped in an OSGi bundle

– All JVM server applications must be thread-safe and cannot use stabilized/removed

CICS EJB or CORBA functions

– Equinox used as OSGi implementation

• CICS Explorer SDK

– Provides CICS Java development toolkit for use in any Eclipse 3.6.2 IDE (RAD 8.0 or

vanilla Eclipse SDK)

– Can be used to develop and deploy applications for any release of CICS (CICS TS 3.2

onwards)

– Java projects are developed as Plug-in Projects and then packaged in a CICS bundle

and exported to zFS

– CICS TS V3.2/V4.1 Pooled JVM application classes/JARs can be wrapped and

deployed to OSGi JVM servers

1 Note Axis2 CICS Web Services applications do not support OSGi packaging

CICS Java

43

OSGi bundles within CICS

JAR file
Manifest.mf

+ entries =
OSGi bundle

(JAR file)+

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Hello Plug-in

Bundle-SymbolicName: com.ibm.cics.server.examples.hello

Bundle-Version: 1.0.0

Bundle-RequiredExecutionEnvironment: J2SE-1.4, J2SE-1.5, JavaSE-1.6

Import-Package: com.ibm.cics.server;version="[0.0.0,2.0.0)“

Export-Package: examples.hello

CICS-MainClass: examples.hello.HelloCICSWorld, examples.hello.HelloWorld

Most Parts of the descriptor are the same,
except the CICS-MainClass:

• CICS needs to know which Class
can be called as a program

• CICS processes the metafile before it is handed to the OSGi framework and the
information is stored in the CICS repositories.

• OSGi bundles can be viewed using CICS Explorer

CICS Java

44

cics.xml
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<manifest xmlns="http://www.ibm.com/xmlns/prod/cics/bundle"

bundleVersion="1" bundleRelease="0" build="Not Found">

<meta_directives>

<timestamp>2010-11-25T10:55:24.052Z</timestamp>

</meta_directives>

<define name="hello“

type=http://www.ibm.com/xmlns/prod/cics/bundle/OSGIBUNDLE

path="hello.osgibundle"/>

</manifest>

CICS bundle and OSGi bundle manifests

hello.osgibundle
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<osgibundle

symbolicname="com.ibm.cics.server.examples.hello“

version="1.0.0" jvmserver="DFH$JVMS"/>

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Hello Plug-in

Bundle-SymbolicName: com.ibm.cics.server.examples.hello

Bundle-Version: 1.0.0

Bundle-RequiredExecutionEnvironment: J2SE-1.4,J2SE-1.5,JavaSE-1.6

Import-Package: com.ibm.cics.server;version="[0.0.0,2.0.0)"

CICS-MainClass: examples.hello.HelloCICSWorld,

examples.hello.HelloWorld

45

CICS Java

CICS Explorer SDK - Development

1. Install CICS Explorer SDK into Eclipse

2. Set Target Platform
(sets JCICS and JVM levels)

– Window → Preferences…→
Target Platform → Add…→ Template

3. Create New OSGi Project

– New → Plug-in Project

4. Provide access to JCICS package

– MANIFEST.MF → Dependencies →
Imported Packages →
com.ibm.cics.server

– Add other bundle imports if required

5. Import/Create your Java class

46

CICS Java

Target platform dialogue

CICS Java

Java development in CICS Explorer SDK

48

CICS Java

CICS Explorer SDK - Deployment

6. Create CICS Bundle

– New→CICS Bundle Project

7. Add OSGi bundle meta-data file to CICS Bundle

– New→Include OSGi Project in Bundle

49

CICS Java

CICS Explorer SDK – Deployment 2

8. Provide CICS region userid read access to bundledir

– mkdir /var/cicsts/bundles

– chmod 750 /var/cicsts/bundles1

9. Connect CICS Explorer to
USS FTP daemon

– Windows → Open Perspective → z/OS

10.Export CICS Bundle to CICS

– →CICS to z/OS UNIX File System

1 Note: CICS region userid and FTP user must be in same USS group

50

CICS Java

Defining a CICS BUNDLE

• Bundle Directory

– Name of directory containing

deployed JAR and bundle

meta data files

• Status

– ENABLED→Activate on

install of resource

51

CICS Java

Defining a Program to run in JVM server

• JVMServer

– Name of JVM server

resource

• Main Java class

– OSGIService defined in the

OSGi bundle manifest

– Either an alias or the full

package.class name

• Also required
– CONCURRENCY(THREADSAFE)

– EXECKEY(CICS)

CICS Java

OSGi Bundles and Services in CICS
Explorer

BUNDLEPART, OSGISERVICE and
OSGIBUNDLE dynamically created
based on BUNDLE lifecycle

53

CICS Java

OSGi Bundle Lifecycle

Installed

Resolved

Starting

Active

StoppingUninstalled

install

resolverefresh
update start

uninstall

uninstall

stop

refresh
update

Policy: eager/lazy

OSGi bundle state
displayed in CICS
Explorer OSGi Bundle
view

CICS Java

CICS and Java – Agenda

• Java, and why Java on z

• Java on z roadmap

• Java in CICS

• Pooled JVM and JVM server

• Support for 64-bit JVMs

• Introduction to OSGi

• OSGi in CICS

• Other CICS Java enhancements

• Exploiters of CICS JVM server

• WebSphere Liberty profile

• WebSphere Operational Decision Management

55

CICS Java

Provider Mode Java Application Handler

• New application handler written in Java

– Use is optional

– Executes in a JVM server

– Eligible for zAAP off-load processing

• XML data conversion can be off-loaded

• Based on Axis2 technology

– An Open Source project from the Apache

organization

• http://ws.apache.org/axis2/

56

CICS Java

Java Web services with Axis2

• New Java CICS provided application handler

Pipeline Controller

apphandler

handler

handler

handler

handler

handler

handler

handler

handler

handler

C
H
A
N
N
E
L

<transport>

:

</transport>

<service>

<service_handler_list>

:

</service_handler_list>

<terminal_handler>

<cics_soap_1.1_handler_java/>

</terminal_handler>

</service>

<apphandler_class>...</apphandler_class>

<service_parameter_list />

</provider_pipeline>

57

CICS Java

Configuration for the Java application handler

– PROGRAM definition for the supplied handler

• JVM set to YES

• JVMCLASS
– com.ibm.cicsts.axis2.CICSAxis2ApplicationHandler

• JVMSERVER name specified
– Must match the name specified in the cics_soap_1.1_handler_java

element in the configuration file

– JVMSERVER

• Define a JVMSERVER for execution

– JVM profile updates

• Add JAVA_PIPELINE=YES to the profile used

– Pipeline configuration file changes

• jvmserver

• Repository

• addressing

58

CICS Java

<service>

<terminal_handler>

<cics_soap_1.1_handler_java>

<jvmserver>MYJVM</jvmserver>

<repository>/u/zem/wsdl/axis2</repository>

<headerprogram>

<program_name>MYPROG</program_name>

<namespace>http://www.example.org/headerNamespace</namespace>

<localname>*</localname>

<mandatory>true</mandatory>

</headerprogram>

</cics_soap_1.1_handler_java>

</terminal_handler>

</service>

<apphandler_class>my.example.AppHandler</apphandler_class>

Example pipeline configuration file:

59

CICS Java

Provider Mode Axis2 Web Service

• Start with an existing Java application

– POJO using JAX-WS

• Compile the Java application

– javac TestAxis2.java

• Generate the WSDL and Bindings

– wsgen –cp TestAxis2 – wsdl

• Package the application

– Jar –cvf TestAxis2.jar *

60

CICS Java

Provider Mode Axis2 Web Service…

• Deploy the jar file to the Axis2 repository

– Must be deployed to a servicejars directory in the

repository

– Repository is specified in the pipeline configuration

file

• Define and install a URIMAP

– Automatic install of a URIMAP cannot be used

– Path name must follow Axis2 conventions

• /name_of_serviceService.name_of_portPort/suffix

• A WEBSERVICE definition is not used

61

CICS Java

Provider Mode Axis2 Web Service…

• CICS Services replaced by Java services

– Axis2 applications interact with CICS with the Axis2

programming model

– Some CICS services are not applicable

• SOAPFAULT CREATE

• WSACONTEXT GET

• DFHWS-OPERATION container

• DFHWS-MEP container

• DFHWS-USERID container

• DFHWS-TRANID container

• Web services security

CICS Java

CICS and Java – Agenda

• Java, and why Java on z

• Java on z roadmap

• Java in CICS

• Pooled JVM and JVM server

• Support for 64-bit JVMs

• Introduction to OSGi

• OSGi in CICS

• Other CICS Java enhancements

• Exploiters of CICS JVM server

• WebSphere Liberty profile

• WebSphere Operational Decision Management

63

CICS Java

Liberty Profile in CICS TS V5.1

• Running WebSphere
Application Server Liberty
profile we container within a
CICS JVM server enables
Servlets in CICS with just a few
additional Options in the JVM
profile file

zFS

zOS

App

App

App

CICS

Liberty

JVM server

Deploy

E
n
a
b
le

Eclipse with Liberty Tools

Use

CICS Java

CICS and Java – Agenda

• Java, and why Java on z

• Java on z roadmap

• Java in CICS

• Pooled JVM and JVM server

• Support for 64-bit JVMs

• Introduction to OSGi

• OSGi in CICS

• Other CICS Java enhancements

• Exploiters of CICS JVM server

• WebSphere Liberty profile

• WebSphere Operational Decision Management

CICS Java

CICS JVM server

CICS

COBOL

Application

CICS

Decision Server

INVOKE Decision Center

MANAGEDEP
LOY

Externalize embedded business rule logic & execute within CICS

�Gain business agility with existing and new CICS applications
– Manage decision logic on a separate lifecycle to application code
– Ability to react to changes in a fast paced, competitive marketplace

�Lower the cost of maintaining your business applications
– Improvement operational efficiency and total cost of ownership

�Consistent Decision evaluation across the enterprise
– Author decision rules once and deploy to multiple systems on z/OS and distributed

�Optimized decision execution
– Highly efficient rule execution engine
– Local optimization of Decision Server within the CICS JVM server environment

Operational Decision Manager & CICS

66

CICS Java

ODS for z/OS

z/OS

WebSphere

Application Server

for z/OS*

zEvents Execution

zRule Execution

Server

CICS TS V4/V5

*OEM

zRule Execution

Server

(on CICS)

zRule Execution

Server (Standalone)

• Decisions can be invoked from existing CICS and batch applications

• Runtime support for COBOL data types

• Flexible runtime deployment to fit any System z environment:

� Deployed on WebSphere Application Server for z/OS

� Deployed standalone to z/OS

� Deployed in CICS TS V4.x/V5.1 JVM server environment

Decision Server for z/OS

CICS Java

zRule Execution Server

Stand-alone

WebSphere Application Server

for z/OS

WOLA

COBOL
Application

WOLA Stub

Rule Execution Server
for WAS for z/OS

COBOL <-> Java

Marshaller

COBOL
Generation

Rules

Generated

COBOL

JVM serverJVM server

zRule
Execution

Server

zRES Stub

Rule invocation options for CICS

CICS

zRule
Execution

Server

CICS Java

CICS and Java – Summary

• Java, and why Java on z

• Java on z roadmap

• Java in CICS

• Pooled JVM and JVM server

• Introduction to OSGi

• OSGi in CICS

• Other CICS Java enhancements

• Exploiters of CICS JVM server

• WebSphere Liberty profile

• WebSphere Operational Decision Management

69

CICS Java

Any Further Questions?

