

CICS Integration & Optimization: Tales from the Trenches

Specialty

Russ Teubner HostBridge Technology russ@hostbridge.com

Abstract

CICS users are loyal to their apps – and for good reason! However, they also need to integrate these same applications with an ever widening array of web and cloudbased resources. If that weren't enough, every year they are under pressure to add value, support new workload and reduce the cost of ownership. That's a tall order. This session will highlight two customers who used a common tactic to enhance the value of their existing CICS investments.

Customer Case Studies

Customer A

- Industry: Telecommunications (US)
- Very high daily/consistent transaction volume
- Long-standing investment in COBOL-based socket apps

Customer B

- Industry: Financial Services (International)
- Very high transaction volume on one day each month (and in compressed time period)
- Long-standing investment in PL/I-based socket apps

Common Objectives

- Both customers had common objectives
- Business Objectives
 - Respond to <u>competitive pressures</u> in their industry
 - Lower incremental cost of high-volume CICS application processing (i.e., marginal value > marginal cost)
 - Move new/additional workload to System z and reinforce CICS TS as the most cost effective platform for their business
- Technical Objective (at least their hope)
 - Streamline System z and CICS integration paths
 - Reduce the CPU burn (GP) associated with socket applications and infrastructure

Perfect R&D Situations

- Well defined business objectives
- An initial theory as to what the technical issues might be
- Strong in-house CICS talent
- Load testing infrastructure in place
- Good CICS tools on hand
- Test LPAR/region available
- Had a spare cubicle

Timing Was Opportune

- Customers were continuing to state their concern about doing more for less
- We had just delivered zllP-enabled versions of our products, and our heads were filled with fun facts related to:
 - z/OS, USS, LE, WLM, SRBs, zIIP
 - CICS TS v4 Open Transaction Environment
 - Sockets
- Other factors:

- We are zealots regarding integration of CICS apps/data as part of web/cloud-based infrastructure
- We are committed to delivering functionality <u>under</u> CICS
- I didn't want to stop writing code (zIIP project was too fun)

Cut to the Chase

- What we learned was surprising and the results were unexpected (in a good way)
- We ended up exploiting CICS TS v4 OTE and z/OS to create a solution
- I want this to be knowledge you can use:
 - The approach is generally applicable to any CICS customer who has socket apps
 - The higher your volume, the more it matters
- Yes... I'm "a vendor" but please forget that for now – I'm speaking as a CICS developer

CICS

Customer A - Initial Conditions

Research Focus

CICS Socket Support

- Provided as part of z/OS Communications Server
- What it includes:
 - Socket APIs
 - C language API
 - Sockets Extended API (aka, EZASOKET or EZACICSO)
 - Original COBOL API (aka, EZACICAL)
 - Listeners: standard and enhanced (i.e., CSKL); or user-written
 - Definition and management components (e.g., EZAO)
- A <u>well-documented workhorse</u>, but...
- It's been around a long time (circa 1992)
- Older than CICS OTE
 - Thus... much of it's original architecture
- Reengineered to support OTE
 - But... the general approach of the original architecture persisted

Thus, I'm NOT referring to CICS TS features which use the CICS Sockets Domain.

CICS Sockets ≢ Sockets Domain

CICS Sockets Pathway

TCP and UDP Transport Protocol Layer

IP Network Protocol Layer

Network Interface Layer

z/OS Communications Server, IP Sockets Application Programming Interface Guide and Reference

Test Methodology

Standard Test Cycle

Each test cycle caused the gateway to:

- Open 2 sockets via Listener TX
- Send/Receive TXs started to handle socket I/O
- Generate 2,500 request-response iterations (no delays)
- Each request caused a LINK to a customer program
- Bytes in/out modeled for average production use case
- Benchmarks run:
 - 1 concurrent test cycle

 5 concurrent test cycles (10 sockets and 12,500 iterations)

Objectives:

- Measure region-level CPU burn for various configurations
- Differentiate between CPU burn associated with Socket apps and Socket infrastructure

SHARE in San Francisco Selected to keep total region-level CPU use to a manageable level on test LPAR

Tooling Developed

It's difficult to get a snapshot of a CICS region's total resource consumption that is:

- high-resolution (microseconds)
- Iow-overhead

Includes zIIP and zAAP

Immediate

- Ended up developing two tools:
 - A CICS transaction to provide a summary of MVS ASSB timers (HBZT)
 - A CICS XMNOUT exit to log transaction metrics via WTO

The combination allowed us to:

- drive testing fast
- quickly assess results from all angles

Special thanks to:

- Larry Lawler (UNICOM)
- Ed Jaffe (Phoenix Software)

For info on HBZT, see me after session

CPU Measurement (HBZT)

CPU Measurement (HBZT)

CPU Measurement

과 Session B - Gamma - [24 x 80]
File Edit View Communication Actions Window Help
CPU USAGE FOR ADDRESS SPACE: ASID=003F,APPLID=CICSA
DELTA values from 2012/08/01 00:13:49.306914 to 2012/08/01 00:13:49.306914
ASSB 'Programming Interface' values (*=not normalized): PF1 resets baseline ASSBASST
ASSBPHTM
ASSBPHTM_BASE
ASSB_IFA_PHTM
ASSB_ZIIP_PHTM
ASSB_SRB_TIME_ON_CP 00:00:00.000000 CP time in SRB mode
ASSB_TASK_TIME_ON_CP 00:00:00.000000 CP time in task mode ASSB_TIME_IFA_ON_CP 00:00:00.000000 zAAP time on CP (<u>non-enclave)</u>
Δ SSR TIME ZITE ON CD = 0.00.00.00.00000 ZITE $\pm imp = 20$
ASSB_TIME_ON_IFA 00:00:00.0000008 zAAP time (non-e All delta values now
ASSB_TIME_ON_ZIIP 00:00:00.000000* zIIP time (non-e Zero Zero
Other ASSB values of interest:
ASSB_ENCT
ASSB_IFA_ENCT
This program may be freely copied and used in object code form.
Copyright (c) 2011 HostBridge Technology, LLC www.hostbridge.com
ENTER=Update, PF1=Baseline, PF2=Toggle Mode, PF5=Update+Baseline, CLEAR=Exit
MA B 01/001
SHARE

•••• in San Francisco

CPU Measurement

Image: Session B - Gamma - [24 x 80]
File Edit View Communication Actions Window Help
CPU USAGE FOR ADDRESS SPACE: ASID=003F,APPLID=CICSA
DELTA values from 2012/08/01 00:13:49.306914 to 2012/08/01 00:15:17.153714
ASSB 'Programming Interface' values (*=not normalized):Run load test and press ENTERASSBASST
ASSB_ENCT
This program may be freely copied and used in object code form. Copyright (c) 2011 HostBridge Technology, LLC www.hostbridge.com ENTER=Update, PF1=Baseline, PF2=Toggle Mode, PF5=Update+Baseline, CLEAR=Exit
MA B 01/001
SHARE
• • in San Francisco Copyright © 2013 HostBridge Technology

CPU Measurement

Where the Data Led Us

- Under volume testing, the CPU burn associated with the CICS Sockets Support was measurable and linear (confirmed customer's theory)
- I won't characterize it as "high" or "low" because the only thing that mattered was whether it could be lower (or not so linear)
- Thus, we began to:

an Francisco

- Isolate various components and their impact
- Consider how to provide alternative functionality (but complimentary to CICS TS)
- Low hanging fruit seemed to be CICS Socket Handler (via EZASOKET API)

Customer A - Solution 1

Solution 1 Assessment

Good...

- The Alt. Socket Handler lowered GP CPU burn associated with Socket I/O
- All it required was a re-link of apps that used EZASOKET API (with alternate load module)
- Transparent to existing user-written Listeners, Sender and Receiver TXs

However...

- EZASOKET API emulation seemed to be a bit of needless overhead (e.g., parameter marshaling and transformation)
- zIIP enablement opportunity wasn't optimal due to task switching

But wait...

in San Francisco

 The design patterns for CICS-based Listeners, Receivers and Senders are fairly common

Customer A - Solution 2

Solution 2 Assessment

Very Good...

an Francisco

- GP CPU burn associated with Socket I/O went down further
- EZASOKET API emulation eliminated (all components use native sockets)
- Transparent to the customer's applications
- CICS Socket definition/management leveraged
 - EZAO still used to Configure, Start, or Stop Listeners
- zIIP enablement potential maximized
 - Minimal task switching
 - Customer application code not zIIP enabled (per IBM-ISV T&C's)

ZIIP

Pathway - Old vs. New

z/OS Communications Server, IP Sockets Application Programming Interface Guide and Reference

Test Results

	TEST: (concurrer	nt instanc	es=1; tota	l reque	sts=2	2500				
Standard	Socket Ir	nfrastruct	ure (EZA-	based)							
	<u>Send TX</u>		<u>Recv TX</u>		<u>Total</u>						All times in
	(GP)		(GP)								microseconds
1	140714		332702								
2	138355		317988								
3	141509		336017								
Avg	140193		328902		46909	<mark>95</mark>					
Alt. Sock	et Infrasti	ructure (z	iip=n)								_
	Alt Send	<u>TX</u>	Alt Recv	<u>TX</u>							
	(GP)		(GP)		_						
1	128676		285711				duction -	Old	/S.		
2	125736		271014			New	w/o zIIP				
3	119938		240784					~	\sim		
Avg	124783		265836		39062	20	-17%				
Alt Sock	ot Infracti	ructure (z	iin-v)								80
	Alt Send	-	Alt Recv	тх							
	(GP)	(zIIP)	(GP)	(zIIP)	F						
1	94956	48131		114161		% reduction - New w/o zIIP to New w/ zIIF				eduction - vs. New w/	
2	94766	48759		114349				to New w/ zIIP zIIP		-	
3	94049	47391		111208							
4	94522	47390		107856				Τ			
Avg	94573		161630		25620		-34%		الالح	Ť.	

Test Results (w/ Concurrency)

	TEST: c	oncurren	t instance	es=5; total	reque	sts=12	2500			
Standard	Socket Ir	nfrastruct	ure (EZA-	based)						
	<u>Send TX</u>		<u>Recv TX</u>		<u>Total</u>					All times in
	(GP)		(GP)							microseconds
1	609880		1226658							microseconda
2	614881		1234086							
3	617669		1259704			-				
Avg	614143		1240149		18542	<mark>293</mark>				
Alt. Sock	et Infrastı	ructure (z	iip=n)							
	Alt Send	<u>TX</u>	Alt Recv	<u>TX</u>						
	(GP)		(GP)		-					The TCP/IP stack see
	491684		782429		% reduction - Old vs.					to get more efficient th
	496651		780384		New v	New w/o zIIP				harder you load it
	502901		804619					\square		, ,
Avg	497079		789144		12862	2 <mark>23</mark>	-31%			
Alt. Sock	et Infrastı	ructure (z	iip=y)							Your Mileage
	Alt Send	TX	Alt Recv	<u>TX</u>						📥 May 🚖
	(GP)	(zIIP)	(GP)	(zIIP)	%	reduct	ion -	% redu	ction -	ү Vary 🖗
	417841	198962	657107	424739		w w/o		Old vs.		
	417388	194910	613641	401113	to	to New w/ zIIP		zIIP		
	409281	194758	618252	399555						
	410077	193542	600015	397736]			Т
Avg	413647		622254		10359	901	-19%	-44%		

Customer B - Initial Conditions

(Infrastructure outside System z similar to customer A)

in San Francisco

Customer B - Solution 1

- Replace CICS Socket Listener
- Leverage EZASOKET API, but change implementation
- Keep CICS Socket Definition/Management
- Exploit CICS TS v4 OTE, z/OS, USS
- Programs defined as THREADSAFE & OPENAPI
- Nice GP CPU reduction, but no practical opportunity to exploit zIIP

Customer B - Solution 2

- Builds on Solution 1
- Replace Worker with generic alternative
- Eliminate EZASOKET API in Worker TX
- Allows zIIP exploitation by Worker

Test Procedure

- Each configuration was tested using a common benchmark from a distributed system:
 - Open socket to Worker TX (via Listener/Handler)
 - Send 5,000 requests (causing the same number of LINKs and responses)
 - Close socket
- Test constructed to isolate the actual GP CPU costs/savings for socket-related processing per request
- Test <u>not</u> constructed to determine an average percent reduction in GP CPU per request

Test Results and Calculations

-
102
20

• in San Francisco

	GP CPU Sec	zIIP CPU Sec	
Initial Config	27.951	0.000	Averages from multiple
Solution 1	26.943	0.000	tests of each configuration
Solution 2	23.436	0.427	

27.951	Initial Config runs entirely on the GP (all socket I/O and app logic)
(26.943)	Solution 1 runs entirely on the GP, but measures the effect of
	replacing the EZASOKET API
1.008	Difference = Estimated GP CPU savings to handle socket I/O for
	5,000 requests via Customer Worker TX

27.951	Initial Config runs entirely on the GP (all socket I/O and app logic)
(23.436)	Solution 2 runs socket I/O on the zIIP, and app logic on GP
4.515	Difference = Estimated GP CPU savings to handle socket I/O for
	5,000 requests via Alternate Worker TX (and on zIIP)
ARE	

Value Proposition Model

- What mattered most to the customer was processing new workload efficiently during their peak 4 hour period
- Assume:

an Francisco

- 5 million TX in max 4 hr period
- 20% processed via Alt. Worker TX

5,000,000	Peak 4 hour transaction volume	
20%	% of TX processed via Alt. Worker	
1,000,000	TX processed via Alt. Worker	3
80%	% of TX processed via Std. Worker	PU.
4,000,000	TX processed via Std. Worker	
903	Est. GP CPU Reduction for Alt. Worker (seconds)	
807	Est. GP CPU Reduction for Std. Worker (seconds)	
1,710	Total Est. GP CPU Seconds Reduced	
28.49	Total Est. GP CPU Minutes Reduced during Peak Period	6

Customer B – Optimal Solution

Summary

- CICS Socket Support has been a workhorse for a long time -- it's earned it's keep!
- CICS TS Open Transaction Environment continues to evolve and permit new opportunities for customers and ISV's -- thank you Hursley Lab
- An example is the Alt. Socket Support described in this presentation
- This approach is applicable to any customer who relies heavily on CICS Socket Support
 - zllP support can only be provided by a licensed ISV
- You can substantially reduce
 GP CPU usage associated with
 CICS socket applications
- Oh... and the customers were very pleased

