
Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

CICS Integration & Optimization:
Tales from the Trenches

Russ Teubner
HostBridge Technology
russ@hostbridge.com

Or… let’s save
some MIPS!

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

CICS users are loyal to their apps – and for
good reason! However, they also need to
integrate these same applications with an
ever widening array of web and cloud-
based resources. If that weren’t enough,
every year they are under pressure to add
value, support new workload and reduce
the cost of ownership. That’s a tall
order. This session will highlight two
customers who used a common tactic to
enhance the value of their existing CICS
investments.

Abstract

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Customer Case Studies

 Customer A
 Industry: Telecommunications (US)
 Very high daily/consistent transaction volume
 Long-standing investment in COBOL-based

socket apps
 Customer B
 Industry: Financial Services (International)
 Very high transaction volume on one day each

month (and in compressed time period)
 Long-standing investment in PL/I-based

socket apps

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Common Objectives
 Both customers had common objectives
 Business Objectives

 Respond to competitive pressures in their industry
 Lower incremental cost of high-volume

CICS application processing
(i.e., marginal value > marginal cost)

 Move new/additional workload to System z and
reinforce CICS TS as the most cost effective
platform for their business

 Technical Objective (at least their hope)
 Streamline System z and CICS integration paths
 Reduce the CPU burn (GP) associated with

socket applications and infrastructure

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Perfect R&D Situations

Well defined business objectives
An initial theory as to what the

technical issues might be
Strong in-house CICS talent
Load testing infrastructure in place
Good CICS tools on hand
Test LPAR/region available
Had a spare cubicle

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Timing Was Opportune
 Customers were continuing to state their concern

about doing more for less
 We had just delivered zIIP-enabled versions of our

products, and our heads were filled with fun facts
related to:
 z/OS, USS, LE, WLM, SRBs, zIIP
 CICS TS v4 Open Transaction Environment
 Sockets

 Other factors:
 We are zealots regarding integration of CICS

apps/data as part of web/cloud-based infrastructure
 We are committed to delivering functionality under CICS
 I didn’t want to stop writing code (zIIP project was too fun)

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Cut to the Chase
 What we learned was surprising and the results

were unexpected (in a good way)
 We ended up exploiting CICS TS v4 OTE and

z/OS to create a solution
 I want this to be knowledge you can use:
 The approach is generally applicable to any

CICS customer who has socket apps
 The higher your volume, the more it

matters
 Yes… I’m “a vendor” but please forget

that for now – I’m speaking as a CICS
developer

CICS

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Customer A - Initial Conditions

• Typical architecture for CICS-based
socket listener/applications

• Persistent connection between
Gateway and RX/TX transactions

• Multiple simultaneous Gateway-to-
CICS connections

• Volume was VERY HIGH!

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Research Focus

• EZASOKET application design patterns,
performance, APIs

• CICS Socket Listener design patterns
• CICS Socket Def/Mgmt patterns
• CICS TS v4 OTE exploitation
• z/OS USS exploitation

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

 Provided as part of z/OS Communications Server
 What it includes:

 Socket APIs
 C language API
 Sockets Extended API (aka, EZASOKET or EZACICSO)
 Original COBOL API (aka, EZACICAL)

 Listeners: standard and enhanced (i.e., CSKL); or user-written
 Definition and management components (e.g., EZAO)

 A well-documented workhorse, but…
 It’s been around a long time (circa 1992)
 Older than CICS OTE

 Thus… much of it’s original architecture
 Reengineered to support OTE

 But… the general approach of the original architecture persisted

CICS Socket Support

Thus, I’m NOT
referring to CICS TS

features which use the
CICS Sockets Domain.

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

CICS Sockets Sockets Domain

Our focus
is here…

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

CICS Sockets Pathway

z/OS Communications Server, IP Sockets Application Programming Interface Guide and Reference

CICS Sockets Support CICS Sockets Domain

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Test Methodology

• Two test harnesses used for comparison
• z/OS-based testing is quick and good for functionality,

but not fair for performance (hyper-sockets is too good)

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Standard Test Cycle
 Each test cycle caused the gateway to:
 Open 2 sockets via Listener TX
 Send/Receive TXs started to handle socket I/O
 Generate 2,500 request-response iterations (no delays)
 Each request caused a LINK to a customer program
 Bytes in/out modeled for average production use case

 Benchmarks run:
 1 concurrent test cycle
 5 concurrent test cycles

(10 sockets and 12,500 iterations)
 Objectives:
 Measure region-level CPU burn for various

configurations
 Differentiate between CPU burn associated with

Socket apps and Socket infrastructure

Selected to keep total region-level CPU
use to a manageable level on test LPAR

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Tooling Developed
 It’s difficult to get a snapshot of a CICS region’s

total resource consumption that is:
 high-resolution (microseconds)
 low-overhead

 Ended up developing two tools:
 A CICS transaction to provide a summary of MVS ASSB timers (HBZT)
 A CICS XMNOUT exit to log transaction metrics via WTO

 The combination allowed us to:
 drive testing fast
 quickly assess results from all angles

 Special thanks to:
 Larry Lawler (UNICOM)
 Ed Jaffe (Phoenix Software)

 For info on HBZT, see me after session

 Immediate
 Includes zIIP and zAAP

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

CPU Measurement (HBZT)

ACTUAL mode upon entry

Simple
and
Free

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

CPU Measurement (HBZT)

PF2 toggles mode

Immediate view of
ASSB values

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

CPU Measurement

PF1 resets baseline

All delta values now
zero

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

CPU Measurement

Run load test and
press ENTER

Immediate view of
ASSB values (deltas)

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

CPU Measurement

Customer region
running production

workload for 3 days.

5 hours of zIIP
used thus far!

22 hours of GP
time used.

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Where the Data Led Us
 Under volume testing, the CPU burn associated

with the CICS Sockets Support was measurable
and linear (confirmed customer’s theory)

 I won’t characterize it as “high” or “low” because
the only thing that mattered was whether it
could be lower (or not so linear)

 Thus, we began to:
 Isolate various components and their impact
 Consider how to provide alternative

functionality (but complimentary to CICS TS)
 Low hanging fruit seemed to be

CICS Socket Handler (via EZASOKET API)

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Customer A - Solution 1

• Leverage EZASOKET API as established design pattern
• Replace CICS Socket Handler
• Keep CICS Socket Definition/Management
• Exploit CICS TS v4 OTE, z/OS, USS
• EZASOKET apps must be defined as THREADSAFE & OPENAPI

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Solution 1 Assessment
 Good…
 The Alt. Socket Handler lowered GP CPU burn

associated with Socket I/O
 All it required was a re-link of apps that used EZASOKET

API (with alternate load module)
 Transparent to existing user-written Listeners, Sender

and Receiver TXs
 However…
 EZASOKET API emulation seemed to be a bit of needless

overhead (e.g., parameter marshaling and
transformation)

 zIIP enablement opportunity wasn’t optimal
due to task switching

 But wait…
 The design patterns for CICS-based Listeners,

Receivers and Senders are fairly common

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Customer A - Solution 2

• Replace Listener, Receive, Send TX with equivalent/generic alternatives
• Eliminate EZASOKET API as a design pattern
• Keep CICS Socket Definition/Management
• Exploit CICS TS v4 OTE, z/OS, USS, zIIP

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Solution 2 Assessment

 Very Good…
 GP CPU burn associated with Socket I/O

went down further
 EZASOKET API emulation eliminated (all

components use native sockets)
 Transparent to the customer’s applications
 CICS Socket definition/management leveraged

 EZAO still used to Configure, Start, or Stop Listeners

 zIIP enablement potential maximized
 Minimal task switching
 Customer application code not zIIP enabled

(per IBM-ISV T&C’s)

zIIP

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Pathway - Old vs. New

z/OS Communications Server, IP Sockets Application Programming Interface Guide and Reference

BEFORE: CICS Sockets Support AFTER: Alt. Sockets Support

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Test Results

Standard Socket Infrastructure (EZA-based)
Send TX Recv TX Total
(GP) (GP)

1 140714 332702
2 138355 317988
3 141509 336017

Avg 140193 328902 469095

Alt. Socket Infrastructure (ziip=n)
Alt Send TX Alt Recv TX
(GP) (GP)

1 128676 285711
2 125736 271014
3 119938 240784

Avg 124783 265836 390620 -17%

Alt. Socket Infrastructure (ziip=y)
Alt Send TX Alt Recv TX
(GP) (zIIP) (GP) (zIIP)

1 94956 48131 165486 114161
2 94766 48759 165751 114349
3 94049 47391 159752 111208
4 94522 47390 155531 107856

Avg 94573 161630 256203 -34% -45%

TEST: concurrent instances=1; total requests=2500

% reduction - Old vs.
New w/o zIIP

% reduction -
New w/o zIIP
to New w/ zIIP

% reduction -
Old vs. New w/
zIIP

All times in
microseconds

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Test Results (w/ Concurrency)
Standard Socket Infrastructure (EZA-based)

Send TX Recv TX Total
(GP) (GP)

1 609880 1226658
2 614881 1234086
3 617669 1259704

Avg 614143 1240149 1854293

Alt. Socket Infrastructure (ziip=n)
Alt Send TX Alt Recv TX
(GP) (GP)

491684 782429
496651 780384
502901 804619

Avg 497079 789144 1286223 -31%

Alt. Socket Infrastructure (ziip=y)
Alt Send TX Alt Recv TX
(GP) (zIIP) (GP) (zIIP)

417841 198962 657107 424739
417388 194910 613641 401113
409281 194758 618252 399555
410077 193542 600015 397736

Avg 413647 622254 1035901 -19% -44%

TEST: concurrent instances=5; total requests=12500

% reduction - Old vs.
New w/o zIIP

% reduction -
New w/o zIIP
to New w/ zIIP

% reduction -
Old vs. New w/
zIIP

Your
Mileage

May
Vary

All times in
microseconds

The TCP/IP stack seems
to get more efficient the

harder you load it

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Customer B - Initial Conditions

TCP/IP

zOS/USS Socket Services

CICS Socket Support (EZASOKET)

CICS Socket Listener Customer
Handler TX

Customer
Worker TX

Give Take Give Take CloseI/O I/OAccept I/O

S
T
A
R
T

S
T
A
R
T

L
I
N
K

• A single socket is used for both sending and receiving
• CICS Socket Listener connection requests
• Handler TX validates and categorizes requests
• Worker TX is long-lived
• Work requests serviced by LINKed-to programs

(Infrastructure outside System z similar to customer A)

Most
Common
Design
Pattern

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Customer B - Solution 1

TCP/IP

zOS/USS Socket Services

Alternate EZASOKET API

Alternate
Listener TX

Customer
Handler TX

Customer
Worker TX

Give Take Give Take CloseI/O I/OAccept I/O

S
T
A
R
T

S
T
A
R
T

L
I
N
K

• Replace CICS Socket Listener
• Leverage EZASOKET API, but change implementation
• Keep CICS Socket Definition/Management
• Exploit CICS TS v4 OTE, z/OS, USS
• Programs defined as THREADSAFE & OPENAPI
• Nice GP CPU reduction, but no practical opportunity to exploit zIIP

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Customer B - Solution 2

TCP/IP

zOS/USS Socket Services

Alternate EZASOKET API

Alternate
Listener TX

Customer
Handler TX

Alternate
Worker TX

Give Take Give Take CloseI/O I/OAccept I/O

S
T
A
R
T

S
T
A
R
T

L
I
N
K

zIIP Enabled

• Builds on Solution 1
• Replace Worker with generic alternative
• Eliminate EZASOKET API in Worker TX
• Allows zIIP exploitation by Worker

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Test Procedure

 Each configuration was tested using a common
benchmark from a distributed system:
 Open socket to Worker TX (via Listener/Handler)
 Send 5,000 requests (causing the same number of

LINKs and responses)
 Close socket

 Test constructed to isolate the actual GP CPU
costs/savings for socket-related processing
per request

 Test not constructed to determine
an average percent reduction
in GP CPU per request

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Test Results and Calculations
GP CPU Sec zIIP CPU Sec

Initial Config 27.951 0.000

Solution 1 26.943 0.000

Solution 2 23.436 0.427

Averages
from multiple
tests of each
configuration

27.951 Initial Config runs entirely on the GP (all socket I/O and app logic)

(23.436) Solution 2 runs socket I/O on the zIIP, and app logic on GP

4.515 Difference = Estimated GP CPU savings to handle socket I/O for
5,000 requests via Alternate Worker TX (and on zIIP)

27.951 Initial Config runs entirely on the GP (all socket I/O and app logic)

 (26.943) Solution 1 runs entirely on the GP, but measures the effect of
replacing the EZASOKET API

 1.008 Difference = Estimated GP CPU savings to handle socket I/O for
5,000 requests via Customer Worker TX

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

 What mattered most to the customer was
processing new workload efficiently
during their peak 4 hour period

 Assume:
 5 million TX in max 4 hr period
 20% processed via Alt. Worker TX

Value Proposition Model

 5,000,000 Peak 4 hour transaction volume
20% % of TX processed via Alt. Worker

 1,000,000 TX processed via Alt. Worker
80% % of TX processed via Std. Worker

 4,000,000 TX processed via Std. Worker
 903 Est. GP CPU Reduction for Alt. Worker (seconds)

 807 Est. GP CPU Reduction for Std. Worker (seconds)
 1,710 Total Est. GP CPU Seconds Reduced
 28.49 Total Est. GP CPU Minutes Reduced during Peak Period

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Customer B – Optimal Solution

TCP/IP

zOS/USS Socket Services

Alternate
Worker TX

(Equivalent Functionality)

Take CloseI/O

L
I
N
K

zIIP Enabled

TCP/IP

zOS/USS Socket Services

Alt. EZASOKET API

Customer
Worker TX

(Unchanged)

Take CloseI/O

L
I
N
K

TCP/IP

zOS/USS Socket Services

Alt. EZASOKET API

Alternate Socket Listener Customer
Handler TX

(With request recognition)

Give Take GiveI/OAccept I/O

S
T
A
R
T

START

START

• Handler modified by customer to categorize requests
and START appropriate Worker (trivial change)

• Alternate Worker TX handles high-volume requests
• Eliminates EZASOKET API
• Exploit zIIP for socket I/O

• Customer Worker TX used for
request types not yet supported by
Alternate Worker TX

• Uses Alt. EZASOKET API to
achieve some GP CPU savings

Copyright © 2013 HostBridge Technology Copyright © 2013 HostBridge Technology

Summary
 CICS Socket Support has been a workhorse for a long

time -- it’s earned it’s keep!
 CICS TS Open Transaction Environment continues to

evolve and permit new opportunities for customers
and ISV’s -- thank you Hursley Lab

 An example is the Alt. Socket Support described in this
presentation

 This approach is applicable to any customer who relies
heavily on CICS Socket Support
 zIIP support can only be provided by a licensed ISV

 You can substantially reduce
GP CPU usage associated with
CICS socket applications

 Oh… and the customers were very pleased

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Customer A - Initial Conditions
	Research Focus
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Test Methodology
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Customer A - Solution 1
	Slide Number 23
	Customer A - Solution 2
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Customer B - Initial Conditions
	Customer B - Solution 1
	Customer B - Solution 2
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Customer B – Optimal Solution
	Slide Number 36

