
1

R.P. Shannon
Rocket Software
February 5, 2013
Session 12404

Tom Swift Revisits the Virtual Lookaside Facility

2

Rocket Software

Global software company

Approximately 1000 employees

Headquarters in Waltham, MA

Offices in Atlanta, GA, Austin, TX,
Houston, TX, Chelyabinsk, RU, Dalian, China, etc.

Produce many products that are branded and
marketed by IBM

Former brands include Mainstar, Shadow, Bluezone and OpenTech

3

Tom Swift

Starring Wayne Morshhauser as Tom Swift

4

Storage Hierarchy

Speed

Cache

Real Storage

Expanded Storage

Cache Controller

DASD

Cost

Normalized Access Times (1)

Cache: 1 second

Real Storage: 16 Seconds

Expanded Storage: 40 minutes

Cache Controller: 1 Day

DASD: 1 ½ weeks

Cache Access Times (2)

L1 cache - same cycle
L2 cache - 4 cycles
L3 cache in the same book - more than 100 cycles
L3 cache in another book - more than 200 cycles
Real Storage - about 850 cycles

(1) Courtesy of Wayne Morshhauser

(2) Courtesy of Greg Daynes

5

Additional Memory Types

2361 Large Capacity Storage (LCS) was an optional feature on the S/360 Models 50, 65 and
75:
• Slower but cheaper than real storage
• Two region parameters (REGION=(X,Y)); one for regular memory, the other for LCS

Expanded Storage:
• Slower but cheaper than real storage
• Initially used for paging
• Different type of memory
• Accessed in 4K blocks
• Data must be moved from Estor to Cstor for processing
• Still used by zVM, but it is just real storage designated to be used as Estor

System Z Flash:
• Slower but cheaper than real storage
• Initially used for paging
• Uses flash drives
• I/O is performed to access the data, i.e., outside of the I/O boundary

For more information on System Z Flash attend sessions 13057 and 13086 later today

6

Cache Concepts

“A cache is a place to hide things” Webster’s Dictionary

Basic premise of caching in computer systems is the ability to re-read unchanged data

Candidates for caching:

• Should be frequently referenced

• Should have a high read/write ratio

• Provide the most benefit when accessed by multiple address spaces or systems

Everything that is cached must be backed by some type of storage

Data in caches tend to be volatile; it might not be there when needed

Searching and managing caches incurs some amount of overhead

Keep data as close to the processor cache as possible!

7

I/O Boundary

Denotes the place where data access switched from synchronous to asynchronous;
occurs when referencing data outside of processor storage

Asynchronous retrieval:

• Setup and schedule an I/O

• Save the state of the original task (Task A)

• Establish environment for a new task (Task B)

• Dispatch Task B

• Fill High Speed Buffer (HSB) with data for Task B

• Process interrupt for data retrieval for Task A

• Save state of Task B

• Re-establish environment for Task A

• Dispatch Task A

• Fill HSB with data for Task A

8

I/O Elimination

In MVS/SP 3.1.0e (MVS/ESA) IBM discovered caching:

• Data spaces and Hiperspaces provided additional data-only storage

• Data In Virtual (DIV) allowing ‘windowing” for linear data sets

• Virtual Lookaside Facility facilitated caching “objects”

In MVS/SP 3.1.3 IBM introduced Hiperbatch (Data Lookaside Facility)

The only good I/O is a dead I/O

9

Full Speed Ahead

A computer always attempts to process at the highest speed possible

When you took an exam in college did you start with a 100 and work your way down, or
did you start with a 0 and work your way up?

Computers start at 100

All of the multiple levels of caches, pipelining, out-of-order instruction execution etc.,
attempt to keep a computer running at 100

10

Vertical vs.. Horizontal Addressing Growth

Vertical Growth:
• Requires significant architectural changes
• Implementation is slow, difficult, and expensive

Horizontal Growth:
• IBM encountered addressing limitations in MVS/XA
• Couldn’t implement bigger spaces (i.e., vertical growth) due to time and cost
• Instead implemented vertical growth, i.e., more spaces
• Two types of spaces: data spaces and Hiperspaces

Address

Space

Data
Space

Data
Space

Data
Space

24 Bit

31 Bit

64 Bit

11

Data Space Review

Address

Space

Data
Space

Data
Space

Data
Space

Data only spaces; maximum of 2 Gb; code cannot execute in a data space

Byte addressable; Hiperspaces are block (4K) addressable

No access to MVS common areas such as the Nucleus, CSA, PLPA or SQA

Access Registers contain the ALET for a data space; 32 bits not 64 bit

ALET is used to determine the Segment Table Origin

Must set the address mode to activate data space addressing; SAC 512

ALETs are unique affording data spaces some level of isolation

Each data space has a storage protect key (0-F)

A Common Area Data space (CADS) is automatically accessible by all address spaces, just
like Common Storage

12

VLF Concepts

VLF is a caching facility that retains highly-used named objects in virtual storage to
eliminate I/O operations

The objects are stored in data spaces that are owned and managed by VLF

Objects are byte-aligned in the data spaces and can be retrieved to byte boundaries in
user storage

Objects reside in pageable storage

VLF may trim, i.e., delete, objects from the data spaces

Callers must be able to refetch, reload or recreate objects

An application may terminate a class due to errors

VLF may terminate a class due to various errors

13

VLF Initialization

VLF runs as a non-swappable started task

Service Class SYSSTC

Put the start command in COMMNDxx (because it usually executes before automation
products)

COM='S VLF,SUB=MSTR,nn=xx’
• SUB-MSTR is required so that VLF can start before JES
• nn=xx specifies the COFVLF suffix and is only required when the suffix does not equal

00

VLF Procedure:
//VLF PROC NN=00

//VLF EXEC PGM=COFMINIT,PARM='NN=&NN'

If VLF starts before the VLF users, the users will begin using VLF once it has been
initialized

VLF can be stopped by issuing a ”P VLF” command; stopping VLF will degrade system
performance

14

COFVLFxx Parmlib Member

CLASS NAME(CSVLLA)

EMAJ(LLA)

MAXVIRT(8096)

CLASS NAME(IKJEXEC)

EDSN(RS21.LIBDEF.EXEC)

EDSN(RSPLEX01.LIBDEF.EXEC)

EDSN(ISP.SISPCLIB)

MAXVIRT(512)

CLASS NAME(IGGCAS)

EMAJ(CATALOG.RSPLEX01.OMGR.CAT1)

EMAJ(CATALOG.RSPLEX01.USERCAT)

EMAJ(ICF.RSPLEX01.DB2.CAT1)

EMAJ(ICF.RSPLEX01.IMS.A3DB.CAT1)

MAXVIRT(2048)

CLASS NAME(IRRGTS)

EMAJ(GTS)

CLASS NAME(IRRACEE)

EMAJ(ACEE)

CLASS NAME(IRRGMAP)

EMAJ(GMAP)

CLASS NAME(IRRUMAP)

EMAJ(UMAP)

CLASS NAME(IRRSMAP)

EMAJ(SMAP)

ALERTAGE parameter specifies the age of an object in seconds, used by Health Check

IBMVLF,VLF_MAXVIRT to determine if trim occurs too frequently. Default = 60

15

Terminology

Class: a set of related objects; Example: IKJEXEC is a class used by TSO

Major Name: a group within a class; Example: SYS3.CLIB (a clist library)

Minor Name: a specific object within a major name; Example: #ISMF (a clist)

Within a class, each major name must be unique; within a major name, each minor name
must be unique

Hashed Object Name = Class|Major|Minor

MAXVIRT: The maximum amount of data space storage for objects; the default is 4096 4K
blocks (16 Mb)

Trim: VLF begins culling objects it has used about 90% of the MAXVIRT value

16

VLF Data Spaces

VLF creates two data spaces per class when COFIDENT is issued:

“Data” data space contains the objects:
• Size controlled by MAXVIRT parameter
• Name is D+classname

Example: DCSVLLA for LLA

“Control” data space:
• Size is 2 Gb (but usually only a small amount is used)
• Name is C+classname
• Contains control structures such as:

� Pointers to the objects
� Size of the objects
� And more ….

Example: CCSVLLA for LLA

17

VLF Dataspaces (D J,VLF)

VLF VLF VLF NSW S A=001F PER=NO SMC=000 PGN=N/A

DMN=N/A AFF=NONE

CT=000.274S ET=20.02.29

WKL=SYSTEM SCL=SYSSTC P=1

RGP=N/A SRVR=NO QSC=NO

ADDR SPACE ASTE=0BDC27C0

DSPNAME=DIKJEXEC ASTE=0B628600

DSPNAME=CIKJEXEC ASTE=076ECF80

DSPNAME=DIRRGMAP ASTE=0B628300

DSPNAME=CIRRGMAP ASTE=0A67DA00

DSPNAME=DIRRUMAP ASTE=0B628280

DSPNAME=CIRRUMAP ASTE=0A67D980

DSPNAME=DIRRSMAP ASTE=0B628200

DSPNAME=CIRRSMAP ASTE=0A67D900

DSPNAME=DCSVLLA ASTE=0B628180

DSPNAME=CCSVLLA ASTE=0A67D580

DSPNAME=DIRRACEE ASTE=0B628100

DSPNAME=CIRRACEE ASTE=0A67D480

DSPNAME=DIGGCAS ASTE=0B628080

DSPNAME=CIGGCAS ASTE=7E9CB580

Data spaces that begin with “D” contain objects
Data spaces that begin with “C” contain control information

18

VLF Services

COFDEFIN Define a class

COFIDENT Identify a user

COFCREAT Create an Object

COFRETRI Retrieve an object

COREMOV Remove a user

COFPURGE Purge a class

COFNOTIF Indicate Change

19

COFDEFIN: Define a Class

COFDEFIN

CLASS Class

MAJLEN=majlen Major Length; 1-64; PDS is always 50

MINLEN=minlen Minor Length; 1-64; for PDS is always 8

,TRIM=ON | OFF Permit Trim?

,AUTHRET=NO | YES Authorized Retriever? Supervisor state or key 0-7

,RETCODE=retcode Return Code

,RSNCODE=rsncode Reason Code

Note: Each class must have an entry in Parmlib
COFDEFIN issued once per class
Data spaces are created when the class is defined

20

COFIDENT: Connect a Caller to a Class

COFIDENT

DDNAME=ddname DDname

MAJNLST=majnlst Major Name

,CLASS=class Class; 7 character name from COFDEFIN

,SCOPE=HOME | SYSTEM Scope of services that can retrieve objects

,UTOKEN=utoken 16 byte token returned by VLF

,RETCODE=retcode Return Code

,RSNCODE=rsncode Reason Code

21

COFCREAT: Create an Object

COFCREAT

MAJOR-major Use for non-PDS only

CINDEX=cindex Concatenation index; required for PDS class

DDNAME=ddname Ddname; required for PDS

,REPLACE = NO | YES Replace existing object?

MINOR=minor Minor name

UTOKEN=utoken 16 byte token from COFIDENT

OBJPRTL=objprtl Object parts list; ALET, Part addr, Part length

OBJPLSZ-objplsz Size of parts list

,RETCODE=retcode Return Code

,RSNCODE=rsncode Reason Code

Note: Normal processing is to attempt to Retrieve an object, and if unsuccessful, obtain
the object from the permanent source and then issue COFCREAT

22

COFRETRI: Retrieve an Object

COFRETRI

MINOR=minor Minor name of the object

UTOKEN=utoken Token from COFIDENT

TLIST=tlist Target Area List; ALET, Target Addr, Target size

TLSIZE=tlsize Target area List Size

OBJSIZE=objsize Object size; returned by VLF

CINDEX=cindex Concatenation index

,RETCODE=retcode Return Code

,RSNCODE=rsncode Reason Code

23

COFREMOV: Remove (Disconnect) a User

COFREMOV

UTOKEN=utoken Token from COFIDENT

,RETCODE=retcode Return Code

,RSNCODE=rsncode Reason Code

24

COFPURGE: Purge (Delete) a Class

COFPURGE

CLASS=class Class

,RETCODE=retcode Return Code

,RSNCODE=rsncode Reason Code

25

COFNOTIF: Notify VLF of Changes

COFNOTIF

FUNC=DELMAJOR | DELMINOR | ADDMINOR | UPDMINOR | PURGEVOL

,MAJLIST=majlist Required for FUNC=DELMAJOR

,MAJNUM=majnum

.MAJLEN=majlen

,MAJOR=major

,MINLIST=minlist Reqd for FUNC=DELMINOR, ADDMINOR, UPDMINOR

,MINLEN=minlen

,VOLUME=volume

,CLASS=class

,RETCODE=retcode Return Code

,RSNCODE=rsncode Reason Code

26

Object Retrieval

ObjectBuffer

CALLER VLF

Control
Data Space

Data
Data Space

PC

PR

Read Control

Data

Retrieve Object

27

VLF Application Without A Server A/S

VLF A/S

Control

Data Spaces

Data

Data Spaces

User

User

User

PC

PC

PC

PR

PR

PR

28

VLF Application With A Server A/S

VLF A/S

Control

Data Spaces

Data

Data Spaces

User

User

User

PC

PC

PC

PR

PR

PR

Server A/S

PC

PC

PC

29

LLA Use of VLF

LLA can manage Linklist (LNKLSTxx) and non-Linklist (CSVLLAxx) libraries

Libraries can be frozen or non-frozen; Linklist libraries are frozen by default

For frozen libraries the LLA directory is used; built during LLA initialization

For non-frozen libraries the directories on DASD are used; I/O is required for each
directory search

Frozen libraries provide much better performance than non-frozen

LLA will cache modules in VLF for both Linklist and non-Linklist libraries, for frozen
and non-frozen libraries

To determines which modules to cache in VLF:
• LLA maintains statistics on all fetches
• After 2000 fetches from a library or 10 fetches of a module, module staging analysis

is performed
• CSVLLIX2 can be used to influence staging

LLA will only attempt to retrieve from VLF the objects it has already cached

30

LLA REFRESH vs.. UPDATE

Modify LLA,REFRESH:
• Rebuilds the entire LLA directory
• Flushes VLF
• Easy command to issue, but severe performance degradation can occur

Modify LLA,UPDATE=xx
• xx indicates a CSVLLAxx member that contains control statements
• Kind of a pain to issue the command it requires knowledge of what is being changed

and requires some set up
• Selectively refreshes whatever is specified; much less disruptive than REFRESH

31

PLPA vs.. VLF vs.. Fetch Storage Utilization

PLPA

A
S
I
D

0
1

A
S
I
D

0
2

A
S
I
D

0
3

V
L
F

D
S

Non-VLF

A
S
I
D

0
1

A
S
I
D

0
2

A
S
I
D

0
3

V
L
F

D
S

VLF

A
S
I
D

0
1

A
S
I
D

0
2

A
S
I
D

0
3

V
L
F

D
S

PLPA: One copy for the entire system. Modules must be reenterable. No I/O
after PLPA is built.

Non-VLF: A unique copy is fetched for each address space that requires it.

VLF: First requester fetches module and caches it in VLF. Subsequent
requests by other address spaces are satisfied from VLF instead of
fetching the module again (I/O elimination).

32

Access from VLF vs. Fetch

Module Alias Length Fetch Duration Jobname ASID #LLAF #PGMF

IDCCDAL 00005618 PGM 00.000372 CQMDWG4 024B 3088 150

IDCCDDE 0000DAA0 LLA 00.000038 R91BDBM1 0134 10182 115

IDCCDDL 00000A50 LLA 00.000012 TG23866B 004F 10846 161

IDCCDLC 00000B80 LLA 00.000008 MDDECRB 024A 1179 105

IDCCDPM 000008C8 LLA 00.000009 EMCSCF 0110 21593 285

IDCCDPR 00001208 PGM 00.000798 GGC#LINK 0042 40 11

IDCCDRP 00001ED0 PGM 00.000537 COPYPROF 004F 30 51

IDCCDTC 00000018 PGM 00.000292 SMFTEST 0052 0 10

IDCCDVY 00000158 LLA 00.000007 SMFDUMP 0237 95 75

IDCDE01 0000F7B0 PGM 00.001224 R91BDBM1 0134 9724 573

IDCDL01 00009000 PGM 00.000721 TG23866B 004F 10370 637

IDCIO04 00000480 LLA 00.000008 MDDECRB 024A 1842 302

IDCLA01 IDCSS01 000108D8 PGM 00.001217 S3TMS02 01E8 1 10

IDCLC01 0003FC40 PGM 00.003742 MDDECRB 024A 715 569

IDCPM01 00000CB8 LLA 00.000010 EMCSCF 0110 21679 199

33

TSO Use of VLF

Only libraries concatenated to the SYSPROC DD statement are supported by VLF;
libraries concatenated to SYSEXEC are not supported

The SYSEXEC concatenation is searched before the SYSPROC concatenation; (when
VLF was introduced SYSPROC was searched first)

Clist processing:
• Phase 1: Read the Clist, build the in-storage procedure, and put the procedure on

the command stack
• Phase 2: Removes and executes each statement from the stack
• Clists are cached in VLF after Phase 1

Rexx Programs:
• Fetch the Rexx program
• Execute the Rexx program (include interpretation)
• Rexx programs are stored in VLF after fetch

VLF potentially provides more benefits for Clist processing, but Rexx programs will still
benefit from I/O avoidance

VLF combined with the Rexx Compiler can provide lots of benefits to Rexx processing

34

TSO VLF Eligibility

Rexx programs that reside in libraries concatenated to any of the “SYSPROC”
DDnames must have /* REXX */ coded in the first line to identify it as a Rexx program
instead of a Clist

Explicitly executed Clists and Rexx Programs are not eligible for VLF processing as
they are not associated with a DDname

SYSTEM

APPLICATION

USER

SYSEXEC

SYSPROC

Any Name

Any Name

SYSUEXEC

SYSUPROC

Rexx

Rexx

Rexx

Clist or Rexx

Clist or Rexx

Clist or Rexx

Level DDname Type

Eligibility for Implicit
Execution

35

TSO VLF Effectiveness Factors

Libraries concatenated to SYSEXEC cannot be managed

Large Clists with high Phase 1 processing will benefit the most from VLF caching

Although VLF provides more benefits to Clist processing, Rexx programs will still
benefit from eliminating I/O

VLF combined with the Rexx Compiler can provide lots of benefits to Rexx processing

Put your Clists and Rexx into one library (or a few libraries) and define that library to
VLF

ISP.ISPCLIB is good candidate for VLF

Rexx programs/Clists used to trigger dialogs are good candidates

Rexx programs/Clists that are changed frequently should not be VLF-managed

Not VLF-specific, but the managed Rexx programs/Clists should be named so that they
are found first in the concatenation

36

The Agony Of VLFNOTE

VLFNOTE needs to be in the IKJTSOxx AUTHCMD list; access should be protected by a
security product

Changes to objects loaded from EDSN must be communicated to VLF

Of the standard IBM VLF classes, IKJTSO is the only one that uses EDSN

Since changes aren’t automatically detected, if VLFNOTE isn’t issued VLF will continue
to use the unchanged object; this can be very frustrating as the person who changed
the object won’t understand why the changes aren’t recognized

This may be a deterrent to using the IKJTSO class

37

Catalog Use of VLF

CAS (Catalog Address Space) stores a record (object) in a VLF data space whenever a
record is read by key

VLF caching is sometimes called Catalog Data Space Cache (CDSC)

Master Catalog (MCAT) records are cached in the Catalog Address Space so don’t
define the Master Catalog to VLF

Catalog updates are maintained in the VVDS:
• When the system accesses a catalog, it reads the VVDS and deletes the changed

entries from VLF
• The updates wrap after 92 entries and the update history is lost causing the VLF

catalog objects to be purged
• So don’t define high activity catalogs to VLF on systems with low activity; insure

activity is relatively balanced

Catalog Modify commands:
MODIFY CATALOG,VLF|NOVLF(catname) add/remove a catalog to VLF
MODIFY CATALOG,NOVLF(catname) remove a catalog from VLF
MODIFY CATALOG,OPEN show catalogs that are open
MODIFY CATALOG,REPORT,CACHE report on catalogs using VLF
MODIFY CATALOG,ALLOCATED report on allocated catalogs

Note: Attend sessions 12977 & 12978 tomorrow to learn about forthcoming CAS changes

38

MODIFY CATALOG,ALLOCATED

*CAS***

* YSV-E- OMP100 0001 CATALOG.RSPLEX01.OMGR.CAT1 15

*

* YSI-E- IMP100 0001 ICF.RSPLEX01.IMS.CAT1 1

*

* YSI-R- S3P100 0001 ICF.RSPLEX01.SHARED.CAT1 1

*

* YSV-R- QXP101 0001 ICF.RSPLEX01.QBX2.CAT 1

*

* YSV-R- S1P10B 0001 CATALOG.RSPLEX01.USERCAT 50

*

* YSV-R- QXP101 0001 ICF.RSPLEX01.QBX2.CAT 1

*

* YSV-E- DVP101 0001 ICF.RSPLEX01.DEV.CAT1 55

*

* YSI-R- R3P100 0001 CATALOG.RSRTE.CAT1 1

*

* Y-I-E- MCP100 0001 CATALOG.RSPLEX01.MASTER 1

*

**

*

* Y/N-ALLOCATED TO CAS, S-SMS, V-VLF, I-ISC, C-CLOSED, D-DELETED,

*

* R-SHARED, A-ATL, E-ECS SHARED, K-LOCKED

*

*CAS**

39

MODIFY CATALOG,REPORT,PERFORMANCE

*CAS***

* Statistics since 17:11:00.38 on 01/05/2013 *

* -----CATALOG EVENT---- --COUNT-- ---AVERAGE--- *

* Entries to Catalog 2,889K 3.234 MSEC *

* BCS ENQ Shr Sys 5,570K 0.145 MSEC *

* BCS ENQ Excl Sys 79,099 0.615 MSEC *

* BCS DEQ 6,886K 0.024 MSEC *

<snip>

* VLF Delete Major 216 0.032 MSEC *

* VLF Delete User 1 0.003 MSEC *

* VLF Create Minor 278,099 0.008 MSEC *

* VLF Retrieve Minor 2,931K 0.003 MSEC *

* VLF Delete Minor 131,485 0.009 MSEC *

* VLF Define Major 1 0.152 MSEC *

* VLF Identify 1,746 0.003 MSEC *

* RMM Tape Exit 10,039 0.000 MSEC *

* OEM Tape Exit 10,039 0.000 MSEC *

* BCS Allocate 157 8.382 MSEC *

* BCS Deallocate 6 3.525 MSEC *

* SMF Write 344,344 0.046 MSEC *

* ENQ SYSZCATS Shr 15 0.046 MSEC *

* IXLCONN 2 81.485 MSEC *

* IXLCACHE Read 4,974K 0.006 MSEC *

* IXLCACHE Write 242,696 0.005 MSEC *

* Resolve Symbolic 2,516 0.025 MSEC *

* MVS Allocate 146 8.932 MSEC *

<snip>

40

RACF Use of VLF

RACF uses VLF to cache ACEEs (Accessor Environment Element)

An ACEE is cached for each address space:
• If you have three TSO sessions there will be three cached ACEEs
• If you run a batch job there will be one ACEE
• So the same ACEE may be cached multiple times

Before activating the IRRACEE class check for the use of ACEEICE field:
• Pointer to user-defined data
• Exits IRRACX01 and IRRACX02 are used to tell RACF what to do with the user data
• VLF may cause problems if ACEEICE and the aforementioned exits are used
• Read the documentation

For security-related changes where all of the incorrect user ACEE entries cannot be
determined, all the ACEEs will be removed from VLF

Commands that make security-related changes include ALTUSER, DELUSER, and
ADDUSER

The more groups a user is connected to the greater the size of the object cached in VLF

Other than the ACEEICE, don’t worry about IRACEE too much; it works - use it

41

RACF Use of VLF – The “Oddball” Classes

RACF created a number of VLF classes to exploit DIM:

• IRRGMAP: contains mapping of GIDs to a Group Names

• IRRUMAP: contains mappings of UIDs to User Ids

• IRRSMAP: contains User Security Packets (USPs) for thread level security

• IRRSPS0: contains Signature Verification Data for signed programs

These classes have very low activity on most systems

But defining them won’t hurt anything and may result in slight performance gains

42

Diagnostics

Component trace:

TRACE CT,ON,COMP=SYSVLF
TRACE CT,OFF,COMP=SYSVLF

Process the component trace data with IPCS:

CTRACE COMP(SYSVLF) FULL | SHORT |SUMMARY

To dump VLF and the data space(s):

DUMP COMM=‘Dump of VLF”
R XX,JOBNAME=VLF,CONT
R YY,DSPNAME=(VLF.DCVSLLA,VLF,CCSVLLA),END

IPCS browse function:

PTR Address Address Space

0001 00000000 ASID(X’001F’)

0002 00000000 ASID(X’001F”) DSPNAME(DCSVLLA)

0003 00000000 ASID(X’001F’) DSPNAME(CCSVLLA)

Note: On my system the VLF address space is X’001F’

43

SMF Type 41 Subtype 3

One record produced every 15 minutes

Each record contains all of the VLF classes

Record contains:
• Class name
• Maximum virtual storage (in 4K blocks)
• Amount of storage used (in 4K blocks)
• Number of times searched
• Number of objects found
• Number of objects added
• Number of objects deleted
• Number of objects trimmed
• Size of the largest object attempted to add to the cache

It would be very helpful to identify the largest object attempted to add to the cache

44

Sample SMF Reports

Class Maxvirt Maxused Searches Found Del Trim Largest

CSVLLA 65,536 18,132 540,820 540,820 0 0 9,404,632

IRRACEE 12,288 2,976 95,150 87,407 60 0 167,960

IRRGTS 256 2 0 0 0 0 20

IRRUMAP 4,096 1 997 742 0 0 8

IRRSMAP 4,096 1 44 29 0 0 162

IRRGMAP 4,096 1 252 51 0 0 8

IGGCAS 2,560 2,325 201,034 136,721 7,351 15,671 23,030

IGGCAS 2,048 1,764 215,765 58,026 3,755 124,001 16,626

IKJEXEC 800 345 641 627 0 0 103,784

The hit ratio for CSVLLA is misleading because LLA will only search VLF for objects it previously
cached; the CSVLLAX1 fetch exit can provide accurate statistics

540,820 searches in 15 minutes is > 600 per second!

The second IGGCAS example shows very high trim activity which indicates MAXVIRT is too low

45

Environmental Changes Since VLF Was Introduced

RAID vs. SLED

Ficon/Escon vs. Bus & Tag

zHPF

Huge amounts of DASD cache

PDS Search Assist

Vast amounts of real storage

Rexx has overtaken Clist

BLOATware

But VLF continues to be viable, particularly for LLA and RACF

46

Contributors

I’d like to acknowledge the following contributors to this session:

Sam Knutson, Gieco

Brian Scott, Data-Tronics

47

Bibliography

Security Server RACF System Programmer’s Guide; SA23-2287; IBM Corporation

DFSMS Managing Catalogs; SC26-7409; IBM Corporation

MVS Installation Exits; SA22-7593; IBM Corporation

MVS Initialization and Tuning Reference; SA22-7592; IBM Corporation

Authorized Assembler Services Reference Volume 1 (ALE-DYN); SA22-7609; IBM
Corporation

TSO/E Customization; SA22-7783; IBM Corporation

United States Patent; Virtual Lookaside Facility; Application Number: 07/225,445;
Morshhauser et al.

MVS/SP 3.1.0 Virtual Lookaside Facility; SHARE 72, Session 0315; W. J. Morshhauser

