
Copyright © 2013 Velocity Software, Inc. All Rights Reserved.
Other products and company names mentioned herein may be
trademarks of their respective owners.

Linux on z/VM Performance

Large Linux Guests

Rob van der Heij

Velocity Software

http://www.velocitysoftware.com/

rvdheij@velocitysoftware.com

Session
12390

2

Agenda

What do you consider large?

Why use large Linux guests?

Managing performance data

Encounters with large guests
� Linux Large Pages

� Virtual CPUs

� Single guest or multiple guests

� Taming the Page Cache

� Java applications

Data presented was collected with zVPS on real customer systems, sometimes
reproduced in a lab environment to show clean numbers and avoid distraction.

3

What do you consider large?

Experiment in 2006

z/VM on P/390
� 3-4 MIPS

� 128 MB Main Memory

� 100 Linux Guests

This was small,

even was in 2006…

4

What do you consider large?

Penguins on a Pin Head

� 3-4 MIPS

� 128 MB Main Memory

� 100 Linux Guests

• Virtual machines 30 MB

• Resident 0.5 – 4 MB

• Overcommit 3-4

Customer in 2012

� 50,000 MIPS

� 1500 GB Main Memory

� 100 Linux Guests

• Virtual machines 20-80 GB

• Resident 20-50 GB

• Overcommit 2-3

This is bigger
� CPU 10,000

� Memory 10,000

� Guest size 10,000

Number of guests about the same

Moore's Law

1

10

100

1,000

10,000

100,000

1995 2000 2005 2010 2015

5

What do you consider large?

Hypervisor
� z/VM image today maximum 256 GB

� z/VM supports up to 32 logical CPUs

Linux Guest
� Wide range of possible configurations

� Depends on the number of virtual machines sharing

� Often around 1-10% of the hypervisor resources

How big should the guest be so that we
do not have any performance problems?

6

Why use large Linux guests?

More resources and the same number of guests

⇒ Average guest is much larger

• Less focus on resource efficiency
� Different style of applications and application design

• Enterprise Application Ecosystems
� Manage their own resource pool

• Increased workload
� More data and higher transaction rates

7

Less Focus on Resource Efficiency

Content-rich user interface

� Dynamic Content Management

� Customized and personalized application interface

� Integration of other data sources in user interface

• Correlation with social network or shopping history

Different style of application design

� Building-block application development

• Often takes more memory and CPU cycles

• Not always perfect fit

• May encourage adding additional eye candy

� Java-based application frameworks

• Table-driven application design

• Platform indepedent

8

Enterprise Application Ecosystems

Multi-threaded application middleware
� Acquires resources from Linux operating system

� Uses internal strategy to run and optimize the workload

� Assumes sole ownership of resources (no shared resources)

� Memory resources are retained until service is stopped

Many popular enterprise applications
� JVM with Java Application (WebSphere AS, JBoss)

� Databases (DB2, Oracle)

� ERP / CRM Applications (Siebel, SAP)

Performance Challenges
� Resource usage may not correlate with workload patterns

� Configuration of guest and application must match

9

Increased Workload

More data and higher transaction rates

� It is all just much more and bigger than before

• It helps to look at other metrics too

• At best it scales linear, often much worse

� Linux on z/VM is part of many enterprise solutions

• Applications deal with much larger workload than before

• Aspect of being a mainstream platform

� Platform serves a very wide range of workloads

• Scalability is normally taken for granted

• Do not expect it to work without additional resources

• Expectation sometimes scales less well

“I know this is inefficient, but if it works for 100,000 records,
why would it be a problem with 107 M records ?”

10

Managing performance data

All performance data is needed to understand performance
� Does not work with just some of the data
� Production and Development share resources
� Systems are often used 24 hours per day
� Chargeback data is needed

• Even if only to encourage resource efficiency

Managing performance data is critical
� Especially with 10,000 times more resources
� Even with 10,000 performance analysts in house

Performance management must scale for large systems
� Group data in different ways with full capture
� Apply thresholds to keep only interesting data
� Summarize complete data for chargeback and planning
� Condense older data to allow long term archival

11

Needle in a haystack

Data from many processes

� Can be a challenge to manage

� Thresholds to keep interesting data

� Condense the data in larger intervals

• Still 10,000 lines of process data per day

� Grouping by application or user

Last week we used 60% even at night

Now we are down to 50% Why?

node/ <-Process Ident-> Nice PRTY <------CPU Percents---->
Name ID PPID GRP Valu Valu Tot sys user syst usrt
--------- ----- ----- ----- ---- ---- ---- ---- ---- ---- ----
00:30:00
SPOOKY16 0 0 0 0 0 0.59 0.20 0.39 0.00 0.00
SPOOKY18 0 0 0 0 0 1.14 0.35 0.78 0.00 0.00
SPOOKY13 0 0 0 0 0 1.10 0.29 0.48 0.14 0.19
SPOOKY3 0 0 0 0 0 0.70 0.31 0.26 0.02 0.12
snmpd 1294 1 1293 -10 6 0.55 0.30 0.23 0.01 0.01
SPOOKY33 0 0 0 0 0 2.73 0.89 1.49 0.06 0.30
java 4151 1 4151 0 20 1.46 0.50 0.96 0 0
SPOOKY34 0 0 0 0 0 1.48 0.48 0.99 0.00 0.00
java 5237 1 5237 0 20 0.63 0.16 0.47 0 0
SPOOKY30 0 0 0 0 0 1.98 0.87 1.10 0.00 0.00
db2sysc 4621 4619 4621 0 20 1.11 0.44 0.67 0 0
SPOOKY20 0 0 0 0 0 0.64 0.28 0.35 0.00 0.00
SPOOKY25 0 0 0 0 0 2.32 0.47 1.06 0.37 0.43
db2fmcd 3008 1 3008 0 20 0.81 0.01 0.00 0.37 0.43
db2sysc 3620 3618 3620 0 20 0.60 0.09 0.51 0 0

12

Needle in a haystack

Grouping data from different servers

� Grouping in user class or node groups

� Aggregated usage from related servers

• Tiers that make up an application

• Servers that share the load

� Helps to manage performance data

Node/ Process/ ID <---Processor Percent--->
Date Application <Process><Children>
Time name Total sys user syst usrt
-------- ----------- ----- ----- ---- ---- ---- ----
Node Groups
*Spooky *Totals* 0 30.3 7.5 18.8 1.5 2.5

cogboots 0 1.5 0.8 0.7 0 0
db2fmcd 0 2.2 0.0 0.0 1.0 1.2
db2syscr 0 1.8 0.3 1.5 0 0
httpd2-p 0 6.6 0.1 6.5 0 0
init 0 1.4 0.0 0.0 0.4 1.0
java 0 6.0 1.6 4.4 0 0
kr4agent 0 1.5 0.1 1.4 0 0
mysqld 0 1.5 0.3 1.2 0 0
snmpd 0 5.4 3.6 1.7 0.0 0.0

Node/ Process/ ID <---Processor Percent--->
Date Application <Process><Children>
Time name Total sys user syst usrt
-------- ----------- ----- ----- ---- ---- ---- ----
Node Groups
*Spooky *Totals* 0 24.1 7.0 12.5 1.4 3.2

cogboots 0 2.9 0.8 2.1 0 0
db2fmcd 0 2.0 0.0 0.0 0.9 1.1
db2syscr 0 2.4 0.4 2.0 0 0
init 0 2.1 0.0 0.0 0.3 1.7
java 0 5.9 1.8 4.1 0 0
kr4agent 0 1.4 0.1 1.3 0 0
kynagent 0 0.5 0.1 0.4 0 0
snmpd 0 4.9 3.2 1.6 0.0 0.0

13

Mileage versus usage

Usage alone is often misleading
� Rules of thumb apply only to small range of workloads

� Determine the resource usage per unit of work

� Some workloads can absorb large amount of resources

4 gallons/hr 4,000 gallons/hr

20 mpg 0.2 mpg

20 gallons 60,000 gallons

Fuel Usage Comparison

40 person*mpg 80 person*mpg

14

Encounters with large guests

Inspired by real customer scenarios
� Sometimes reproduced in lab environment

� Often simulated with artificial workload

Relevant for both small and large systems
� Ignorance and personal taste may not scale

� Bad ideas show best in extreme cases

http://zvmperf.wordpress.com/

„Alle Dinge sind Gift, und nichts ist
ohne Gift; allein die Dosis machts,
dass ein Ding kein Gift sei.“

Parcelsus (1493-1541)

15

Linux Large Pages

With large memory size, 4K page granularity is overkill

� Enterprise application will manage the memory itself

Virtual Memory hardware supports larger pages

� Efficient use of hardware address cache

� Enhanced DAT (z10) provides both 4K and 1M page size

z/VM does not support large pages

� z/VM guest will see hardware without the EDAT feature

Linux can emulate large pages on 4K page hardware

� Does not exploit the hardware advantages

� Still requires manipulation of 4K pages in Linux

� … but it can save memory resources for Oracle database

16

Linux Large Pages

Oracle process uses SGA and PGA

� SGA is shared among all database processes

� Mapped into each process virtual memory

� Page tables duplicated for each process

� Adds up to 2 MB of tables per GB of memory, per process

Rule
 of T

hum
b: W

ith 5
00 O

racle

conn
ectio

ns, t
able

s for
 4K

pag
es

doub
le yo

ur m
emo

ry re
quir

eme
nt

Example:

SGA 32 GB
Page Tables 64 MB
x 512 processes
= Total Tables 32 GB

17

Linux Large Pages

Example: Oracle Database

� SGA ~50G

� Connections ~500

� Linux Guest 80G

� 50G + 50G > 80G

� Only part of SGA actually used

• Per process less than 50G mapped
Memory Usage 01/24

0

20

40

60

80

100

14:15 14:30 14:45 15:00 15:15 15:30 15:45

M
e

m
o

ry
 U

s
a

g
e

 (
G

B
)

0

200

400

600

800

1000

#
 O

ra
c

le
 T

h
re

a
d

s

Swapped

Avail

Buffer

Anon

Cache

threads

CPU Usage 01/24

0

100

200

300

400

500

600

700

14:15 14:30 14:45 15:00 15:15 15:30 15:45

C
P

U
 U

s
a
g

e
 (

C
P

U
%

)

user

syst

Increased system overhead
for memory management

Out of memory prevented
snmpd collecting data

Urge
nt Re

comm
enda

tion:

• Lim
it Nu

mbe
r of C

onne
ction

s

•Use
 Larg

e Pag
es

18

Memory Usage 01/31

0

20

40

60

80

100

10:01 10:16 10:31 10:46

M
e

m
o

ry
 U

s
a

g
e

 (
G

B
)

0

200

400

600

#
 O

ra
c

le
 T

h
re

a
d

s

Swapped

Avail

Buffer

Anon

Cache

threads

CPU Usage 01/31

0

50

100

150

200

250

300

350

400

450

500

C
P

U
 U

s
a

g
e

 (
C

P
U

%
)

user

syst

Linux Large Pages

Example: Oracle Database

� SGA ~50G

� Connections ~500

� Linux Guest 80G

Using Large Pages for SGA

� Reserved 50G of Linux memory

� System overhead is gone

� All productive Oracle work

SGA now outside cache

Almost no system overhead

19

Linux Large Pages

Oracle SGA using Linux Large Pages
� Savings can be substantial

• Especially with large number of database connections

� Part of guest memory set aside as “huge pages”
• Through kernel parameter at boot or dynamic

• When dynamic, do it early to avoid fragmentation

• Must be large enough to hold the SGA, anything more is wasted
Check the page size (1M versus 2M)

� Not with Oracle Automated Memory Management (AMM)
• Use SGA_TARGET and PGA_TARGET

� Even with large pages: do not make SGA bigger than necessary

Does not apply to DB2 LUW or JVM Heap

20

Virtual CPUs

Large workload takes more CPU resources
� Add virtual CPUs to provide peak capacity

� Not more virtual CPUs than expected available
• Often less than number of logical CPUs

� Extra virtual CPUs don’t provide more capacity
• Scheduler share options determine capacity

� Linux assumes exclusive usage of resources
• Not guaranteed in shared resource environment

• When there is a virtual CPU, Linux assumes it will run

• With more CPUs than capacity, z/VM will spread capacity

21

Virtual CPUs

Example

� Linux runs 2 important tasks and 2 less important

� With 2 virtual CPUs

• First run important tasks, other work when time permits

� With 4 virtual CPUs

• Run all 4 tasks at the same time

• z/VM will spread CPU capacity equal over virtual CPUs

• Important work takes longer to complete

180% in 2 CPUs
90% each

180% in 4 CPUs
45% each

22

Virtual CPUs

Important Configuration Trade-Off

� More virtual CPUs

• Deliver peak capacity when available

� Less virtual CPUs

• Improve single-thread throughput

• Ensure predictable response times

� As few as possible to deliver peak capacity

Understand CPU requirement

� CPU usage for peak and average in recent history

• Shows what he got, not what he wanted

� Virtual CPU wait state analysis shows CPU queue

• Virtual CPU in queue waiting to run

23

Virtual CPUs

Application Polling

� Frequent checking the status, busy-wait for service

� Poor design for shared resource environment

• Mitigated by only installing the actual application

� Virtual CPUs get in queue for no reason

• Do not consume much CPU and do not need more

• It does not help much to wait faster

24

Virtual CPUs

Virtual CPU State Sampling

� Done by z/VM monitor sampling, typically once per second

• Counts how often running, waiting for CPU, idle, etc

• CPUwait ratio indicates CPU contention

Time

Set timer and
go idle

Wake up and
queue for CPU

Run and use
timeslice

Delay

% run

% cpu wait

% cpu wait

% run
CPU demand ~

Polling process:
• Minimal CPU usage
• Short delay
• Mostly waiting for CPU

25

Virtual CPUs

Polling and CPU State Sampling

� Polling inflates the CPU-wait numbers

• As long as there is polling, Linux still has idle time

� Additional CPU capacity will only make it wait faster

• CPU wait does not go away

1 of 1 Virtual CPU Wait State USER ROB01 2097 40F32

<--------- Virtual CPU State Percentage ---------> Poll

Time User Run CPUwt CPwt Limit IOwt PAGwt Othr Idle Dorm Rate CPU%

-------- -------- ----- ----- ----- ----- ----- ----- ---- ---- ---- ----- ----

15:37:00 ROB01 18.3 15.0 0 0 0 0 1.7 263 1.7 705.9 26.4

15:38:00 ROB01 20.0 26.7 0 0 0 0 0 253 0 648.0 27.1

15:39:00 ROB01 30.0 16.7 0 0 0 0 0 253 0 686.3 28.5

15:40:00 ROB01 13.3 6.7 0 0 0 0 0 278 1.7 412.7 12.8

15:41:00 ROB01 0 1.7 0 0 0 0 0 298 0 65.7 0.8

15:52:00 ROB01 18.3 3.3 0 0 0 0 0 78.3 200 410.4 25.0

15:53:00 ROB01 23.3 15.0 0 0 0 0 0 61.7 200 382.3 23.2

15:54:00 ROB01 28.3 3.3 0 0 0 0 0 68.3 200 428.5 22.5

15:55:00 ROB01 23.3 3.3 0 0 0 0 0 73.3 200 414.6 21.6

Virtual 3-way, 250% idle
Goes asleep 650 times/sec
Average 1.5 ms cycle
Using 0.3 ms per cycle

2 CPUs dormant, 60% idle
Less polling
CPUwt numbers are lower

26

Taming the Page Cache

Linux tries to find use for any excess memory

� Will cache data just-in-case

� Strategy is unproductive in shared environment

� Reference patterns interfere with z/VM paging

Just small enough, avoid excess memory

� Commonly suggested approach

� Even smaller with swap in VDISK to satisfy peaks

Hard to do with varying memory requirements

� Re-use of page cache may cause z/VM paging delays

� Large virtual machines require a lot of paging

� Tuning with cpuplugd is too slow to be effective

27

Taming the Page Cache

cmmflush - Flush out unused cached data at useful moments

� Removes all cached data and returns memory to z/VM

• Use CMM driver to temporarily take away memory from Linux

� Challenge is to find good moment

• After completion of unusual workload – avoids page-out of data

• Before starting unusual workload – avoids page-in of data

� Disadvantages

• Removes all useful data from cache

• During flush process system may run out of memory

• CPU overhead for returning pages to z/VM
Memory Usage for 'tar'

0

250

500

750

1000

1250

1500

14:49 14:51 14:53 14:55 14:57 14:59 15:01

M
e
m

o
ry

 U
s
a
g

e
 (

M
B

)

Total

Avail

Cache

Buffer

Anon

VM Resid

Reading from disk

cmmflush

28

Taming the Page Cache

nocache – Discourage Linux to Cache Data

� Wrapper around application that wipes data from cache

• Applies only to data touched by the application

• Additional tools to selectively drop files from cache

� Useful for non-core applications

• Backups, log file archival, security scanning, database load

� Experimental – Unsure yet how to package the function

• Interested in feedback from users who want to try

Memory Usage for "nocache" tar

0

250

500

750

1000

1250

1500

16:30 16:32 16:34 16:36 16:38

M
e
m

o
ry

 U
s
a
g

e
 (

M
B

)

Total

Avail

Cache

Buffer

Anon

VM Resid

rvdheij@roblnx1:~> md5sum jvm-trc*
dbdeffb03e8e7c4659d869a52a99c202 jvm-trc5.txt
36e1b490a40dc7b01cdb0ea29d7867d2 jvm-trc6.txt
rvdheij@roblnx1:~> minc jvm-trc*

450 450 jvm-trc5.txt
450 450 jvm-trc6.txt

rvdheij@roblnx1:~> drop jvm-trc6.txt
rvdheij@roblnx1:~> minc jvm-trc*

450 450 jvm-trc5.txt
450 0 jvm-trc6.txt

total
cached

dropped

29

Single Guest or Multiple Guests

Single Guest
� No duplication of Linux infrastructure

� Less things to manage

� Obvious approach without virtualized servers

� No communication overhead, less latency

� Less components to break, simple availability

Multiple Guests
� Separation of applications

� Tune each guest separately

� Software levels specifically for application

� Easier to identify performance problems

� Simple charge back and accounting

30

Single Guest or Multiple Guests

Prepare to efficiently run multiple guests
� Invest in processes to create additional guests

• Often most complexity is beyond actual creating the servers

• Be aware of manual tasks that need repeated for each server

� Use something that matches skills and tools
• Shared R/O disks versus “minimal install”

� Look at simplified reporting

Keep unrelated applications in separate guests
� Take advantage of server idle periods

• Avoid a big guest with “always something going on”

� Simplify software upgrades and availability requirements

Keep related applications apart as long as it makes sense
� Many exceptions (small MySQL or DB2 application database)

� Be aware of the level of interaction between tiers

31

Single Guest or Multiple Guests

Example: Rehost z/OS application on Linux
� z/OS with DB2 and COBOL jobs

� Linux on z/VM with Micro Focus COBOL and DB2 LUW

Initial Configuration
� Linux guest running MF COBOL

� Linux guest with DB2 LUW

� Resulted in excessive run times and high CPU usage

High CPU Usage and Latency
� Introduction of DRDA layer and TCP/IP comminication

• More expensive than shared memory access under z/OS

� Less efficient cursor-based database access

� Run application and database in a single guest
• Avoids overhead of DRDA and TCP/IP layer

32

Java Applications

Java heap size is one of most prominent parameters
� Java applications use the heap to store data

� Both temporary and persistent data

� Managed by regular Garbage Collection scans

Heap size is specified at JVM startup
� Usually kept in properties managed by application

� Defined by min and max heap size

� Heap grows until above configured minimum
• Garbage collect tries to reclaim space

• Extends heap until maximum

• Returns excess beyond minimum

33

Java Applications

Heap size determines application footprint
� Requirement is determined by the application

• Number of classes, active users, context size

• Heap analyzers can reveal requirements

� Dedicated server approach is min and max the same
• Retains the full heap during JVM lifetime

• Reduces GC overhead

• Less attractive with shared resources

• Hides heap requirements from Linux tools

� Alternative approach
• Start with low minimum to see base requirement

• Later adjust minimum to just above base requirement

• Set maximum to absorb peaks

34

Java Applications

Garbage Collector Threads
� Option to spread GC over multiple CPUs

• Only helps when they really will run

• Consider to override the default of N slaves

Some applications require multiple JVM’s
� Each will need its heap to be sized right

• Total must fit in Linux memory

� Lower minimum heap size may be effective
• One JVM can use what the other released

� Ignore single-shot Java programs

Keep production systems clean
� Do not install sample programs there

• Security exposure

• More than just disk space

35

Conclusion

Sizing does matter

� Linux on z/VM scales for large range of workloads

� Configuration options need to be coordinated

� Collect and study performance data
• Compute normalized resource usage

• Investigate exceptional usage

• Your Linux admin may not have seen it that big yet

Take advantage of virtualization

� Keep different workloads apart

� Tune the guest for that particular workload

Copyright © 2013 Velocity Software, Inc. All Rights Reserved.
Other products and company names mentioned herein may be
trademarks of their respective owners.

Linux on z/VM Performance

Large Linux Guests

Rob van der Heij

Velocity Software

http://www.velocitysoftware.com/

rvdheij@velocitysoftware.com

Session

12390

