
© 2013 IBM Corporation1

Running Linux-HA on a
IBM System z

Martin Schwidefsky
IBM Lab Böblingen, Germany
February 8 2013

© 2013 IBM Corporation2

IBM Share February 2013 San Francisco

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of IBM
Trademarks, see www.ibm.com/legal/copytrade.shtml:

IBM, the IBM logo, BladeCenter, Calibrated Vectored Cooling, ClusterProven, Cool Blue, POWER, PowerExecutive, Predictive Failure Analysis, ServerProven,
System p, System Storage, System x , System z, WebSphere, DB2 and Tivoli are trademarks of IBM Corporation in the United States and/or other countries. For a
list of additional IBM trademarks, please see http://ibm.com/legal/copytrade.shtml.

The following are trademarks or registered trademarks of other companies: Java and all Java based trademarks and logos are trademarks of Sun Microsystems,
Inc., in the United States and other countries or both Microsoft, Windows,Windows NT and the Windows logo are registered trademarks of Microsoft Corporation in
the United States, other countries, or both. Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep,
Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries or both. Linux is a trademark of Linus Torvalds in the United States,
other countries, or both. Cell Broadband Engine is a trademark of Sony Computer Entertainment Inc. InfiniBand is a trademark of the InfiniBand Trade
Association.
Other company, product, or service names may be trademarks or service marks of others.

NOTES: Linux penguin image courtesy of Larry Ewing (lewing@isc.tamu.edu) and The GIMP

Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are dependent on many
factors including system hardware configuration and software design and configuration. Some measurements quoted in this document may have been made on
development-level systems. There is no guarantee these measurements will be the same on generally-available systems. Users of this document should verify
the applicable data for their specific environment. IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our
warranty terms apply.
Information is provided “AS IS” without warranty of any kind. All customer examples cited or described in this presentation are presented as illustrations of the
manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics
will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the
information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products
and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

Prices are suggested US list prices and are subject to change without notice. Starting price may not include a hard drive, operating system or other features.
Contact your IBM representative or Business Partner for the most current pricing in your geography. Any proposed use of claims in this presentation outside of the
United States must be reviewed by local IBM country counsel prior to such use. The information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication at any

Trademarks & Disclaimer

© 2013 IBM Corporation3

IBM Share February 2013 San Francisco

Agenda

High Availability
 Challenges
 Linux-HA
 Examples

© 2013 IBM Corporation4

IBM Share February 2013 San Francisco

What is it ?

Computer Cluster
A computer cluster consists of a set of loosely connected
computers that work together so that in many respects
they can be viewed as a single system.
(wikipedia: Computer Cluster)

High Availability
High availability is a system design approach and associated
service implementation that ensures a prearranged level of
operational performance will be met during a contractual
measurement period.
(wikipedia: High Availability)

High Availability Cluster
When one node fails another node is taking over IP address,
services, etc.
The key of High Availability is avoiding single points of failure.
High Availability adds cost because you need redundant resources.

© 2013 IBM Corporation5

IBM Share February 2013 San Francisco

High Availability

 Amazon
–2005 – 3 hours offline, first the European sites, then spreading to

amazon.com
–2010 – 30 minutes offline for Europe during Christmas time

 Protecting mission-critical applications
 24x7 availability
 keep interruptions as short as possible

© 2013 IBM Corporation6

IBM Share February 2013 San Francisco

High Availability

 It is like a Magician's (Illusionist's) trick:
–When it goes well, the hand is faster than the eye
–When it goes not-so-well, it can be reasonably visible

 HA Clustering is designed to recover from single faults
– It is like re-spawn on a cluster-wide scale
–Like 'init' on steroids

 Add on 9 to the availability
99.9% 9h
99.99% 53min
99.999% 5min System z Application Availability
99.9999% 32sec
99.99999% 3sec

© 2013 IBM Corporation7

IBM Share February 2013 San Francisco

High Availability

 Compared to distances

99.9% Moon 250000 miles

© 2013 IBM Corporation8

IBM Share February 2013 San Francisco

High Availability

 Compared to distances

99.9% Moon 250000 miles

99.99% Around the world 25000 miles

© 2013 IBM Corporation9

IBM Share February 2013 San Francisco

High Availability

 Compared to distances

99.9% Moon 250000 miles

99.99% Around the world 25000 miles

99.999% New York City 2500 miles

© 2013 IBM Corporation10

IBM Share February 2013 San Francisco

High Availability

 Compared to distances

99.9% Moon 250000 miles

99.99% Around the world 25000 miles

99.999% New York City 2500 miles

99.9999% Las Vegas 250 miles

© 2013 IBM Corporation11

IBM Share February 2013 San Francisco

High Availability

 Compared to distances

99.9% Moon 250000 miles

99.99% Around the world 25000 miles

99.999% New York City 2500 miles

99.9999% Las Vegas 250 miles

99.99999% LA Airport 25 miles

© 2013 IBM Corporation12

IBM Share February 2013 San Francisco

High Availability

 The Three R's of High Availability

Redundancy
Redundancy

Redundancy

This might sound redundant, but that's probably ok

 Most Single Points of Failure are managed by redundancy
 HA Clustering is a technique to provide and manage redundancy

© 2013 IBM Corporation13

IBM Share February 2013 San Francisco

Agenda

 High Availability

Challenges
 Linux-HA
 Examples

© 2013 IBM Corporation14

IBM Share February 2013 San Francisco

HA challenges

 Early detection
–To keep the offline time as short as possible a failure has to be

detected fast
–Risk of false positive interpretation and unnecessary fail-over
–Keep offline time as short as possible (mean-time-to-repair MTTR)
–Reliable detection by reliable internal communication

 Split-Brain
 Quorum
 Fencing
 Data Sharing

© 2013 IBM Corporation15

IBM Share February 2013 San Francisco

HA challenges

 Early detection
 Split-Brain

–When the connection between nodes fails, all nodes can still be
active but detect the other as failing

–The status of an unreachable node is unknown
–Especially in geographical displaced systems

 Quorum
 Fencing
 Data Sharing

© 2013 IBM Corporation16

IBM Share February 2013 San Francisco

HA challenges

 Early detection
 Split-Brain
 Quorum

–Algorithms to decide which part of the cluster is active
–A remote quorum server can decide more reliably
–Quorum server is in client perspective

 Fencing
 Data Sharing

© 2013 IBM Corporation17

IBM Share February 2013 San Francisco

HA challenges

 Early detection
 Split-Brain
 Quorum
 Fencing

–Keep a node that was detected as failed from working to prevent
damage

–Self-fencing
–STONITH

 Data Sharing

© 2013 IBM Corporation18

IBM Share February 2013 San Francisco

HA challenges

 Early detection
 Split-Brain
 Quorum
 Fencing
 Data Sharing

–Mirror data, e.g. DRBD
–Synchronize database

© 2013 IBM Corporation19

IBM Share February 2013 San Francisco

Agenda

 High Availability
 Challenges

Linux-HA
 Examples

© 2013 IBM Corporation20

IBM Share February 2013 San Francisco

High Availability Solutions

 Tivoli System Automation
 Linux-HA
 HACMP for AIX

© 2013 IBM Corporation21

IBM Share February 2013 San Francisco

Tivoli System Automation

 Automation Manager
–Starting
–Stopping
–Restarting
–Fail-over

 Supports
–Quorum
–Dead-man switch
–Disk and network tiebreaker

 Advantages
–Policy-based and goal-driven automation
–Integrated in Tivoli Systems Management Portfolio

© 2013 IBM Corporation22

IBM Share February 2013 San Francisco

Tivoli System Automation

 Apache
 HTTP WebServer
 IBM Tivoli Directory Server
 inetd
 MaxDB SAP 7.5
 NFS Server
 Samba
 Sendmail
 TSM
 TWS 8.3
 WAS 6.0
 Websphere MQ 7
 DP for my SAP 5.3
 TSAM – Tivoli Service Automation Manager

© 2013 IBM Corporation23

IBM Share February 2013 San Francisco

Tivoli System Automation

samadmin tool
–Domain Management
–Resource and Group Management
–Equivalency Management
–Relationship Management
–TieBreaker Management
–Cluster Overview

© 2013 IBM Corporation24

IBM Share February 2013 San Francisco

Tivoli System Automation RedBook

© 2013 IBM Corporation25

IBM Share February 2013 San Francisco

Linux-HA components

 Components
–heartbeat

• Messaging between nodes to make sure they are available and take action if
not

–cluster-glue
• Everything that is not messaging layer and not resource manager

–resource-agents
• Scripts that start/stop clustered services
• Templates and scripts for many applications

–pacemaker
• cluster resource manager (CRM)

© 2013 IBM Corporation26

IBM Share February 2013 San Francisco

Linux-HA components

 Components
–heartbeat

• Messaging between nodes to make sure they are available and take action if
not

–cluster-glue
• Everything that is not messaging layer and not resource manager

–resource-agents
• Scripts that start/stop clustered services
• Templates and scripts for many applications

–pacemaker
• cluster resource manager (CRM)

 Optional
–STONITH

• Shoot The Other Node In The Head
• Fence a node to ensure unique access to data and reliably manage shared

storage

© 2013 IBM Corporation27

IBM Share February 2013 San Francisco

Linux-HA heartbeat

 Heartbeat connection between nodes
–HiperSockets
–VLAN
–OSA Ethernet

 Heartbeat timeout determines MTTR
 Integrated IP address takeover
 Integrated file system support

© 2013 IBM Corporation28

IBM Share February 2013 San Francisco

Linux-HA applications

 Examples
–IP address
–Webserver
–Firewall
–DNS
–DB2
–Complex scenarios can be managed with

constraints and dependencies

© 2013 IBM Corporation29

IBM Share February 2013 San Francisco

Linux-HA advantages

 Strongly authenticated communication
 Highly extensible
 Connectivity monitoring using voting protocol
 Sub-second failure detection
 SAF data checkpoint API

–store application state to disk used to restore state in fail-over
–not working if state changes to fast for disk
–SAF provides an API to replicate data without storing to disk

 Standard init scripts as resource agents
 API for monitoring and control

© 2013 IBM Corporation30

IBM Share February 2013 San Francisco

Linux-HA limitations

 Linux-HA can not provide 100% availability
 Applications which can not deal with the timeout

need to be cluster aware
– i.e. store the state to disk for restore
–or use SAF data checkpoint API which provides

a replication API for faster change rates
 Short outage due to fail-over detection
 TCP connection is broken

© 2013 IBM Corporation31

IBM Share February 2013 San Francisco

Linux-HA on System z

 System is redundant and highly available already
 Hardware is redundant and highly available
 Availability of applications
 Shared Resources in z/VM

–Standby nodes can use overcommitment of memory and Pus
 z/VM Guests as test systems
 Use HiperSockets for reliable cluster communication
 Take care about scheduling issues
 Time to page in inactive guest

© 2013 IBM Corporation32

IBM Share February 2013 San Francisco

Linux-HA on System z

 Packages are available as extension for SuSE
–SLES 10
–SLES 11

 Packages can be compiled for RedHat
–RHEL 4
–RHEL 5
–RHEL 6

© 2013 IBM Corporation33

IBM Share February 2013 San Francisco

Agenda

 High Availability
 Challenges
 Linux-HA

Examples

© 2013 IBM Corporation34

IBM Share February 2013 San Francisco

2 Node - Active-Passive

© 2013 IBM Corporation35

IBM Share February 2013 San Francisco

2 Node - Active-Passive

© 2013 IBM Corporation36

IBM Share February 2013 San Francisco

2 Node - Active-Passive

 Higher costs
 In good case

–One side idle

 In case of failure

–Constant performance

–Application topology remains unchanged

© 2013 IBM Corporation37

IBM Share February 2013 San Francisco

2 Node - Active-Active

© 2013 IBM Corporation38

IBM Share February 2013 San Francisco

2 Node - Active-Active

© 2013 IBM Corporation39

IBM Share February 2013 San Francisco

2 Node - Active-Active

 Lower costs
 In good case

–No idle resources

 In case of failure

–Degradation of performance

–Different application topology

© 2013 IBM Corporation40

IBM Share February 2013 San Francisco

3 Nodes with Quorum

© 2013 IBM Corporation41

IBM Share February 2013 San Francisco

3 Nodes with Quorum

© 2013 IBM Corporation42

IBM Share February 2013 San Francisco

3 Nodes with Quorum

 Costs for Quorum server
 Monitoring from customer/service perspective

 In case of failure

–No split brain situation

–Application topology remains unchanged

© 2013 IBM Corporation43

IBM Share February 2013 San Francisco

Summary

 Linux-HA can improve application availability
 Resource Agents for many applications
 Leverage z/VM resource sharing

–Redundant resources
–z/VM guests as test systems

 Systems have to be carefully designed and thoroughly tested

© 2013 IBM Corporation44

IBM Share February 2013 San Francisco

Linux-HA RedBook

© 2013 IBM Corporation45

IBM Share February 2013 San Francisco

Links

 Linux-HA Wiki – Talks and Papers
http://linux-ha.org/wiki/Talks_and_Papers

 IBM RedBooks
http://www.redbooks.ibm.com

http://linux-ha.org/wiki/Talks_and_Papers
http://www.redbooks.ibm.com/

© 2013 IBM Corporation46

IBM Share February 2013 San Francisco

Thank You !

 Alan Robertson
for using his Linux-HA Tutorial

 Stefan Reimbold for creating this
presentation

© 2013 IBM Corporation47

IBM Share February 2013 San Francisco

Schönaicher Strasse 220
71032 Böblingen, Germany

Phone +49 (0)7031-16-2247
schwidefsky@de.ibm.com

Martin Schwidefsky

Linux on System z
Development

Questions?

© 2013 IBM Corporation48

IBM Share February 2013 San Francisco

Please Evaluate

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

