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What is it ?

Computer Cluster
A computer cluster consists of a set of loosely connected
computers that work together so that in many respects
they can be viewed as a single system.
(wikipedia: Computer Cluster)

High Availability
High availability is a system design approach and associated
service implementation that ensures a prearranged level of
operational performance will be met during a contractual
measurement period.
(wikipedia: High Availability)

High Availability Cluster
When one node fails another node is taking over IP address,
services, etc.
The key of High Availability is avoiding single points of failure.
High Availability adds cost because you need redundant resources.
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High Availability

 Amazon
–2005 – 3 hours offline, first the European sites, then spreading to 

amazon.com
–2010 – 30 minutes offline for Europe during Christmas time

 Protecting mission-critical applications
 24x7 availability
 keep interruptions as short as possible
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High Availability

 It is like a Magician's (Illusionist's) trick:
–When it goes well, the hand is faster than the eye
–When it goes not-so-well, it can be reasonably visible

 HA Clustering is designed to recover from single faults
– It is like re-spawn on a cluster-wide scale
–Like 'init' on steroids

 Add on 9 to the availability
99.9% 9h
99.99% 53min
99.999% 5min System z Application Availability
99.9999% 32sec
99.99999% 3sec
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High Availability

 Compared to distances

99.9% Moon 250000 miles
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High Availability

 Compared to distances
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High Availability

 Compared to distances

99.9% Moon 250000 miles
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High Availability

 Compared to distances

99.9% Moon 250000 miles

99.99% Around the world   25000 miles

99.999% New York City     2500 miles

99.9999% Las Vegas       250 miles

99.99999% LA Airport         25 miles
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High Availability

 The Three R's of High Availability

Redundancy
Redundancy

Redundancy

This might sound redundant, but that's probably ok

 Most Single Points of Failure are managed by redundancy
 HA Clustering is a technique to provide and manage redundancy
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HA challenges

 Early detection
–To keep the offline time as short as possible a failure has to be 

detected fast
–Risk of false positive interpretation and unnecessary fail-over
–Keep offline time as short as possible (mean-time-to-repair MTTR)
–Reliable detection by reliable internal communication

 Split-Brain
 Quorum
 Fencing
 Data Sharing
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HA challenges

 Early detection
 Split-Brain

–When the connection between nodes fails, all nodes can still be 
active but detect the other as failing

–The status of an unreachable node is unknown
–Especially in geographical displaced systems

 Quorum
 Fencing
 Data Sharing
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HA challenges

 Early detection
 Split-Brain
 Quorum

–Algorithms to decide which part of the cluster is active
–A remote quorum server can decide more reliably
–Quorum server is in client perspective

 Fencing
 Data Sharing
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HA challenges

 Early detection
 Split-Brain
 Quorum
 Fencing

–Keep a node that was detected as failed from working to prevent 
damage

–Self-fencing
–STONITH

 Data Sharing
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HA challenges

 Early detection
 Split-Brain
 Quorum
 Fencing
 Data Sharing

–Mirror data, e.g. DRBD
–Synchronize database
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High Availability Solutions

 Tivoli System Automation
 Linux-HA
 HACMP for AIX
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Tivoli System Automation

 Automation Manager
–Starting
–Stopping
–Restarting
–Fail-over

 Supports
–Quorum
–Dead-man switch
–Disk and network tiebreaker

 Advantages
–Policy-based and goal-driven automation
–Integrated in Tivoli Systems Management Portfolio
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Tivoli System Automation

 Apache
 HTTP WebServer
 IBM Tivoli Directory Server
 inetd
 MaxDB SAP 7.5
 NFS Server
 Samba
 Sendmail
 TSM
 TWS 8.3
 WAS 6.0
 Websphere MQ 7
 DP for my SAP 5.3
 TSAM – Tivoli Service Automation Manager
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Tivoli System Automation

samadmin tool
–Domain Management
–Resource and Group Management
–Equivalency Management
–Relationship Management
–TieBreaker Management
–Cluster Overview
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Tivoli System Automation RedBook
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Linux-HA components

 Components
–heartbeat

• Messaging between nodes to make sure they are available and take action if 
not

–cluster-glue
• Everything that is not messaging layer and not resource manager

–resource-agents
• Scripts that start/stop clustered services
• Templates and scripts for many applications

–pacemaker
• cluster resource manager (CRM)
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Linux-HA components

 Components
–heartbeat

• Messaging between nodes to make sure they are available and take action if 
not

–cluster-glue
• Everything that is not messaging layer and not resource manager

–resource-agents
• Scripts that start/stop clustered services
• Templates and scripts for many applications

–pacemaker
• cluster resource manager (CRM)

 Optional
–STONITH

• Shoot The Other Node In The Head
• Fence a node to ensure unique access to data and reliably manage shared 

storage
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Linux-HA heartbeat

 Heartbeat connection between nodes
–HiperSockets
–VLAN
–OSA Ethernet

 Heartbeat timeout determines MTTR
 Integrated IP address takeover
 Integrated file system support
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Linux-HA applications

 Examples
–IP address
–Webserver
–Firewall
–DNS
–DB2
–Complex scenarios can be managed with

constraints and dependencies
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Linux-HA advantages

 Strongly authenticated communication
 Highly extensible
 Connectivity monitoring using voting protocol
 Sub-second failure detection
 SAF data checkpoint API

–store application state to disk used to restore state in fail-over
–not working if state changes to fast for disk
–SAF provides an API to replicate data without storing to disk

 Standard init scripts as resource agents
 API for monitoring and control
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Linux-HA limitations

 Linux-HA can not provide 100% availability
 Applications which can not deal with the timeout

need to be cluster aware
– i.e. store the state to disk for restore
–or use SAF data checkpoint API which provides

a replication API for faster change rates
 Short outage due to fail-over detection
 TCP connection is broken
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Linux-HA on System z

 System is redundant and highly available already
 Hardware is redundant and highly available
 Availability of applications
 Shared Resources in z/VM

–Standby nodes can use overcommitment of memory and Pus
 z/VM Guests as test systems
 Use HiperSockets for reliable cluster communication
 Take care about scheduling issues
 Time to page in inactive guest



© 2013 IBM Corporation32

IBM Share February 2013 San Francisco

Linux-HA on System z

 Packages are available as extension for SuSE
–SLES 10
–SLES 11

 Packages can be compiled for RedHat
–RHEL 4
–RHEL 5
–RHEL 6
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2 Node - Active-Passive
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2 Node - Active-Passive
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2 Node - Active-Passive

 Higher costs
 In good case

–One side idle

 In case of failure

–Constant performance

–Application topology remains unchanged
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2 Node - Active-Active
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2 Node - Active-Active
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2 Node - Active-Active

 Lower costs
 In good case

–No idle resources

 In case of failure

–Degradation of performance

–Different application topology



© 2013 IBM Corporation40

IBM Share February 2013 San Francisco

3 Nodes with Quorum
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3 Nodes with Quorum
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3 Nodes with Quorum

 Costs for Quorum server
 Monitoring from customer/service perspective

 In case of failure

–No split brain situation

–Application topology remains unchanged
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Summary

 Linux-HA can improve application availability
 Resource Agents for many applications
 Leverage z/VM resource sharing

–Redundant resources
–z/VM guests as test systems

 Systems have to be carefully designed and thoroughly tested
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Linux-HA RedBook
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Links

 Linux-HA Wiki – Talks and Papers
http://linux-ha.org/wiki/Talks_and_Papers

 IBM RedBooks
http://www.redbooks.ibm.com

http://linux-ha.org/wiki/Talks_and_Papers
http://www.redbooks.ibm.com/
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Thank You !

 Alan Robertson
for using his Linux-HA Tutorial

 Stefan Reimbold for creating this 
presentation
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Schönaicher Strasse 220
71032 Böblingen, Germany

Phone +49 (0)7031-16-2247
schwidefsky@de.ibm.com

Martin Schwidefsky

Linux on System z 
Development

Questions?
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Please Evaluate
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