
© 2013 IBM Corporation1

How to Surprise by being a
Linux Performance “know-it-all”

Martin Schwidefsky
IBM Lab Böblingen, Germany
February 7 2013

© 2013 IBM Corporation2

IBM Share February 2013 San Francisco

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of IBM
Trademarks, see www.ibm.com/legal/copytrade.shtml:

IBM, the IBM logo, BladeCenter, Calibrated Vectored Cooling, ClusterProven, Cool Blue, POWER, PowerExecutive, Predictive Failure Analysis, ServerProven,
System p, System Storage, System x , System z, WebSphere, DB2 and Tivoli are trademarks of IBM Corporation in the United States and/or other countries. For a
list of additional IBM trademarks, please see http://ibm.com/legal/copytrade.shtml.

The following are trademarks or registered trademarks of other companies: Java and all Java based trademarks and logos are trademarks of Sun Microsystems,
Inc., in the United States and other countries or both Microsoft, Windows,Windows NT and the Windows logo are registered trademarks of Microsoft Corporation in
the United States, other countries, or both. Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep,
Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
UNIX is a registered trademark of The Open Group in the United States and other countries or both. Linux is a trademark of Linus Torvalds in the United States,
other countries, or both. Cell Broadband Engine is a trademark of Sony Computer Entertainment Inc. InfiniBand is a trademark of the InfiniBand Trade
Association.
Other company, product, or service names may be trademarks or service marks of others.

NOTES: Linux penguin image courtesy of Larry Ewing (lewing@isc.tamu.edu) and The GIMP

Any performance data contained in this document was determined in a controlled environment. Actual results may vary significantly and are dependent on many
factors including system hardware configuration and software design and configuration. Some measurements quoted in this document may have been made on
development-level systems. There is no guarantee these measurements will be the same on generally-available systems. Users of this document should verify
the applicable data for their specific environment. IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our
warranty terms apply.
Information is provided “AS IS” without warranty of any kind. All customer examples cited or described in this presentation are presented as illustrations of the
manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics
will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the
information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.
All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.
Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products
and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be
addressed to the suppliers of those products.

Prices are suggested US list prices and are subject to change without notice. Starting price may not include a hard drive, operating system or other features.
Contact your IBM representative or Business Partner for the most current pricing in your geography. Any proposed use of claims in this presentation outside of the
United States must be reviewed by local IBM country counsel prior to such use. The information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication at any

Trademarks & Disclaimer

© 2013 IBM Corporation3

IBM Share February 2013 San Francisco

Agenda (what it used to be)

Tools are your swiss army knife
● ps
● top
● sadc/sar
● iostat
● vmstat
● netstat

© 2013 IBM Corporation4

IBM Share February 2013 San Francisco

Agenda (what it used to be)

Tools are your swiss army knife
● ps
● top
● sadc/sar
● iostat
● vmstat
● netstat

© 2013 IBM Corporation5

IBM Share February 2013 San Francisco

Ready for take-off

© 2013 IBM Corporation6

IBM Share February 2013 San Francisco

Agenda

Tools are your swiss army knife
● htop
● dstat
● pidstat
● irqstats
● strace/ltrace
● blktrace
● hyptop
● profiling
● valgrind
● iptraf
● tracepoints

© 2013 IBM Corporation7

IBM Share February 2013 San Francisco

General thoughts on performance tools

 Things that are always to consider
● Monitoring can impact the system
● Most data gathering averages over a certain period of time

→ this flattens peaks
● Start with defining the problem

• which parameter(s) from the application/system indicates the problem

• which range is considered as bad, what is considered as good
● monitor the good case and save the results

• comparisons when a problem occurs can save days and weeks

 Staged approach saves a lot of work
● Try to use general tools to isolate the area of the issue
● Create theories and try to quickly verify/falsify them
● Use advanced tools to debug the identified area

© 2013 IBM Corporation8

IBM Share February 2013 San Francisco

Orientation - where to go

Tool 1st overview CPU
consumption

latencies Hot spots Disk I/O Memory Network

top / ps x x

sysstat x x x x

vmstat x x x

iostat x x

dasdstat x

scsistat x

netstat x x

htop / dstat / pidstat x x x x

irqstats x x x

strace / ltrace x

hyptop x

profiling x x

blktrace x

valgrind x

iptraf x x

tracepoints x x x x x

© 2013 IBM Corporation9

IBM Share February 2013 San Francisco

DSTAT

 Characteristics: Live easy to use full system information
 Objective: Flexible set of statistics
 Usage:

 Shows
● Throughput and utilization
● Summarized and per Device queue information
● Much more, it more or less combines several classic tools like iostat and vmstat

 Hints
● Powerful plugin concept

• “--top-io” for example identifies the application causing the most I/Os
● Colorization allows fast identification of deviations

dstat -tv -aio -disk-util -n -net-packets -i -ipc -D total,
[diskname] -top-io […] [interval]

dstat -tinv

© 2013 IBM Corporation10

IBM Share February 2013 San Francisco

DSTAT – the limit is your screen width

similar to vmstat
similar to iostat
(also per device)

new in live tool

...

...

© 2013 IBM Corporation11

IBM Share February 2013 San Francisco

HTOP

 Characteristics: Process overview with extra features
 Objective: Get a understanding about your running processes
 Usage:

 Shows
● Running processes
● CPU and memory utilization
● Accumulated times
● I/O rates
● System utilization visualization

 Hints
● Htop can display more uncommon fields (in menu)
● Able to send signals out of its UI for administration purposes
● Processes can be sorted/filtered for a more condensed view

htop

© 2013 IBM Corporation12

IBM Share February 2013 San Francisco

HTOP

Configurable utilization visualization

Common process info
Accumulated Usage
and IO rates

Hierarchy

© 2013 IBM Corporation13

IBM Share February 2013 San Francisco

PIDSTAT

 Characteristics: Easy to use extended per process statistics
 Objective: Identify processes with peak activity
 Usage:

 Shows
● -w context switching activity and if it was voluntary
● -r memory statistics, especially minor/major faults per process
● -d disk throughput per process

 Hints
● Also useful if run as background log due to its low overhead

• Good extension to sadc in systems running different applications/services
● -p <pid> can be useful to track activity of a specific process

pidstat [-w | -r | -d]

© 2013 IBM Corporation14

IBM Share February 2013 San Francisco

PIDSTAT examples

12:46:18 PM PID cswch/s nvcswch/s Command
12:46:18 PM 3 2.39 0.00 ksoftirqd/0
12:46:18 PM 4 0.04 0.00 migration/0
12:46:18 PM 1073 123.42 180.18 Xorg

12:47:51 PM PID minflt/s majflt/s VSZ RSS %MEM Command
12:47:51 PM 985 0.06 0.00 15328 3948 0.10 smbd
12:47:51 PM 992 0.04 0.00 5592 2152 0.05 sshd
12:47:51 PM 1073 526.41 0.00 1044240 321512 7.89 Xorg

12:49:18 PM PID kB_rd/s kB_wr/s kB_ccwr/s Command
12:49:18 PM 330 0.00 1.15 0.00 kjournald
12:49:18 PM 2899 4.35 0.09 0.04 notes2
12:49:18 PM 3045 23.43 0.01 0.00 audacious2

Voluntarily / Involuntary

How much KB disk I/O per process

Faults per process

© 2013 IBM Corporation15

IBM Share February 2013 San Francisco

IRQ Statistics

 Characteristics: Low overhead IRQ information
 Objective: Condensed overview of IRQ activity
 Usage:

 Shows
● Which interrupts happen on which cpu

 Hints
● Recent Versions (SLES11-SP2) much more useful
● If interrupts are unintentionally unbalanced
● If the amount of interrupts matches I/O

• This can point to non-working IRQ avoidance

cat / proc/interrupts

© 2013 IBM Corporation16

IBM Share February 2013 San Francisco

IRQ Statistics

 Example
● Network focus on CPU zero (in this case unwanted)
● Scheduler covered most of that avoiding idle CPU 1-3
● But caused a lot migrations, IPI's and cache misses

 CPU0 CPU1 CPU2 CPU3
EXT: 21179 24235 22217 22959
I/O: 1542959 340076 356381 325691
CLK: 15995 16718 15806 16531 [EXT] Clock Comparator
EXC: 255 325 332 227 [EXT] External Call
EMS: 4923 7129 6068 6201 [EXT] Emergency Signal
TMR: 0 0 0 0 [EXT] CPU Timer
TAL: 0 0 0 0 [EXT] Timing Alert
PFL: 0 0 0 0 [EXT] Pseudo Page Fault
DSD: 0 0 0 0 [EXT] DASD Diag
VRT: 0 0 0 0 [EXT] Virtio
SCP: 6 63 11 0 [EXT] Service Call
IUC: 0 0 0 0 [EXT] IUCV
CPM: 0 0 0 0 [EXT] CPU Measurement
CIO: 163 310 269 213 [I/O] Common I/O Layer Interrupt
QAI: 1541773 338857 354728 324110 [I/O] QDIO Adapter Interrupt
DAS: 1023 909 1384 1368 [I/O] DASD
[…] 3215, 3270, Tape, Unit Record Devices, LCS, CLAW, CTC, AP Bus, Machine Check

© 2013 IBM Corporation17

IBM Share February 2013 San Francisco

STRACE

 Characteristics: High overhead, high detail tool
 Objective: Get insights about the ongoing system calls of a program
 Usage:

 Shows
● Identify kernel entries called more often or taking too long

• Can be useful if you search for increased system time
● Time in call (-T)
● Relative time-stamp (-r)

 Hints
● The option “-c” allows medium overhead by just tracking counters and durations

strace -p [pid of target program]

© 2013 IBM Corporation18

IBM Share February 2013 San Francisco

STRACE - example

strace -cf -p 26802
Process 26802 attached - interrupt to quit
^CProcess 26802 detached
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
 58.43 0.007430 17 450 read
 24.33 0.003094 4 850 210 access
 5.53 0.000703 4 190 10 open
 4.16 0.000529 3 175 write
 2.97 0.000377 2 180 munmap
 1.95 0.000248 1 180 close
 1.01 0.000128 1 180 mmap
 0.69 0.000088 18 5 fdatasync
 0.61 0.000078 0 180 fstat
 0.13 0.000017 3 5 pause
------ ----------- ----------- --------- --------- ----------------
100.00 0.012715 2415 225 total

shares to rate importance
a lot or slow calls?

name (see man pages)

© 2013 IBM Corporation19

IBM Share February 2013 San Francisco

LTRACE

 Characteristics: High overhead, high detail tool
 Objective: Get insights about the ongoing library calls of a program
 Usage:

 Shows
● Identify library calls that are too often or take too long

• Good if you search for additional user time
• Good if things changed after upgrading libs

● Time in call (-T)
● Relative time-stamp (-r)

 Hints
● The option “-c” allows medium overhead by just tracking counters and

durations
● The option -S allows to combine ltrace and strace

ltrace -p [pid of target program]

© 2013 IBM Corporation20

IBM Share February 2013 San Francisco

LTRACE - example

ltrace -cf -p 26802
% time seconds usecs/call calls function
------ ----------- ----------- --------- --------------------
 98.33 46.765660 5845707 8 pause
 0.94 0.445621 10 42669 strncmp
 0.44 0.209839 25 8253 fgets
 0.08 0.037737 11 3168 __isoc99_sscanf
 0.07 0.031786 20 1530 access
 0.04 0.016757 10 1611 strchr
 0.03 0.016479 10 1530 snprintf
 0.02 0.010467 1163 9 fdatasync
 0.02 0.008899 27 324 fclose
 0.02 0.007218 21 342 fopen
 0.01 0.006239 19 315 write
 0.00 0.000565 10 54 strncpy
------ ----------- ----------- --------- --------------------
100.00 47.560161 59948 total

shares to rate importance
a lot or slow calls?

name (see man pages)

© 2013 IBM Corporation21

IBM Share February 2013 San Francisco

STRACE / LTRACE – full trace

 Without -c both tools produce a full detail log
● Via -f child processes can be traced as well
● Extra options “-Tr” are useful to search for latencies

follow time in call / relative time-stamp
● Useful to “read” what exactly goes on when

Example strace'ing a sadc data gatherer
0.000028 write(3, "\0\0\0\0\0\0\0\17\0\0\0\0\0\0\0\17\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 680) = 680 <0.000007>
0.000027 write(3, "\0\0\0\0\0\0\0\17\0\0\0\0\0\0\0\17\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 680) = 680 <0.000007>
0.000026 fdatasync(3) = 0 <0.002673>
0.002688 pause() = 0 <3.972935>
3.972957 --- SIGALRM (Alarm clock) @ 0 (0) ---
0.000051 rt_sigaction(SIGALRM, {0x8000314c, [ALRM], SA_RESTART}, {0x8000314c, [ALRM], SA_RESTART}, 8) = 0 <0.000005>
0.000038 alarm(4) = 0 <0.000005>
0.000031 sigreturn() = ? (mask now []) <0.000005>
0.000024 stat("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2309, ...}) = 0 <0.000007>
0.000034 open("/proc/uptime", O_RDONLY) = 4 <0.000009>
0.000024 fstat(4, {st_mode=S_IFREG|0444, st_size=0, ...}) = 0 <0.000005>
0.000029 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x3fffd20a000 <0.000006>
0.000028 read(4, "11687.70 24836.04\n", 1024) = 18 <0.000010>
0.000027 close(4) = 0 <0.000006>
0.000020 munmap(0x3fffd20a000, 4096) = 0 <0.000009>

© 2013 IBM Corporation22

IBM Share February 2013 San Francisco

BLKTRACE

 Characteristics: High detail info of the block device layer actions
 Objective: Understand whats going with your I/O in the kernel and devices
 Usage:

 Shows
● Events like merging, request creation, I/O submission, I/O completion, ...
● Timestamps and disk offsets for each event
● Associated task and executing CPU
● Application and CPU summaries

 Hints
● Filter masks allow lower overhead if only specific events are of interest
● Has an integrated client/server mode to stream data away

• Avoids extra disk I/O on a system with disk I/O issues

blktrace -d [device(s)]
blkparse -st [commontracefilepart]

© 2013 IBM Corporation23

IBM Share February 2013 San Francisco

BLKTRACE – when is it useful

 Often its easy to identify that I/O is slow, but
→ Where?
→ Because of what?

 Block trace allows to
● Analyze Disk I/O characteristics like sizes and offsets

• Maybe your I/O is split in a layer below
● Analyze the timing with details about all involved Linux layers

• Often useful to decide if HW or SW causes stalls
● Summaries per CPU / application can identify imbalances

© 2013 IBM Corporation24

IBM Share February 2013 San Francisco

BLKTRACE - events
Common

A -- remap For stacked devices, incoming i/o is remapped to device below it in the i/o stack. The remap action details what exactly is
being remapped to what.

Q -- queued This notes intent to queue i/o at the given location. No real requests exists yet.

G -- get request To send any type of request to a block device, a struct request container must be allocated first.

I -- inserted A request is being sent to the i/o scheduler for addition to the internal queue and later service by the driver. The request is
fully formed at this time.

D -- issued A request that previously resided on the block layer queue or in the i/o scheduler has been sent to the driver.

C -- complete A previously issued request has been completed. The output will detail the sector and size of that request, as well as the
success or failure of it.

Plugging & Merges:

P -- plug When i/o is queued to a previously empty block device queue, Linux will plug the queue in anticipation of future I/Os being
added before this data is needed.

U -- unplug Some request data already queued in the device, start sending requests to the driver. This may happen automatically if a
timeout period has passed (see next entry) or if a number of requests have been added to the queue.Recent kernels
associate the queue with the submitting task and unplug also on a context switch.

T -- unplug due to timer If nobody requests the i/o that was queued after plugging the queue, Linux will automatically unplug it after a
defined period has passed.

M -- back merge A previously inserted request exists that ends on the boundary of where this i/o begins, so the i/o scheduler can merge
them together.

F -- front merge Same as the back merge, except this i/o ends where a previously inserted requests starts.

Special

B -- bounced The data pages attached to this bio are not reachable by the hardware and must be bounced to a lower memory location.
This causes a big slowdown in i/o performance, since the data must be copied to/from kernel buffers. Usually this can be
fixed with using better hardware -- either a better i/o controller, or a platform with an IOMMU.

S -- sleep No available request structures were available, so the issuer has to wait for one to be freed.

X -- split On raid or device mapper setups, an incoming i/o may straddle a device or internal zone and needs to be chopped up into
smaller pieces for service. This may indicate a performance problem due to a bad setup of that raid/dm device, but may
also just be part of normal boundary conditions. dm is notably bad at this and will clone lots of i/o.

© 2013 IBM Corporation25

IBM Share February 2013 San Francisco

BLKTRACE - events
Common

A -- remap For stacked devices, incoming i/o is remapped to device below it in the i/o stack. The remap action details what exactly is
being remapped to what.

Q -- queued This notes intent to queue i/o at the given location. No real requests exists yet.

G -- get request To send any type of request to a block device, a struct request container must be allocated first.

I -- inserted A request is being sent to the i/o scheduler for addition to the internal queue and later service by the driver. The request is
fully formed at this time.

D -- issued A request that previously resided on the block layer queue or in the i/o scheduler has been sent to the driver.

C -- complete A previously issued request has been completed. The output will detail the sector and size of that request, as well as the
success or failure of it.

Plugging & Merges:

P -- plug When i/o is queued to a previously empty block device queue, Linux will plug the queue in anticipation of future I/Os being
added before this data is needed.

U -- unplug Some request data already queued in the device, start sending requests to the driver. This may happen automatically if a
timeout period has passed (see next entry) or if a number of requests have been added to the queue.Recent kernels
associate the queue with the submitting task and unplug also on a context switch.

T -- unplug due to timer If nobody requests the i/o that was queued after plugging the queue, Linux will automatically unplug it after a
defined period has passed.

M -- back merge A previously inserted request exists that ends on the boundary of where this i/o begins, so the i/o scheduler can merge
them together.

F -- front merge Same as the back merge, except this i/o ends where a previously inserted requests starts.

Special

B -- bounced The data pages attached to this bio are not reachable by the hardware and must be bounced to a lower memory location.
This causes a big slowdown in i/o performance, since the data must be copied to/from kernel buffers. Usually this can be
fixed with using better hardware -- either a better i/o controller, or a platform with an IOMMU.

S -- sleep No available request structures were available, so the issuer has to wait for one to be freed.

X -- split On raid or device mapper setups, an incoming i/o may straddle a device or internal zone and needs to be chopped up into
smaller pieces for service. This may indicate a performance problem due to a bad setup of that raid/dm device, but may
also just be part of normal boundary conditions. dm is notably bad at this and will clone lots of i/o.

Good as documentation,
but hard to

understand/remember

© 2013 IBM Corporation26

IBM Share February 2013 San Francisco

Block device layer – events (simplified)

App / A / X

C

Q

G

I

D

P

U

M / Fmergeable
 Y N

Merge with an
existing request

Need to Generate a
new request

Plug queue and wait a bit if
following requests can be merged

Time from Dispatch to Complete

Unplug on upper limit (stream) or
Time reached / submitting task ctx switch

Dispatch from block device
layer to device driverAdd device driver info like dasdstat and

scsi sysfs statistics to fill this gap
and gain a full circle latency insight

© 2013 IBM Corporation27

IBM Share February 2013 San Francisco

BLKTRACE - example

 Example Case
● The snippet shows a lot of 4k requests (8x512 byte sectors)

• We expected the I/O to be 32k
● Each one is dispatched separately (no merges)

• This caused unnecessary overhead and slow I/O

Maj/Min CPU Seq-nr sec.nsec pid Action RWBS sect + size map source / task
94,4 27 21 0.059363692 18994 A R 20472832 + 8 <- (94,5) 20472640
94,4 27 22 0.059364630 18994 Q R 20472832 + 8 [qemu-kvm]
94,4 27 23 0.059365286 18994 G R 20472832 + 8 [qemu-kvm]
94,4 27 24 0.059365598 18994 I R 20472832 + 8 (312) [qemu-kvm]
94,4 27 25 0.059366255 18994 D R 20472832 + 8 (657) [qemu-kvm]
94,4 27 26 0.059370223 18994 A R 20472840 + 8 <- (94,5) 20472648
94,4 27 27 0.059370442 18994 Q R 20472840 + 8 [qemu-kvm]
94,4 27 28 0.059370880 18994 G R 20472840 + 8 [qemu-kvm]
94,4 27 29 0.059371067 18994 I R 20472840 + 8 (187) [qemu-kvm]
94,4 27 30 0.059371473 18994 D R 20472840 + 8 (406) [qemu-kvm]

© 2013 IBM Corporation28

IBM Share February 2013 San Francisco

BLKTRACE - example

 Example Case
● Analysis turned out that the I/O was from the swap code

• Same offsets were written by kswapd
● A recent code change there disabled the ability to merge
● The summary below shows the difference after a fix

Total initially
 Reads Queued: 560,888, 2,243MiB Writes Queued: 226,242, 904,968KiB
 Read Dispatches: 544,701, 2,243MiB Write Dispatches: 159,318, 904,968KiB
 Reads Requeued: 0 Writes Requeued: 0
 Reads Completed: 544,716, 2,243MiB Writes Completed: 159,321, 904,980KiB
 Read Merges: 16,187, 64,748KiB Write Merges: 61,744, 246,976KiB
 IO unplugs: 149,614 Timer unplugs: 2,940

Total after Fix
 Reads Queued: 734,315, 2,937MiB Writes Queued: 300,188, 1,200MiB
 Read Dispatches: 214,972, 2,937MiB Write Dispatches: 215,176, 1,200MiB
 Reads Requeued: 0 Writes Requeued: 0
 Reads Completed: 214,971, 2,937MiB Writes Completed: 215,177, 1,200MiB
 Read Merges: 519,343, 2,077MiB Write Merges: 73,325, 293,300KiB
 IO unplugs: 337,130 Timer unplugs: 11,184

© 2013 IBM Corporation29

IBM Share February 2013 San Francisco

HYPTOP

 Characteristics: Easy to use Guest/LPAR overview
 Objective: Check CPU and overhead statistics of your own and sibling

images
 Usage:

 Shows
● CPU load & Management overhead
● Memory usage
● Can show image overview or single image details

 Hints
● Good “first view” tool for linux admins that want to look “out of their linux”
● Requirements:

• For z/VM the Guest needs Class B
• For LPAR “Global performance data control” check-box in HMC

hyptop

© 2013 IBM Corporation30

IBM Share February 2013 San Francisco

HYPTOP

Why are exactly 4 CPUs
used in all 6 CPU guests Weights are equal

All these do not fully
utilize their 2 CPUs

No peaks in service guests

service guest weights

LPAR images would see
other LPARs

© 2013 IBM Corporation31

IBM Share February 2013 San Francisco

Profiling

 Characteristics: Easy to use profiling and kernel tracing
 Objective: Get detailed information where & why CPU is consumed
 Usage:

 Shows
● Sampling for CPU hotspots

• Annotated source code along hotspot
● CPU event counters
● Further integrated non-sampling tools

 Hints
● Without HW support only userspace can be reasonably profiled
● “successor” of oprofile that is available with HW support (SLES11-SP2)
● Perf HW support code upstream, wait for next distribution releases

perf top

© 2013 IBM Corporation32

IBM Share February 2013 San Francisco

Profiling

 What profiling can and what it can't
● + Search hot-spots of CPU consumption worth to optimize
● + List functions according to their usage
● - Search where time is lost (I/O, Stalls)

 Perf is not just a sampling tool
● Integrated tools to evaluate tracepoints like

“perf sched”, “perf timechart”, …
● Opposite to real sampling this can help to search for stalls

© 2013 IBM Corporation33

IBM Share February 2013 San Francisco

Profiling

 Perf example howto
● We had a case where new code caused cpus to scale badly
● perf record “workload”

• Creates a file called perf.data that can be analyzes
● We used “perf diff” on both data files to get a comparison

 “Myriad” of further options/modules
● Live view with perf top
● Perf sched for an integrated analysis of scheduler tracepoints
● Perf annotate to see samples alongside code
● Perf stat for a counter based analysis
● [...]

© 2013 IBM Corporation34

IBM Share February 2013 San Francisco

Profiling

 Perf example (perf diff)
● found a locking issue causing increased cpu consumption

Baseline Delta Symbol

........

#

 12.14% +8.07% [kernel.kallsyms] [k] lock_acquire

 8.96% +5.50% [kernel.kallsyms] [k] lock_release

 4.83% +0.38% reaim [.] add_long

 4.22% +0.41% reaim [.] add_int

 4.10% +2.49% [kernel.kallsyms] [k] lock_acquired

 3.17% +0.38% libc-2.11.3.so [.] msort_with_tmp

 3.56% -0.37% reaim [.] string_rtns_1

 3.04% -0.38% libc-2.11.3.so [.] strncat

© 2013 IBM Corporation35

IBM Share February 2013 San Francisco

Valgrind

 Characteristics: In depth memory analysis
 Objective: Find out where memory is leaked, sub-optimally cached, ...
 Usage:

 Shows
● Memory leaks
● Cache profiling
● Heap profiling

 Hints
● Runs on binaries, therefore easy to use
● Debug Info not required but makes output more useful

valgrind [program]

© 2013 IBM Corporation36

IBM Share February 2013 San Francisco

Valgrind Overview

 Technology is based on a JIT (Just-in-Time Compiler)
 Intermediate language allows debugging instrumentation

Binary
000000008000062c <main>:
stmg %r9,%r15,72(%r15)
lay %r15,-80160(%r15)
lhi %r12,0
lhi %r10,10000
la %r9,160(%r15)
lgr %r13,%r9
lgr %r11,%r9
lghi %r2,1
brasl %r14,8000044c <malloc@plt>
lgfr %r1,%r12
ahi %r12,1
stg %r2,0(%r11)
sllg %r1,%r1,3
aghi %r11,8
pfd 2,96(%r1,%r9)
brct %r10,8000064c <main+0x20>
lay %r12,80160(%r15)
lg %r2,0(%r13)
aghi %r13,8
brasl %r14,8000048c <free@plt>
cgrjne %r12,%r13,8000067e <main+0x52>
lhi %r13,0
lhi %r12,10000
lgfr %r2,%r13
ahi %r13,1
brasl %r14,800005c0 <stacker>
brct %r12,8000069c <main+0x70>
lg %r4,80272(%r15)
lmg %r9,%r15,80232(%r15)
br %r4

valgrind

translation
into IR

instrumentation

translation
To machine code

kernel

New
binary

xxx

libraries

Replace
some of

The library
calls by
Using a
preload
library

System call
wrapper

© 2013 IBM Corporation37

IBM Share February 2013 San Francisco

Valgrind – sample output of “memcheck”

valgrind buggy_program

==2799== Memcheck, a memory error detector

==2799== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.

==2799== Using Valgrind-3.6.1 and LibVEX; rerun with -h for copyright info

==2799== Command: buggy_program

==2799==

==2799== HEAP SUMMARY:

==2799== in use at exit: 200 bytes in 2 blocks

==2799== total heap usage: 2 allocs, 0 frees, 200 bytes allocated

==2799==

==2799== LEAK SUMMARY:

==2799== definitely lost: 100 bytes in 1 blocks

==2799== indirectly lost: 0 bytes in 0 blocks

==2799== possibly lost: 0 bytes in 0 blocks

==2799== still reachable: 100 bytes in 1 blocks

==2799== suppressed: 0 bytes in 0 blocks

==2799== Rerun with --leak-check=full to see details of leaked memory

[...]

 Important parameters:
● --leak-check=full
● --track-origins=yes

© 2013 IBM Corporation38

IBM Share February 2013 San Francisco

Valgrind - Tools

 Several tools
● Memcheck (default): detects memory and data flow problems
● Cachegrind: cache profiling
● Massif: heap profiling
● Helgrind: thread debugging
● DRD: thread debugging
● None: no debugging (for valgrind JIT testing)
● Callgrind: codeflow and profiling

 Tool can be selected with –tool=xxx
 System z support since version 3.7 (SLES-11-SP2)
 Backports into 3.6 (SLES-10-SP4, RHEL6-U1)

© 2013 IBM Corporation39

IBM Share February 2013 San Francisco

IPTRAF

 Characteristics: Live information on network devices / connections
 Objective: Filter and format network statistics
 Usage:

 Shows
● Details per Connection / Interface
● Statistical breakdown of ports / packet sizes
● LAN station monitor

 Hints
● Can be used for background logging as well

• Use SIGUSR1 and logrotate to handle the growing amount of data
● Knowledge of packet sizes important for the right tuning

iptraf

© 2013 IBM Corporation40

IBM Share February 2013 San Francisco

IPTRAF

 Questions that usually can be addressed
● Connection behavior overview
● Do you have peaks in your workload characteristic
● With whom does your host really communicate

 Comparison to wireshark
● Not as powerful, but much easier and faster to use
● Lower overhead and no sniffing needed (often prohibited)

IF
details

Packet
sizes

© 2013 IBM Corporation41

IBM Share February 2013 San Francisco

Tracepoints (Events)

 Characteristics: Complex interface, but a vast source of information
 Objective: In kernel latency and activity insights
 Usage: Access debugfs mount point /tracing
 Shows

● Time-stamp and activity name
● Tracepoints can provide event specific context data
● Infrastructure adds extra common context data like cpu, preempts depth, ...

 Hints
● Very powerful and customizable, there are hundreds of tracepoints

• Some tracepoints have tools to be accessed “perf sched”, “blktrace” both
base on them

• Others need custom post processing
● There are much more things you can handle with tracepoints check out

Kernel Documentation/trace/tracepoint-analysis.txt (via perf stat) and
Kernel Documentation/trace/events.txt (custom access)

© 2013 IBM Corporation42

IBM Share February 2013 San Francisco

Tracepoints – example I/III

 Here we use custom access since there was tool
● We searched for 1.2ms extra latency

• Target is it lost in HW, User-space, Kernel or all of them
● Workload was a simple 1 connection 1 byte←→1 byte load
● Call “perf list” for a list of currently supported tracepoints
● We used the following tracepoints
Abbreviation Tracepoint Meaning

R netif_receive_skb low level receive

P napi_poll napi work related to receive

Q net_dev_queue enqueue in the stack

S net_dev_xmit low level send

© 2013 IBM Corporation43

IBM Share February 2013 San Francisco

Tracepoints – example II/III

● Simplified script (full versions might tune buffer sizes, check files, and so on)
echo latency-format > /sys/kernel/debug/tracing/trace_options # enable tracing type

echo net:* >> /sys/kernel/debug/tracing/set_event # select specific events

echo napi:* >> /sys/kernel/debug/tracing/set_event # “

echo "name == ${dev}" > /sys/kernel/debug/tracing/events/net/filter # set filters

echo "dev_name == ${dev}" > /sys/kernel/debug/tracing/events/napi/filter # “

cat /sys/kernel/debug/tracing/trace >> ${output} # synchronous

echo !*:* > /sys/kernel/debug/tracing/set_event # disable tracing

● Output
_------=> CPU#

/ _-----=> irqs-off

| / _----=> need-resched

|| / _---=> hardirq/softirq

||| / _--=> preempt-depth

|||| / delay

cmd pid ||||| time | caller

\ / ||||| \ | /

 <...>-24116 0..s. 486183281us+: net_dev_xmit: dev=eth5 skbaddr=0000000075b7e3e8 len=67 rc=0

 <idle>-0 0..s. 486183303us+: netif_receive_skb: dev=eth5 skbaddr=000000007ecc6e00 len=53

 <idle>-0 0.Ns. 486183306us+: napi_poll: napi poll on napi struct 000000007d2479a8 fordevice eth

 <...>-24116 0..s. 486183311us+: net_dev_queue: dev=eth5 skbaddr=0000000075b7e3e8 len=67

 <...>-24116 0..s. 486183317us+: net_dev_xmit: dev=eth5 skbaddr=0000000075b7e3e8 len=67 rc=0

© 2013 IBM Corporation44

IBM Share February 2013 San Francisco

Tracepoints – example III/III

 Example postprocessed

 SUM COUNT AVERAGE MIN MAX STD-DEV

P2Q: 8478724 1572635 5.39 4 2140 7.41

Q2S: 12188675 1572638 7.65 3 71 4.89

S2R: 38562294 1572636 24.42 1 2158 9.08

R2P: 4197486 1572633 2.57 1 43 2.39

SUM: 63427179 1572635 40.03

 SUM COUNT AVERAGE MIN MAX STD-DEV

P2Q: 7191885 1300897 5.53 4 171 1.31

Q2S: 10622270 1300897 8.17 3 71 5.99

S2R: 32078550 1300898 24.66 2 286 5.88

R2P: 3707814 1300897 2.85 1 265 2.59

SUM: 53600519 1300897 41.20

● Confirmed that most of the 1.2 ms were lost in our image
● Confirmed that it was not at/between a specific function

• Eventually it was an interrupt locality issue causing bad caching

© 2013 IBM Corporation45

IBM Share February 2013 San Francisco

Orientation – where to go

Tool 1st overview CPU
consumption

latencies Hot spots Disk I/O Memory Network

top / ps x x

sysstat x x x x

vmstat x x x

iostat x x

dasdstat x

scsistat x

netstat x x

htop / dstat / pidstat x x x x

irqstats x x x

strace / ltrace x

hyptop x

profiling x x

blktrace x

valgrind x

iptraf x x

tracepoints x x x x x

© 2013 IBM Corporation46

IBM Share February 2013 San Francisco

Questions ?

 Further information is available at
● Live Virtual Classes for z/VM and Linux

http://www.vm.ibm.com/education/lvc/
● Linux on System z – Tuning hints and tips

http://www.ibm.com/developerworks/linux/linux390/perf/index.html

Schönaicher Strasse 220
71032 Böblingen, Germany

Phone +49 (0)7031-16-2247
schwidefsky@de.ibm.com

Martin Schwidefsky

Linux on System z
Development

http://www.vm.ibm.com/education/lvc/

© 2013 IBM Corporation47

IBM Share February 2013 San Francisco

Please Evaluate!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	page25
	page26
	page27
	page28
	page29
	page30
	page31
	page32
	page33
	page34
	page35
	page36
	page37
	page38
	page39
	page40
	page41
	page42
	page43
	page44
	page45
	page46
	page47
	page48

