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Agenda (what it used to be)

Tools are your swiss army knife
● ps
● top
● sadc/sar
● iostat
● vmstat
● netstat
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Ready for take-off
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Agenda

Tools are your swiss army knife
● htop
● dstat
● pidstat
● irqstats
● strace/ltrace
● blktrace
● hyptop
● profiling
● valgrind
● iptraf
● tracepoints
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General thoughts on performance tools

 Things that are always to consider
● Monitoring can impact the system
● Most data gathering averages over a certain period of time

→ this flattens peaks
● Start with defining the problem

• which parameter(s) from the application/system indicates the problem

• which range is considered as bad, what is considered as good
● monitor the good case and save the results

• comparisons when a problem occurs can save days and weeks

 Staged approach saves a lot of work
● Try to use general tools to isolate the area of the issue
● Create theories and try to quickly verify/falsify them
● Use advanced tools to debug the identified area
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Orientation - where to go

Tool 1st overview CPU 
consumption

latencies Hot spots Disk I/O Memory Network

top / ps x x

sysstat x x x x

vmstat x x x

iostat x x

dasdstat x

scsistat x

netstat x x

htop / dstat / pidstat x x x x

irqstats x x x

strace / ltrace x

hyptop x

profiling x x

blktrace x

valgrind x

iptraf x x

tracepoints x x x x x
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DSTAT

 Characteristics: Live easy to use full system information
 Objective: Flexible set of statistics
 Usage:

 Shows
● Throughput and utilization
● Summarized and per Device queue information
● Much more, it more or less combines several classic tools like iostat and vmstat

 Hints
● Powerful plugin concept

• “--top-io” for example identifies the application causing the most I/Os
● Colorization allows fast identification of deviations

dstat -tv -aio -disk-util -n -net-packets -i -ipc -D total,
[diskname] -top-io […] [interval]

dstat -tinv
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DSTAT – the limit is your screen width

similar to vmstat
similar to iostat
(also per device)

new in live tool

...

...
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HTOP

 Characteristics: Process overview with extra features
 Objective: Get a understanding about your running processes
 Usage:

 Shows
● Running processes
● CPU and memory utilization
● Accumulated times
● I/O rates
● System utilization visualization

 Hints
● Htop can display more uncommon fields (in menu)
● Able to send signals out of its UI for administration purposes
● Processes can be sorted/filtered for a more condensed view

htop
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HTOP

Configurable utilization visualization

Common process info
Accumulated Usage
and IO rates

Hierarchy
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PIDSTAT

 Characteristics: Easy to use extended per process statistics
 Objective: Identify processes with peak activity
 Usage:

 Shows
● -w context switching activity and if it was voluntary
● -r memory statistics, especially minor/major faults per process
● -d disk throughput per process

 Hints
● Also useful if run as background log due to its low overhead

• Good extension to sadc in systems running different applications/services
● -p <pid> can be useful to track activity of a specific process

pidstat [-w | -r | -d]
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PIDSTAT examples

12:46:18 PM       PID   cswch/s nvcswch/s  Command
12:46:18 PM         3      2.39      0.00  ksoftirqd/0
12:46:18 PM         4      0.04      0.00  migration/0
12:46:18 PM      1073    123.42    180.18  Xorg

12:47:51 PM       PID  minflt/s  majflt/s     VSZ    RSS   %MEM  Command
12:47:51 PM       985      0.06      0.00   15328   3948   0.10  smbd
12:47:51 PM       992      0.04      0.00    5592   2152   0.05  sshd
12:47:51 PM      1073    526.41      0.00 1044240 321512   7.89  Xorg

12:49:18 PM       PID   kB_rd/s   kB_wr/s kB_ccwr/s  Command
12:49:18 PM       330      0.00      1.15      0.00  kjournald
12:49:18 PM      2899      4.35      0.09      0.04  notes2
12:49:18 PM      3045     23.43      0.01      0.00  audacious2

Voluntarily / Involuntary

How much KB disk I/O per process

Faults per process
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IRQ Statistics

 Characteristics: Low overhead IRQ information 
 Objective: Condensed overview of IRQ activity
 Usage:

 Shows
● Which interrupts happen on which cpu

 Hints
● Recent Versions (SLES11-SP2) much more useful
● If interrupts are unintentionally unbalanced
● If the amount of interrupts matches I/O

• This can point to non-working IRQ avoidance

cat / proc/interrupts
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IRQ Statistics

 Example
● Network focus on CPU zero (in this case unwanted)
● Scheduler covered most of that avoiding idle CPU 1-3
● But caused a lot migrations, IPI's and cache misses

           CPU0       CPU1       CPU2       CPU3       
EXT:      21179      24235      22217      22959  
I/O:    1542959     340076     356381     325691 
CLK:      15995      16718      15806      16531   [EXT] Clock Comparator
EXC:        255        325        332        227   [EXT] External Call
EMS:       4923       7129       6068       6201   [EXT] Emergency Signal 
TMR:          0          0          0          0   [EXT] CPU Timer
TAL:          0          0          0          0   [EXT] Timing Alert
PFL:          0          0          0          0   [EXT] Pseudo Page Fault
DSD:          0          0          0          0   [EXT] DASD Diag
VRT:          0          0          0          0   [EXT] Virtio 
SCP:          6         63         11          0   [EXT] Service Call
IUC:          0          0          0          0   [EXT] IUCV
CPM:          0          0          0          0   [EXT] CPU Measurement
CIO:        163        310        269        213   [I/O] Common I/O Layer Interrupt
QAI:    1541773     338857     354728     324110   [I/O] QDIO Adapter Interrupt
DAS:       1023        909       1384       1368   [I/O] DASD
[…] 3215, 3270, Tape, Unit Record Devices, LCS, CLAW, CTC, AP Bus, Machine Check
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STRACE

 Characteristics: High overhead, high detail tool
 Objective: Get insights about the ongoing system calls of a program
 Usage:

 Shows
● Identify kernel entries called more often or taking too long

• Can be useful if you search for increased system time
● Time in call (-T)
● Relative time-stamp (-r)

 Hints
● The option “-c” allows medium overhead by just tracking counters and durations

strace -p [pid of target program]
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STRACE - example

strace -cf -p 26802
Process 26802 attached - interrupt to quit
^CProcess 26802 detached
% time     seconds  usecs/call     calls    errors syscall
------ ----------- ----------- --------- --------- ----------------
 58.43    0.007430          17       450           read             
 24.33    0.003094           4       850       210 access           
  5.53    0.000703           4       190        10 open             
  4.16    0.000529           3       175           write            
  2.97    0.000377           2       180           munmap           
  1.95    0.000248           1       180           close            
  1.01    0.000128           1       180           mmap             
  0.69    0.000088          18         5           fdatasync        
  0.61    0.000078           0       180           fstat            
  0.13    0.000017           3         5           pause            
------ ----------- ----------- --------- --------- ----------------
100.00    0.012715                  2415       225 total

shares to rate importance
a lot or slow calls?

name (see man pages)
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LTRACE

 Characteristics: High overhead, high detail tool
 Objective: Get insights about the ongoing library calls of a program
 Usage:

 Shows
● Identify library calls that are too often or take too long

• Good if you search for additional user time
• Good if things changed after upgrading libs

● Time in call (-T)
● Relative time-stamp (-r)

 Hints
● The option “-c” allows medium overhead by just tracking counters and 

durations
● The option -S allows to combine ltrace and strace

ltrace -p [pid of target program]
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LTRACE - example

ltrace -cf -p 26802
% time     seconds  usecs/call     calls      function
------ ----------- ----------- --------- --------------------
 98.33   46.765660     5845707         8 pause
  0.94    0.445621          10     42669 strncmp
  0.44    0.209839          25      8253 fgets
  0.08    0.037737          11      3168 __isoc99_sscanf
  0.07    0.031786          20      1530 access
  0.04    0.016757          10      1611 strchr
  0.03    0.016479          10      1530 snprintf
  0.02    0.010467        1163         9 fdatasync
  0.02    0.008899          27       324 fclose
  0.02    0.007218          21       342 fopen
  0.01    0.006239          19       315 write
  0.00    0.000565          10        54 strncpy
------ ----------- ----------- --------- --------------------
100.00   47.560161                 59948 total

shares to rate importance
a lot or slow calls?

name (see man pages)
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STRACE / LTRACE – full trace

 Without -c both tools produce a full detail log
● Via -f child processes can be traced as well
● Extra options “-Tr” are useful to search for latencies

follow time in call / relative time-stamp
● Useful to “read” what exactly goes on when

Example strace'ing a sadc data gatherer
0.000028 write(3, "\0\0\0\0\0\0\0\17\0\0\0\0\0\0\0\17\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 680) = 680 <0.000007>
0.000027 write(3, "\0\0\0\0\0\0\0\17\0\0\0\0\0\0\0\17\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 680) = 680 <0.000007>
0.000026 fdatasync(3)              = 0 <0.002673>
0.002688 pause()                   = 0 <3.972935>
3.972957 --- SIGALRM (Alarm clock) @ 0 (0) ---
0.000051 rt_sigaction(SIGALRM, {0x8000314c, [ALRM], SA_RESTART}, {0x8000314c, [ALRM], SA_RESTART}, 8) = 0 <0.000005>
0.000038 alarm(4)                  = 0 <0.000005>
0.000031 sigreturn()               = ? (mask now []) <0.000005>
0.000024 stat("/etc/localtime", {st_mode=S_IFREG|0644, st_size=2309, ...}) = 0 <0.000007>
0.000034 open("/proc/uptime", O_RDONLY) = 4 <0.000009>
0.000024 fstat(4, {st_mode=S_IFREG|0444, st_size=0, ...}) = 0 <0.000005>
0.000029 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x3fffd20a000 <0.000006>
0.000028 read(4, "11687.70 24836.04\n", 1024) = 18 <0.000010>
0.000027 close(4)                  = 0 <0.000006>
0.000020 munmap(0x3fffd20a000, 4096) = 0 <0.000009>



© 2013 IBM Corporation22

IBM Share February 2013 San Francisco

BLKTRACE

 Characteristics: High detail info of the block device layer actions
 Objective: Understand whats going with your I/O in the kernel and devices
 Usage:

 Shows
● Events like merging, request creation, I/O submission, I/O completion, ...
● Timestamps and disk offsets for each event
● Associated task and executing CPU
● Application and CPU summaries

 Hints
● Filter masks allow lower overhead if only specific events are of interest
● Has an integrated client/server mode to stream data away

• Avoids extra disk I/O on a system with disk I/O issues

blktrace -d [device(s)]
blkparse -st [commontracefilepart]
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BLKTRACE – when is it useful

 Often its easy to identify that I/O is slow, but
→ Where?
→ Because of what?

 Block trace allows to
● Analyze Disk I/O characteristics like sizes and offsets

• Maybe your I/O is split in a layer below
● Analyze the timing with details about all involved Linux layers

• Often useful to decide if HW or SW causes stalls
● Summaries per CPU / application can identify imbalances
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BLKTRACE - events
Common

A -- remap For stacked devices, incoming i/o is remapped to device below it in the i/o stack. The remap action details what exactly is 
being remapped to what.

Q -- queued This notes intent to queue i/o at the given location.  No real requests exists yet.

G -- get request To send any type of request to a block device, a struct request container must be allocated first.

I -- inserted A request is being sent to the i/o scheduler for addition to the internal queue and later service by the driver. The request is 
fully formed at this time.

D -- issued A request that previously resided on the block layer queue or in the i/o scheduler has been sent to the driver.

C -- complete A previously issued request has been completed.  The output will detail the sector and size of that request, as well as the 
success or failure of it.

Plugging & Merges:

P -- plug When i/o is queued to a previously empty block device queue, Linux will plug the queue in anticipation of future I/Os being 
added before this data is needed.

U -- unplug Some request data already queued in the device, start sending requests to the driver. This may happen automatically if a 
timeout period has passed (see next entry) or if a number of requests have been added to the queue.Recent kernels 
associate the queue with the submitting task and unplug also on a context switch.

T -- unplug due to timer If nobody requests the i/o that was queued after plugging the queue, Linux will automatically unplug it after a 
defined period has passed.

M -- back merge A previously inserted request exists that ends on the boundary of where this i/o begins, so the i/o scheduler can merge 
them together.

F -- front merge Same as the back merge, except this i/o ends where a previously inserted requests starts.

Special

B -- bounced The data pages attached to this bio are not reachable by the hardware and must be bounced to a lower memory location. 
This causes a big slowdown in i/o performance, since the data must be copied to/from kernel buffers. Usually this can be 
fixed with using better hardware -- either a better i/o controller, or a platform with an IOMMU.

S -- sleep No available request structures were available, so the issuer has to wait for one to be freed.

X -- split On raid or device mapper setups, an incoming i/o may straddle a device or internal zone and needs to be chopped up into 
smaller pieces for service. This may indicate a performance problem due to a bad setup of that raid/dm device, but may 
also just be part of normal boundary conditions. dm is notably bad at this and will clone lots of i/o.
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BLKTRACE - events
Common

A -- remap For stacked devices, incoming i/o is remapped to device below it in the i/o stack. The remap action details what exactly is 
being remapped to what.

Q -- queued This notes intent to queue i/o at the given location.  No real requests exists yet.

G -- get request To send any type of request to a block device, a struct request container must be allocated first.

I -- inserted A request is being sent to the i/o scheduler for addition to the internal queue and later service by the driver. The request is 
fully formed at this time.

D -- issued A request that previously resided on the block layer queue or in the i/o scheduler has been sent to the driver.

C -- complete A previously issued request has been completed.  The output will detail the sector and size of that request, as well as the 
success or failure of it.

Plugging & Merges:

P -- plug When i/o is queued to a previously empty block device queue, Linux will plug the queue in anticipation of future I/Os being 
added before this data is needed.

U -- unplug Some request data already queued in the device, start sending requests to the driver. This may happen automatically if a 
timeout period has passed (see next entry) or if a number of requests have been added to the queue.Recent kernels 
associate the queue with the submitting task and unplug also on a context switch.

T -- unplug due to timer If nobody requests the i/o that was queued after plugging the queue, Linux will automatically unplug it after a 
defined period has passed.

M -- back merge A previously inserted request exists that ends on the boundary of where this i/o begins, so the i/o scheduler can merge 
them together.

F -- front merge Same as the back merge, except this i/o ends where a previously inserted requests starts.

Special

B -- bounced The data pages attached to this bio are not reachable by the hardware and must be bounced to a lower memory location. 
This causes a big slowdown in i/o performance, since the data must be copied to/from kernel buffers. Usually this can be 
fixed with using better hardware -- either a better i/o controller, or a platform with an IOMMU.

S -- sleep No available request structures were available, so the issuer has to wait for one to be freed.

X -- split On raid or device mapper setups, an incoming i/o may straddle a device or internal zone and needs to be chopped up into 
smaller pieces for service. This may indicate a performance problem due to a bad setup of that raid/dm device, but may 
also just be part of normal boundary conditions. dm is notably bad at this and will clone lots of i/o.

Good as documentation, 
but hard to 

understand/remember
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Block device layer – events (simplified)

App / A / X

C

Q

G

I

D

P

U

M / Fmergeable
     Y       N

Merge with an
existing request

Need to Generate a
new request

Plug queue and wait a bit if
following requests can be merged

Time from Dispatch to Complete

Unplug on upper limit (stream) or
Time reached / submitting task ctx switch

Dispatch from block device
layer to device driverAdd device driver info like dasdstat and

scsi sysfs statistics to fill this gap
and gain a full circle latency insight
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BLKTRACE - example

 Example Case
● The snippet shows a lot of 4k requests (8x512 byte sectors)

• We expected the I/O to be 32k
● Each one is dispatched separately (no merges)

• This caused unnecessary overhead and slow I/O

Maj/Min CPU   Seq-nr        sec.nsec   pid Action RWBS sect + size  map source / task
94,4     27       21     0.059363692 18994      A    R 20472832 + 8 <- (94,5) 20472640
94,4     27       22     0.059364630 18994      Q    R 20472832 + 8 [qemu-kvm]
94,4     27       23     0.059365286 18994      G    R 20472832 + 8 [qemu-kvm]
94,4     27       24     0.059365598 18994      I    R 20472832 + 8 (     312) [qemu-kvm]
94,4     27       25     0.059366255 18994      D    R 20472832 + 8 (     657) [qemu-kvm]
94,4     27       26     0.059370223 18994      A    R 20472840 + 8 <- (94,5) 20472648
94,4     27       27     0.059370442 18994      Q    R 20472840 + 8 [qemu-kvm]
94,4     27       28     0.059370880 18994      G    R 20472840 + 8 [qemu-kvm]
94,4     27       29     0.059371067 18994      I    R 20472840 + 8 (     187) [qemu-kvm]
94,4     27       30     0.059371473 18994      D    R 20472840 + 8 (     406) [qemu-kvm]
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BLKTRACE - example

 Example Case
● Analysis turned out that the I/O was from the swap code

• Same offsets were written by kswapd
● A recent code change there disabled the ability to merge
● The summary below shows the difference after a fix

Total initially
 Reads Queued:     560,888,    2,243MiB  Writes Queued:     226,242,  904,968KiB
 Read Dispatches:  544,701,    2,243MiB  Write Dispatches:  159,318,  904,968KiB
 Reads Requeued:         0               Writes Requeued:         0
 Reads Completed:  544,716,    2,243MiB  Writes Completed:  159,321,  904,980KiB
 Read Merges:       16,187,   64,748KiB  Write Merges:       61,744,  246,976KiB
 IO unplugs:       149,614               Timer unplugs:       2,940

Total after Fix
 Reads Queued:     734,315,    2,937MiB  Writes Queued:     300,188,    1,200MiB
 Read Dispatches:  214,972,    2,937MiB  Write Dispatches:  215,176,    1,200MiB
 Reads Requeued:         0               Writes Requeued:         0
 Reads Completed:  214,971,    2,937MiB  Writes Completed:  215,177,    1,200MiB
 Read Merges:      519,343,    2,077MiB  Write Merges:       73,325,  293,300KiB
 IO unplugs:       337,130               Timer unplugs:      11,184
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HYPTOP

 Characteristics: Easy to use Guest/LPAR overview
 Objective: Check CPU and overhead statistics of your own and sibling 

images
 Usage:

 Shows
● CPU load & Management overhead
● Memory usage
● Can show image overview or single image details

 Hints
● Good “first view” tool for linux admins that want to look “out of their linux”
● Requirements:

• For z/VM the Guest needs Class B
• For LPAR “Global performance data control” check-box in HMC

hyptop
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HYPTOP

Why are exactly 4 CPUs 
used in all 6 CPU guests Weights are equal

All these do not fully 
utilize their 2 CPUs

No peaks in service guests

service guest weights

LPAR images would see 
other LPARs
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Profiling

 Characteristics: Easy to use profiling and kernel tracing
 Objective: Get detailed information where & why CPU is consumed
 Usage:

 Shows
● Sampling for CPU hotspots

• Annotated source code along hotspot
● CPU event counters
● Further integrated non-sampling tools

 Hints
● Without HW support only userspace can be reasonably profiled
● “successor” of oprofile that is available with HW support (SLES11-SP2)
● Perf HW support code upstream, wait for next distribution releases

perf top
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Profiling

 What profiling can and what it can't
● + Search hot-spots of CPU consumption worth to optimize
● + List functions according to their usage
● - Search where time is lost (I/O, Stalls)

 Perf is not just a sampling tool
● Integrated tools to evaluate tracepoints like

“perf sched”, “perf timechart”, …
● Opposite to real sampling this can help to search for stalls
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Profiling

 Perf example howto
● We had a case where new code caused cpus to scale badly
● perf record “workload”

• Creates a file called perf.data that can be analyzes
● We used “perf diff” on both data files to get a comparison

 “Myriad” of further options/modules
● Live view with perf top
● Perf sched for an integrated analysis of scheduler tracepoints
● Perf annotate to see samples alongside code
● Perf stat for a counter based analysis
● [...]
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Profiling

 Perf example (perf diff)
● found a locking issue causing increased cpu consumption

# Baseline  Delta                          Symbol

# ........ ..........  ................... ......

#

    12.14%     +8.07%  [kernel.kallsyms]   [k] lock_acquire

     8.96%     +5.50%  [kernel.kallsyms]   [k] lock_release

     4.83%     +0.38%  reaim               [.] add_long

     4.22%     +0.41%  reaim               [.] add_int

     4.10%     +2.49%  [kernel.kallsyms]   [k] lock_acquired

     3.17%     +0.38%  libc-2.11.3.so      [.] msort_with_tmp

     3.56%     -0.37%  reaim               [.] string_rtns_1

     3.04%     -0.38%  libc-2.11.3.so      [.] strncat
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Valgrind

 Characteristics: In depth memory analysis
 Objective: Find out where memory is leaked, sub-optimally cached, ...
 Usage:

 Shows
● Memory leaks
● Cache profiling
● Heap profiling

 Hints
● Runs on binaries, therefore easy to use
● Debug Info not required but makes output more useful

valgrind [program]
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Valgrind Overview

 Technology is based on a JIT (Just-in-Time Compiler)
 Intermediate language allows debugging instrumentation

Binary
000000008000062c <main>:
stmg    %r9,%r15,72(%r15)
lay     %r15,-80160(%r15)
lhi     %r12,0
lhi     %r10,10000
la      %r9,160(%r15)
lgr     %r13,%r9
lgr     %r11,%r9
lghi    %r2,1
brasl   %r14,8000044c <malloc@plt>
lgfr    %r1,%r12
ahi     %r12,1
stg     %r2,0(%r11)
sllg    %r1,%r1,3
aghi    %r11,8
pfd     2,96(%r1,%r9)
brct    %r10,8000064c <main+0x20>
lay     %r12,80160(%r15)
lg      %r2,0(%r13)
aghi    %r13,8
brasl   %r14,8000048c <free@plt>
cgrjne  %r12,%r13,8000067e <main+0x52>
lhi     %r13,0
lhi     %r12,10000
lgfr    %r2,%r13
ahi     %r13,1
brasl   %r14,800005c0 <stacker>
brct    %r12,8000069c <main+0x70>
lg      %r4,80272(%r15)
lmg     %r9,%r15,80232(%r15)
br      %r4

valgrind

translation
into IR

instrumentation

translation
To machine code

kernel

New
binary

xxx

libraries

Replace 
some of 

The library 
calls by
Using a 
preload
library

System call
wrapper
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Valgrind – sample output of “memcheck”

# valgrind buggy_program

==2799== Memcheck, a memory error detector

==2799== Copyright (C) 2002-2010, and GNU GPL'd, by Julian Seward et al.

==2799== Using Valgrind-3.6.1 and LibVEX; rerun with -h for copyright info

==2799== Command: buggy_program

==2799== 

==2799== HEAP SUMMARY:

==2799==     in use at exit: 200 bytes in 2 blocks

==2799==   total heap usage: 2 allocs, 0 frees, 200 bytes allocated

==2799== 

==2799== LEAK SUMMARY:

==2799==    definitely lost: 100 bytes in 1 blocks

==2799==    indirectly lost: 0 bytes in 0 blocks

==2799==      possibly lost: 0 bytes in 0 blocks

==2799==    still reachable: 100 bytes in 1 blocks

==2799==         suppressed: 0 bytes in 0 blocks

==2799== Rerun with --leak-check=full to see details of leaked memory

[...]

 Important parameters:
● --leak-check=full 
● --track-origins=yes
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Valgrind - Tools

 Several tools
● Memcheck (default): detects memory and data flow problems
● Cachegrind: cache profiling
● Massif: heap profiling
● Helgrind: thread debugging
● DRD: thread debugging
● None: no debugging (for valgrind JIT testing)
● Callgrind: codeflow and profiling

 Tool can be selected with –tool=xxx
 System z support since version 3.7 (SLES-11-SP2)
 Backports into 3.6 (SLES-10-SP4, RHEL6-U1)
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IPTRAF

 Characteristics: Live information on network devices / connections
 Objective: Filter and format network statistics
 Usage:

 Shows
● Details per Connection / Interface
● Statistical breakdown of ports / packet sizes
● LAN station monitor

 Hints
● Can be used for background logging as well

• Use SIGUSR1 and logrotate to handle the growing amount of data
● Knowledge of packet sizes important for the right tuning

iptraf
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IPTRAF

 Questions that usually can be addressed
● Connection behavior overview
● Do you have peaks in your workload characteristic
● With whom does your host really communicate

 Comparison to wireshark
● Not as powerful, but much easier and faster to use
● Lower overhead and no sniffing needed (often prohibited)

IF
details

Packet
sizes
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Tracepoints (Events)

 Characteristics: Complex interface, but a vast source of information
 Objective: In kernel latency and activity insights
 Usage: Access debugfs mount point /tracing
 Shows

● Time-stamp and activity name
● Tracepoints can provide event specific context data
● Infrastructure adds extra common context data like cpu, preempts depth, ...

 Hints
● Very powerful and customizable, there are hundreds of tracepoints

• Some tracepoints have tools to be accessed “perf sched”, “blktrace” both 
base on them

• Others need custom post processing
● There are much more things you can handle with tracepoints check out

Kernel Documentation/trace/tracepoint-analysis.txt (via perf stat) and
Kernel Documentation/trace/events.txt (custom access)
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Tracepoints – example I/III

 Here we use custom access since there was tool
● We searched for 1.2ms extra latency

• Target is it lost in HW, User-space, Kernel or all of them
● Workload was a simple 1 connection 1 byte←→1 byte load
● Call “perf list” for a list of currently supported tracepoints
● We used the following tracepoints
Abbreviation Tracepoint          Meaning

R            netif_receive_skb   low level receive

P            napi_poll           napi work related to receive

Q            net_dev_queue       enqueue in the stack

S            net_dev_xmit        low level send
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Tracepoints – example II/III

● Simplified script (full versions might tune buffer sizes, check files, and so on)
echo latency-format > /sys/kernel/debug/tracing/trace_options            # enable tracing type

echo net:* >> /sys/kernel/debug/tracing/set_event                        # select specific events

echo napi:* >> /sys/kernel/debug/tracing/set_event                       # “

echo "name == ${dev}" > /sys/kernel/debug/tracing/events/net/filter      # set filters

echo "dev_name == ${dev}" > /sys/kernel/debug/tracing/events/napi/filter # “

cat /sys/kernel/debug/tracing/trace >> ${output}                         # synchronous

echo !*:* > /sys/kernel/debug/tracing/set_event                          # disable tracing

● Output
#                _------=> CPU#        

#               / _-----=> irqs-off        

#              | / _----=> need-resched        

#              || / _---=> hardirq/softirq 

#              ||| / _--=> preempt-depth   

#              |||| /     delay                   

#  cmd     pid ||||| time  |   caller           

#     \   /    |||||  \    |   /             

   <...>-24116 0..s. 486183281us+: net_dev_xmit: dev=eth5 skbaddr=0000000075b7e3e8 len=67 rc=0

  <idle>-0     0..s. 486183303us+: netif_receive_skb: dev=eth5 skbaddr=000000007ecc6e00 len=53

  <idle>-0     0.Ns. 486183306us+: napi_poll: napi poll on napi struct 000000007d2479a8 fordevice eth

   <...>-24116 0..s. 486183311us+: net_dev_queue: dev=eth5 skbaddr=0000000075b7e3e8 len=67

   <...>-24116 0..s. 486183317us+: net_dev_xmit: dev=eth5 skbaddr=0000000075b7e3e8 len=67 rc=0
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Tracepoints – example III/III

 Example postprocessed

               SUM      COUNT    AVERAGE    MIN    MAX  STD-DEV

P2Q:   8478724    1572635       5.39      4   2140     7.41   

Q2S:  12188675    1572638       7.65      3     71     4.89   

S2R:  38562294    1572636      24.42      1   2158     9.08   

R2P:   4197486    1572633       2.57      1     43     2.39   

SUM:  63427179    1572635      40.03

           SUM      COUNT    AVERAGE    MIN    MAX  STD-DEV

P2Q:   7191885    1300897       5.53      4    171     1.31   

Q2S:  10622270    1300897       8.17      3     71     5.99   

S2R:  32078550    1300898      24.66      2    286     5.88   

R2P:   3707814    1300897       2.85      1    265     2.59   

SUM:  53600519    1300897      41.20

● Confirmed that most of the 1.2 ms were lost in our image
● Confirmed that it was not at/between a specific function

• Eventually it was an interrupt locality issue causing bad caching
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Orientation – where to go

Tool 1st overview CPU 
consumption

latencies Hot spots Disk I/O Memory Network

top / ps x x

sysstat x x x x

vmstat x x x

iostat x x

dasdstat x

scsistat x

netstat x x

htop / dstat / pidstat x x x x

irqstats x x x

strace / ltrace x

hyptop x

profiling x x

blktrace x

valgrind x

iptraf x x

tracepoints x x x x x
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Questions ?

 Further information is available at
● Live Virtual Classes for z/VM and Linux

http://www.vm.ibm.com/education/lvc/
● Linux on System z – Tuning hints and tips

http://www.ibm.com/developerworks/linux/linux390/perf/index.html

Schönaicher Strasse 220
71032 Böblingen, Germany

Phone +49 (0)7031-16-2247
schwidefsky@de.ibm.com

Martin Schwidefsky

Linux on System z 
Development

http://www.vm.ibm.com/education/lvc/
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Please Evaluate!
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