
IBM Java on System z
Session 12353

Marcel Mitran, STSM, Chief Architect IBM JVM on System z
Ken Irwin, IBM, zOS Java L2 Service Support

2
2

IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice
at IBM’s sole discretion. Information regarding potential future products is intended to outline our general
product direction and it should not be relied on in making a purchasing decision. The information mentioned
regarding potential future products is not a commitment, promise, or legal obligation to deliver any material,
code or functionality. Information about potential future products may not be incorporated into any contract.
The development, release, and timing of any future features or functionality described for our products
remains at our sole discretion.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of other IBM trademarks is available on the web at "Copyright and trademark information" at
http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.
WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT PRODUCT PLANS AND STRATEGY,
WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY
DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER
DOCUMENTATION. NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE
EFFECT OF, CREATING ANY WARRANTIES OR REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR
LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE
USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2011. All rights reserved.

Trademarks, Copyrights, Disclaimers

3

IBM and Java

• Java is critically important to IBM
• Fundamental infrastructure for IBM’s software portfolio
• Websphere, Lotus, Tivoli, Rational, Information Management (IM)

• IBM is investing strategically for Java in virtual machines
• As of Java 5.0, single JVM support

• JME, JSE, JEE
• New technology base (J9/TR Compiler) on which to deliver improved performance,

reliability, serviceability

• IBM also invests in, and supports public innovation in Java
• OpenJDK, Eclipse, Apache (XML, Aries, Derby, Harmony, Tuscany, Hadoop …)
• Broad participation in relevant open standards (JCP, OSGi)

4

Java Road Map

Language Updates
Java 5.0
• New Language features:

• Autoboxing
• Enumerated types
• Generics
• Metadata

Java 6.0
• Performance Improvements
• Client WebServices Support

• Support for dynamic languages
• Improve ease of use for SWING
• New IO APIs (NIO2)
• Java persistence API
• JMX 2.x and WS connection for JMX

agents
• Language Changes

Java 7.0

IBM Java Runtimes
IBM Java 5.0 (J9 R23)
• Improved performance

• Generational Garbage Collector
• Shared classes support
• New J9 Virtual Machine
• New Testarossa JIT technology

• First Failure Data Capture
• Full Speed Debug
• Hot Code Replace
• Common runtime technology

• ME, SE, EE

IBM Java 6.0 (J9 R24)
• Improvements in

• Performance
• Serviceability tooling
• Class Sharing

• XML parser improvements
• z10™ Exploitation

• DFP exploitation for BigDecimal
• Large Pages
• New ISA features

5.0

6.0

2005 2009

S
E

 5
.0

18
 p

la
tfo

rm
s

S
E

 6
.0

20
 p

la
tfo

rm
s

EE 5

WAS
6.1

WAS
7.0

2006 2008

WAS
6.0

200704

EE 6.x

**Timelines and deliveries are subject to change.

2010 2011

IBM Java 6.0.1/Java7.0
(J9 R26)

• Improvements in
• Performance
• GC Technology

• z196™ Exploitation
• OOO Pipeline
• 70+ New Instructions

• JZOS/Security Enhancements

WAS
8.5

2012 2013 2014
7.0

• Language improvements
• Closures for simplified fork/join

Java 8.0**

S
E

60
1/

 7
.x

>=
 2

0
pl

at
fo

rm
s

IBM Java7.0SR3/Java.Vnext**
• Improvements in

• Performance
• GC Technology

• zEC12™ Exploitation
• Transactional Execution
• Runtime Instrumentation
• Flash 1Meg pageable LPs
• 2G large pages
• Hints/traps

• Data Access Accelerator
• Cloud: Multi-tenancy/Virtualization

5

Java Execution Environments and Interoperability

IBM Java Execution Offerings
Transactional/Interactive

WebSphere for z/OS (WAS z/OS)
WebSphere Process Server for z/OS (WPS)
JCICS
IMS Java
DB2 Stored Procedures

Batch oriented
WebSphere Compute Grid (WAS-CG)

WAS/JEE runtime extensions

JZOS component of z/OS SDK
JES/JSE-based environment

z/OS V1R13 Java/COBOL Batch Runtime Env.*

JES/JSE-based, designed to inter-op with DB2 while
maintaining transaction integrity

Open Source or non-IBM vendor
Application Server and
Frameworks

Tomcat, JBoss

iBatis, Hibernate, Spring
Ant

Capitalize on pre-existing assets, artifacts, processes, core competencies,
platform strengths

COBOL/Native Interoperability
COBOL Invoke maps to JNI

RDz and JZOS** have tooling to map
COBOL copy books to Java classes

JCICS

IMS Java, JMP/JBP

WAS CG, WOLA
etc

* See http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=ca&infotype=an&supplier=897&letternum=ENUS211-252

** Alphaworks only, and hence currently un-supported

6

IBM Java Runtime Environment

• IBM’s implementation of Java 5/6/7 are built with IBM J9 Virtual Machine
and IBM Testarossa JIT Compiler technology

• Independent clean-room JVM runtime & JIT compiler

• Combines best-of breed from embedded, development and server
environments… from a cell-phone to a mainframe!

• Lightweight flexible/scalable technology

• World class garbage collection – gencon, balanced GC policies
• Startup & Footprint - Shared classes, Ahead-of-time (AOT) compilation

• 64-bit performance - Compressed references & Large Pages

• Deep System z exploitation – zEC12/z196/z10/z9/z990 exploitation
• Cost-effective for z - zAAP Ready!

• Millions of instances of J9/TR compiler

7

zEC12 – More Hardware for Java

Continued aggressive investment in Java on Z
Significant set of new hardware features tailored

and co-designed with Java

Hardware Transaction Memory (HTM)
Better concurrency for multi-threaded applications
eg. ~2X improvement to juc.ConcurrentLinkedQueue

Run-time Instrumentation (RI)
Innovation new h/w facility designed for managed runtimes
Enables new expanse of JRE optimizations

2GB page frames
Improved performance targeting 64-bit heaps

Pageable 1MB large pages using flash
Better versatility of managing memory

New software hints/directives
Data usage intent improves cache management
Branch pre-load improves branch prediction

New trap instructions
Reduce over-head of implicit bounds/null checks

New 5.5 GHz 6-Core Processor Chip
Large caches to optimize data serving
Second generation OOO design

Up-to 60% improvement in throughput amongst Java
workloads measured with zEC12 and Java7SR3

Engineered Together—IBM Java and zEC12 Boost Worklo ad Performance
http://www.ibmsystemsmag.com/mainframe/trends/whats new/java_compiler /

8

Hardware Transactional Memory (HTM)

• Allow lockless interlocked execution of a block of code called a ‘transaction’
• Transaction: Segment of code that appears to execute ‘atomically’ to other CPUs

• Other processors in the system will either see all-or-none of the storage up-dates of transaction

• How it works:
• TBEGIN instruction starts speculative execution of ‘transaction’
• Storage conflict is detected by hardware if another CPU writes to storage used by the transaction
• Conflict triggers hardware to roll-back state (storage and registers)

• transaction can be re-tried, or
• a fall-back software path that performs locking can be used to guarantee forward progress

• Changes made by transaction become visible to other CPUs after TEND

Storage conflict:
Tran A will abort
Tran B will commit
changes to X and Y

TBEGIN

…

load Y

load X

…

TEND

CPU 0: Tran A
X = Y = 0;

TBEGIN

X = 1

store X

Y = 1

store Y

TEND

CPU 1: Tran B

CPU 0 can only see (X=Y=0) or (X=Y=1) ,
cannot see (X=1,Y=0) or (X=0,Y=1)

9

Transaction Lock Elision on HashTable.get()
Java Prototype

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threads

T
hr

ou
gh

pu
t (

op
s/

se
c)

HTM Example: Transactional Lock Elision (TLE)
Threads must serialize despite only
reading… just in-case a writer updates
the hash

read_hash(key) {

Wait_for_lock();

read(hash, key);

Release_lock();

}

Thr1: read_hash()

Thr2: read_hash()

Thr3:read_hash()

T

Lock elision allows readers to
execute in parallel, and safely back-
out should a writer update hash

read_hash(key)

TRANSACTION_BEGIN

read hash.lock;

BRNE serialize_on_hash_lock

read (hash, key);

TRANSACTION_END

Thr1: read_hash() … Thr3: read_hash()

T’

10

Transactional Execution: Concurrent Linked Queue

• ~2x improved scalability of juc.ConcurrentLinkedQue ue
• Unbound Thread-Safe LinkedQueue

• First-in-first-out (FIFO)
• Insert elements into tail (en-queue)
• Poll elements from head (de-queue)

• No explicit locking required

• Example usage: a multi-threaded work queue
• Tasks are inserted into a concurrent linked queue as multiple worker threads poll work

from it concurrently

head

node

node

node

tail

….

last
node

En-queue

first
node

De-queue

New TX-base
implementation

Traditional CAS-base
implementation

(Controlled measurement environment, results may vary)

11

z/OS Java SDK 7:16-Way Performance
64-bit Java Multi-threaded Benchmark on 16-Way

(Controlled measurement environment, results may vary)

Aggregate 60% improvement from zEC12 and Java7SR3

� zEC12 offers a ~45% improvement over z196 running t he Java Multi-Threaded Benchmark

� Java7SR3 offers an additional ~13% improvement (-Xaggressive + Flash Express pageable 1Meg large pa ges)

12

z/OS Java SDK 7: 16-Way Performance
Aggregate HW and SDK Improvement z9 Java 5 SR5 to z EC12 Java7SR3

(Controlled measurement environment, results may vary)

~12x aggregate hardware and software improvement co mparing Java5SR5 on z9 to Java7SR3 on zEC12
LP=Large Pages for Java heap CR= Java compressed references

Java7SR3 using -Xaggressive + Flash Express pageable 1Meg large pages

z/OS Multi-Threaded 64 bit Java Workload 16-Way
~12x Improvement in Hardware and Software

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

zEC12 SDK 7 SR3
Aggressive +
LP Code Cache
zEC12 SDK 7 SR1

z196 SDK 7 SR1

z196 SDK 6 SR8

z10 SDK 6 SR4

z10 SDK 6 GM
no (LP CR)

z9 Java 5 SR5
no (LP CR)

13
13

z/OS Java SDK 7: CPU-Intensive Benchmark

(Controlled measurement environment, results may vary)

zEC12 and Java7SR3 offer a ~40% composite improveme nt over z196 running the CPU Intensive benchmark

� zEC12 offers a ~33% improvement over z196 running t he CPU-Intensive Benchmarks

� Java7SR3 offers an additional ~5% improvement (-Xaggressive + Flash Express pageable 1Meg large pag es)

14

WAS on z/OS –
Aggregate HW, SDK and WAS Improvement: WAS 6.1 (Jav a 5) on z9 to WAS 8.5 (Java 7) on zEC12

(Controlled measurement environment, results may vary)

~5x aggregate hardware and software improvement com paring WAS 6.1 Java5 on z9 to WAS 8.5 Java7SR1 on z EC12

15

TradeLite Servlet and JSP
WAS8.5 and WAS8.5 Liberty Profile on zEC12 with Jav a7SR3

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

160.00%

180.00%

200.00%

WAS8.5 on z196 WAS8.5 on zEC12 WAS8.5 Liberty on z196 WAS8.5 Liberty on
zEC12 + Java7SR3++

T
hr

ou
gh

pu
t

(N
or

m
al

iz
ed

 to
 W

A
S

8.
5

on
 z

19
6)

83%

WAS on z/OS
Servlets and JSPs with the Liberty Profile

(Controlled measurement environment, results may vary)

� WAS8.5 Liberty on zEC12 using Java7SR3 vs WAS8.5 on z196 running TradeLite demonstrates a 83%
improvement to Servlet and JSP throughput.

� WAS8.5 Liberty offers up to 5x start-up time reduct ion vs. WAS8.5 (<5 seconds)

� WAS8.5 Liberty offers reduced real-storage requirem ents up to 81% vs. WAS8.5 (80M versus 420M)

Java7SR3

zEC12

WAS Liberty**

16

JCICS with Java7SR3 and zEC12

• Using complex Java workload –
Axis2 webservice

• Equivalent throughput using CICS V5.1
on z196 compared to CICS V4.2

• 30% improvement in throughput using
CICS V5.1 on zEC12 compared to
CICS V4.2 on z196

• 39% improvement in throughput using
CICS V5.1 with Java 7 zEC12
exploitation compared to CICS V4.2 on
z196

0

500

1000

1500

2000

2500

3000

3500

th
ro

ug
hp

ut
 (

IT
R

) CICS V4.2 z196

CICS V5.1 z196

CICS V5.1 zEC12

CICS zEC12 +
exploitation

+30%

+39%

higher is better

More than a third of CICS customers are using JCICS

17

IMS JMP Region with Java7SR3 and zEC12

(Controlled measurement environment, results may vary)

IMS Java - Hardware stack improvements (2012)

19838

14754

0

5000

10000

15000

20000

25000

z196 zEC12

E
T

R
 (T

ra
n/

S
ec

)

Up to 32%
improvement
to throughput

More than 20% of top IMS customers are using IMS-Ja va

18

IMS JMP region performance
Aggregate SDK, software and hardware improvements

Over 4x aggregate throughput improvement from 2009 to 2012 due to the following
enhancements

• Java version to version performance improvements
• IMS improvements
• Hardware improvements
• DASD improvements

IMS Java transaction throughput from 2009 to 2012

4191

7600 8448
9389

12540

19838

0

5000

10000

15000

20000

25000

Jun-08 Dec-08 Jul-09 Jan-10 Aug-10 Feb-11 Sep-11 Apr-12 Oct-12

Timeline

E
T
R

 (T
ra

n/
S

ec
)

(Controlled measurement environment, results may vary)

19

Java8-Beta Program

• Provides Java SE 8 compatibility, while exploiting the unique
capabilities of IBM platforms to achieve performanc e and usability
improvements

• To provide early technology access during the development cycle
• To assist Java 8 in satisfying customer requirements
• To provide feedback to IBM

• New in IBM SDK, Java Technology Edition, Version 8:
• Compatibility with the new Java SE 8
• Leveraging new IBM hardware (e.g. IBM zEnterprise EC12)
• Improved performance for workload optimized runtimes, which delivers better

application throughput without changes to application code
• Enhanced support for Cloud & Multi-tenancy environments
• Improved efficiency of manipulating native data records/types directly from Java

code

• Managed and Open Beta
• http://www.ibm.com/developerworks/java/jdk/beta/index.html

20

Java8: Language Innovation -- Lambdas

New syntax to allow concise code snippets and expre ssion
• Useful for sending code to java.lang.concurrent
• On the path to enabling more parallelisms

http://www.dzone.com/links/presentation_languagelibraryvm_coevolution_in_jav.html

21

Java8: Data Access Accelerator

A Java library for bare-bones data
conversion and arithmetic

Operates directly on byte arrays
No Java object tree created

Orchestrated with JIT for deep platform opt.

Avoids expensive Java object instantiation

Library is platform and JVM-neutral

Current Approach:
byte[] addPacked(array a[], array b[]) {

BigDecimal a_bd = convertPackedToBd(a[]);

BigDecimal b_bd = convertPackedToBd(b[]);

a_bd.add(b_bd);

return (convertBDtoPacked(a_bd));

}

Proposed Solution:

byte[] addPacked(array a[], array b[]) {

DAA.addPacked(a[], b[]);

return (a[]);

}

Marshalling and Un-marshalling
Transform primitive type (short, int, long, float, double) � byte array
Support both big/little endian byte arrays

Packed Decimal (PD) Operations
Arithmetic: +, -, *, /, % on 2 PD operands
Relation: >,<,>=,<=,==,!= on 2 PD operands

Error checking: checks if PD operand is well-formed
Other: shifting, and moving ops on PD operand

Decimal Data Type Conversions
Decimal � Primitive: Convert Packed Decimal(PD), External

Decimal(ED), Unicode Decimal(UD) �
primitive types (int, long)

Decimal � Decimal: Convert between dec. types (PD, ED, UD)
Decimal �Java: Convert dec. types (PD, ED, UD) �

BigDecimal, BigInteger

22

Looking Ahead: PackedObjects with IBM Java

PackedObjects
Experimental feature in the IBM JVM.
Introduces a new Java type that
implements an explicit object model which
tightly packs fields allowing for natural and
efficient direct mapping of structured data.

Goals
• Allow for explicit source-level

representation of structured data in Java

• Improve serialization and I/O performance
• Allow direct access to “native” (off-heap)

data

Timelines and deliveries are subject to change.

http://www.slideshare.net/mmitran/ibm-java-packed-objects-mmit-20121120

http://duimovich.blogspot.ca/2012/11/packed-objects-in-java.html

23

Looking Ahead: Cloud with IBM Java

• Multi-tenancy support will allow multiple
applications to run in a single shared JVM for high -
density deployments.

• Win: Footprint reduction enabled by sharing runtime and JVM artifacts
while enforcing resource consumption quotas

• Platform Coverage: 64-bit, balanced GC policy only
• Ergonomics: Single new command-line flag (-Xmt = multi tenancy)

• Runtime Adjustable Heap Size (-Xsoftmx)
• JMX beans allow for dynamically adjusting heap size
• Allows users to take advantage of hot-add of memory

Timelines and deliveries are subject to change.

Data
Multi-
tenancy

Virtualization

• Hypervisor, Virtual Guest, and Extended-OS JMX Bean s
• Allows applications to detect and identify the installed hypervisor and query attributes

of LPAR
• Provides richer access to operating system performance statistics

24

Looking Ahead: Cloud

• Multi-tenancy support will allow multiple applicati ons to run in a
single shared JVM for high-density deployments.
• Win: Footprint reduction enabled by sharing runtime and JVM artifacts

while enforcing resource consumption quotas
• Platform Coverage: 64-bit, balanced GC policy only
• Ergonomics: Single new command-line flag (-Xmt = multi tenancy)

• Runtime Adjustable Heap Size (-Xsoftmx)
• JMX beans allow for dynamically adjusting heap size
• Allows users to take advantage of hot-add of memory

• Hypervisor, Virtual Guest, and Extended-OS JMX Bean s
• Allows applications to detect and identify the installed hypervisor and query

attributes of LPAR
• Provides richer access to operating system performance statistics

Timelines and deliveries are subject to change.

25

26

Liberty and traditional profile capabilities

There are functional differences between traditiona l WAS and the
Liberty profile – Liberty provides a useful subset of traditional WAS

Liberty Profile Traditional WAS Profile

Bean validation
Blueprint
Java API for RESTful Web Services
Java Database Connectivity (JDBC)
Java Naming and Directory Interface (JNDI)
Java Persistence API (JPA)
Java Server Faces (JSF)
Java Server Pages (JSP)
JMX
Monitoring
OSGi JPA
Remote connector
Secure Sockets Layer (SSL)
Security
Servlet
Session Persistence
Transaction
Web application bundle (WAB)
z/OS Security (SAF)
z/OS Transactions (RRS)
z/OS Workload Management

Enterprise Java Beans (EJBs)
Messaging (JMS)
Web Services
Service Component Arch (SCA)
Java Connector Architecture (JCA)
Clustering
WebSphere Optimized Local Adapters
Administrative Console
WSADMIN scripting
Multi-JVM Server Model

And much more …

Everything Liberty has…

27

START:
IA1 BR THERE

HERE:
IA10 LR
IA11 LR
IA12 AR
IA13 collect GR1

….
IA25 L � Sample

….

THERE:
IA100 ….

ST
…

IA200 BR HERE
…

IA1
IA100

Circular

Collection Buffer

IA200
IA10
IA13
GR1CB head

Event Tracing

Just-in-time Compiler

Profiler

Immediate representation generator

Optimizer

Code generator

Runtime

• Low overhead profiling with hardware support
• Instruction samples by time, count or explicit marking

• Sample reports include hard-to-get information :
• Event traces, e.g. taken branch trace
• “costly” events of interest, e.g. cache miss information
• GR value profiling

• Enables better “self-tuning” opportunities

Runtime Instrumentation

Event
Trace

Instrumentation
controlsInstruction

processing Pre-allocated
storage

1 (setup)

2

3

4
5

6 (analyze)

CPU

JVM

GC

Bytecodes

28

Speak to me in ‘Java ’
• Java only speaks ‘Java’…

• Data typically must be copied/re-formatted onto/off Java heap
• Costly in path-length and footprint

Java heap (72 bytes)

JVM

Native storage (20 bytes)

I/O

29

On-Heap PackedObject
• Allows controlled layout of storage of data structures on the Java heap

• Reduces footprint of data on Java heap
• No (de)serialization required

JVM

Native storage (20 bytes)

I/O

30

Off-Heap PackedObject

• Enable Java to talk directly to the native data structure
• Avoid overhead of data copy onto/off Java heap
• No (de)serialization required

JVM

Native storage (20 bytes)

I/O

Meta Data

31

Multitenancy : Isolation and Density

Hardware

OS Images

Middleware

Application

Hardware

OS Images

Middleware

Application

Hardware

OS Images

Middleware

Application

OS Images

Middleware

Application

Hardware

OS Image

Middleware

Application

Middleware

Application

Hardware

OS Image

Middleware (e.g. WAS)

Application Application

Share-nothing
(maximum isolation)

Shared hardware Shared OS Shared Process

Hardware

OS Image

Middleware (e.g. WAS)

Application

Tenant Tenant

Share-everything
(maximum sharing)

Isolation

Density

-Xshareclasses -Xshareclasses

Tenant API

‘Mission critical’
apps

‘free’ apps

1+ GB / tenant 100’s MB / tenant1+ GB / tenant 10’s MB / tenant 10’s KB / tenant

Timelines and deliveries are subject to change.

