
12340: Make Your C/C++ and PL/I Code FLY With
the Right Compiler Options

Visda Vokhshoori
IBM

Peter Elderon
IBM

What does good application
performance mean to you?

• Fast execution time

• Short compile time

• Small load module size

What?

How do you achieve
good application performance?

• Use the best compiler options

• Write good code

• Install newer hardware

How?

The best compiler options

Compiler options

• Most compiler options have no effect on performance

• But some have a major impact, particularly
• ARCH (and TUNE)
• OPT

• Others are also important, e.g.
• FLOAT(AFP)
• HGPR
• etc

The ARCH option

- The ARCH option specifies the
level of the hardware on which
the generated code must run

- ARCH(6) is the PL/I default – it
produces code that will run on
old z990 machines

- ARCH(5) is the C/C++ default –
it produces code that will run
on the even older z900

ARCH

- The ARCH option is dangerous
– but only if misused

- If you specify ARCH(n) and run
the generated code on an
ARCH(n-1) machine, you will
most likely get an operation
exception

- So you must set ARCH to the
lowest level machine where
your generated code will run

ARCH option overview
Machine supported Hardware features

exploited

ARCH(6) z990 Long displacement,
Load Bbyte,…

ARCH(7) z9 Decimal Floating Point,
Extended Immediate,

Extended Translate, …
ARCH(8) z10 Compare and Branch,

Add Logical with
Signed Immediate, …

ARCH(9) z196 Conditional Load/Store,
Non-destructive ops,
Population count, …

ARCH(10) ec12 DFP-Zoned Conversions

ARCH(6)

• Both PL/I and C/C++ exploit the

• The long-displacement facility
• The load byte instruction
• Additional floating point load and store instructions

• The long-displacement provides a huge improvement
over the code generated under ARCH(5) – for this
reason alone, unless your code runs on machines older
than a z9, don’t use the ARCH(5) default.

ARCH(7)

• Both PL/I and C/C++ exploit some of the

• Extended immediate facility
• Extended translation facility
• Decimal floating point (DFP) instruction set

ARCH(7)

• On the z9, the DFP instructions were in software (aka
millicode)

• On z10, they are in the hardware

• So, they are much faster on z10 (or arch(8)) machines

• This is often true of some significantly new instructions -
sometimes the compiler will defer using them until they
are in the hardware and actually make for faster code

ARCH(7)

• PL/I, for example, uses

• TRTR to inline some verifyr and searchr
• SRSTU to inline some widechar index
• CU12 and CU21 to inline some UTF valid functions
• CU12 and CU21 to inline UTF-8 <-> UTF-16

ARCH(8)

• Both PL/I and C/C++ exploit some of the

• Compare-and-branch
• General instruction extensions facility
• More decimal floating point (DFP) instructions

• For example to convert DFP to HEX or BINARY float

ARCH(8)

• General instruction extensions facility includes

• ADD LOGICAL WITH SIGNED IMMEDIATE
• COMPARE AND BRANCH (RELATIVE)
• COMPARE (HALFWORD) RELATIVE LONG
• COMPARE IMMEDIATE AND BRANCH (RELATIVE)
• COMPARE LOGICAL AND BRANCH (RELATIVE)
• COMPARE LOGICAL IMMEDIATE AND BRANCH (RELATIVE)
• COMPARE LOGICAL RELATIVE LONG
• LOAD HALFWORD RELATIVE LONG
• LOAD LOGICAL (HALFWORD) RELATIVE LONG
• LOAD RELATIVE LONG
• MULTIPLY SINGLE IMMEDIATE
• STORE (HALFWORD) RELATIVE LONG

ARCH(9)

• Both PL/I and C/C++ exploit some of the

• Load/store-on-condition facility
• Distinct-operands facility
• Population-count facility

ARCH(9): Load-on-condition
example

consider this small program:

 2.0 | test: proc returns(fixed bin(31));
 3.0 |
 4.0 | exec sql include sqlca;
 5.0 |
 6.0 | dcl c fixed bin(31);
 7.0 |
 8.0 | exec sql commit;
 9.0 |
10.0 | if sqlcode = 0 then
11.0 | c = 0;
12.0 | else
13.0 | c = -1;
14.0 |
15.0 | return(c);
16.0 | end;

Load-on-condition example …

• Under OPT(3) ARCH(8), the instructions after the call are:

Load-on-condition example …

• Under OPT(3) ARCH(9), the instructions after the call are:

Load-on-condition example …

• So, under ARCH(8), the code sequence was:

• Load SQLCODE into r0
• Load -1 into r1
• Compare r0 (SQLCODE) with 0 and branch if NE to @1L8
• Load 0 into r1
• @1L8
• Store r1 into the return value

Load-on-condition example …

• But under ARCH(9), the code has no label and no branch:

• Load -1 into r1
• Load SQLCODE into r0 via ICM (so that CC is set)
• Load 0 into r0
• Load-on-condition r1 with r0 if the CC is zero (i.e. if SQLCODE = 0)
• Store r1 into the return value

ARCH(10)

• Both PL/I and C/C++ exploit some of the

• The execution-hint facility
• The load-and-trap facility
• The miscellaneous-instructions-extension facility
• The transactional-execution facility

ARCH(10): Zoned to DFP example

consider this small program:

 pic2int: proc(ein, aus)
options(nodescriptor);

 dcl ein(0:100_000) pic'(9)9' connected;
 dcl aus(0:100_000) fixed bin(31) conn;
 dcl jx fixed bin(31);

 do jx = lbound(ein) to hbound(ein);
 aus(jx) = ein(jx);
 end;
 end;

Zoned to DFP example …

• Under ARCH(9), the heart of the loop consists of these 8 instructions

 0058 F248 D098 1000 PACK #pd580_1(5,r13,152),_shadow2(9,r1,0)
 005E C020 0000 0021 LARL r2,F'33'
 0064 D204 D0A0 D098 MVC #pd581_1(5,r13,160),#pd580_1(r13,152)
 006A 4110 1009 LA r1,#AMNESIA(,r1,9)
 006E D100 D0A4 200C MVN #pd581_1(1,r13,164),+CONSTANT_AREA(r2,12)
 0074 F874 D0A8 D0A0 ZAP #pd582_1(8,r13,168),#pd581_1(5,r13,160)
 007A 4F20 D0A8 CVB r2,#pd582_1(,r13,168)

 007E 502E F000 ST r2,_shadow1(r14,r15,0)

Zoned to DFP example …

• While under ARCH(10), it consists of 9 instructions and uses DFP in several of
them – but since only the ST and the new CDZT refer to storage, the loop runs
more than 66% faster

 0060 EB2F 0003 00DF SLLK r2,r15,3
 0066 B9FA 202F ALRK r2,r15,r2
 006A A7FA 0001 AHI r15,H'1'
 006E B9FA 2023 ALRK r2,r3,r2
 0072 ED08 2000 00AA CDZT f0,#AddressShadow(9,r2,0),b'0000'
 0078 B914 0000 LGFR r0,r0
 007C B3F6 0000 IEDTR f0,f0,r0
 0080 B941 9020 CFDTR r2,b'1001',f0
 0084 5021 E000 ST r2,_shadow1(r1,r14,0)

Zoned to DFP example …

• Some lessons from this example:

• A longer set of instructions may be faster than a shorter set

• Reducing storage references helps performance

• Eliminating packed decimal instructions can help performance

• Using decimal-floating-point may improve your code’s performance
even in program’s that have no floating-point data

• And best-of-all: the compiler will figure out this for you

The right ARCH option
does decrease run time

Run-time of a typical C program Default ARCH vs ARCH(8) Executed on a z10
machine using XL C/C++ V1R13

On average 5% better with ARCH(8)

0
200
400
600
800

1000
1200
1400
1600
1800

noopt o2 o3

Across optimization levels

Ex
ec

ut
io

n
tim

e
in

se

co
nd

s Default ARCH
ARCH(8)

The right ARCH option
does NOT increase compile time

Compile-time of a typical C program Default ARCH vs ARCH(8) compiled on a
z10 machine using XL C/C++ V1R13 On average 9% less with ARCH(8)

0

20

40

60

80

100

120

noopt o2 o3

Across optimization levels

Co
m

pi
le

 ti
m

e
in

 s
ec

on
ds

Default ARCH
ARCH(8)

TUNE

- This option controls instruction
scheduling etc to produce the best
code with the given ARCH option
but to be run on the TUNE machine

- E.g. TUNE(9) ARCH(5) is safe and
produces code that will run on an
ARCH(5) machine but perform best
on an ARCH(9) machine

- C/C++ default is TUNE(5)

- PL/I no longer has an external TUNE
option and instead sets TUNE equal
to ARCH

Recommended values for
ARCH and TUNE options

Choose the highest value for the ARCH option that will
produce code that can still run on your oldest machine
(and, if you are a vendor, on the oldest machine of your
customers).

For C/C++ applications, we recommend setting the TUNE
option to be at least equal to the ARCH option value.

(For PL/I, the compiler sets TUNE equal to the ARCH option)

The OPTIMIZE option

- The OPTIMIZE, or OPT, option controls how much, or even if at all, the
compiler tries to optimize your code

- Under the default OPT(0) option, the compiler simply translates your
code into machine code source line by source line

- The code generated under OPT(0) will be large and very slow

- OPT(0) is the best choice when you want to use a debugger

- OPT(0) also requires the least compile-time - by far

- But OPT(0) is a terrible choice if you care about your runtime
performance

The OPTIMIZE option

- When optimizing, the compiler will improve, often vastly, the code it
generates by, for example
- Keeping intermediate values in registers
- Moving code out of loops
- Merging statements
- Reordering instructions to improve the instruction pipeline
- Inlining functions

- All this can make debugging much harder

- And OPT(n) with n > 0 can require much more CPU and REGION
during the compilation

The OPTIMIZE option

- The PL/I and C++ compilers use the same optimizing backend, but
there are differences in what OPT suboptions they support and what
they mean:

- PL/I’s OPT(2) is a crippled version of C’s OPT(2)
- It helps compile-time be reasonable for large programs
- But it does produce less than optimal code

- PL/I’s OPT(3) is the same as C’s OPT(2)
- It can use a lot of CPU and REGION
- But it will produce very good and safe code

- C/C++ has an OPT(3) that is even more aggressive

The OPTIMIZE option

- Some of the additional optimizations under C/C++ OPT(3) include:
- Aggressive code motion and scheduling on computations that have

the potential to raise an exception
- Conformance to IEEE rules are relaxed
- Floating-point expressions may be rewritten
-

• You can use the STRICT option to turn off the aggressive
optimizations that might change the semantics of a program

• This optimization level will consumer even more cpu and region during
compile time

The OPTIMIZE option

- C/C++ also allows you to compile your optimized code HOT

- Under the HOT option, the compiler performs
- High-Order loop analysis and Transformations
-

• It may improve the code generated for some of the loops in your apps

• But it will consume yet more cpu and region

• It is not supported with the OPT(0) option

Other compiler options
important for performance

- FLOAT(AFP(NOVOLATILE))

- HGPR

- UNROLL

- Inlining
- C/C++: INLINE
- PL/I: DFT(INLINE)

Other compiler options
important for performance

- These options must be used with intelligence

- For example, UNROLL can make your code not only
faster, but also bigger

- Inlining can also greatly increase your object size and
sometimes even make the code slower. We have seen a C
program that performed 4X worse with INLINE

Other PL/I compiler options
 important for performance

- REDUCE

- RESEXP

- RULES(NOLAXCTL)

- DEFAULT(REORDER NOOVERLAP CONNECTED)

Other C/C++ compiler options
 important for performance

- XPLINK

- ANSIALIAS

- IPA

- COMPACT

- STRICT

- STRICT_INDUCTION

XPLINK

- A modern linkage convention that is 2.5 times more efficient than the
conventional linkage convention

- We have seen some programs improve by 30%

- You cannot statically link non-XPLINK with XPLINK

- You can call non-XPLINK DLLs from XPLINK DLLs and vice-versa but
you must tell the compiler about this so that it can insure the
(expensive) switching code gets executed

- If your application contains few switches (as is true of the PL/I
compiler where the frontend is not XPLINK and the backend is), then
mixing will be beneficial; otherwise it may be very costly

Choosing the right options
is important for performance, but

• Even more important is

• Writing good code

Warning

- Attempts to be clever and produce “optimal” code have produced:

- Code that is unreadable

- Code that cannot be maintained

- Code that performs worse than less clever solutions

- Code that fails!

- Readability trumps speed

Warnung

- Wegen des Versuchs klug zu erscheinen und optimalen Code zu
schreiben habe ich zu oft folgendes gesehen:

- Programme, die keiner verstehen kann

- Programme, die keiner reparieren kann

- Programme, die langsamer laufen als einfachere Loesungen

- Programme, die einfach abbrechen

- Lesbarkeit vor Schnelligkeit !

Install newer hardware

New hardware

- Requires no

- Recompilation

- Relinking

- Migration to a new release

- But can make your code run much faster

- Often the performance boost from moving to new hardware is greater
than that from recompiling with the corresponding new ARCH level

Feedback

• We are collecting feedback for future sessions -
which topics are you interested in?

• Looking forward to hearing from you!!

• Please email Visda or me

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

