
SHARE Session 12339 Copyright IBM 2012 1

Exploit Condition Handling
in Language Environment

Thomas Petrolino

IBM Poughkeepsie

tapetro@us.ibm.com

SHARE Session 12339 Copyright IBM 2012 2

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

The following are trademarks or registered trademarks of other companies.

* Registered trademarks of IBM Corporation

* All other products may be trademarks or registered trademarks of their respective companies.

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance
characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business
contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-
IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Trademarks

Language Environment

z/OS

CICS

SHARE Session 12339 Copyright IBM 2012 3

Agenda

� Introduction
� Condition Handling Terminology
� Language Environment Condition Handling

Model
� Registering a Condition Handler
� Writing a Condition Handler
� Sources of Additional Information
� Appendix

� Related Run-time Options

� Example COBOL Program (separate file)

SHARE Session 12339 Copyright IBM 2012 4

Introduction

SHARE Session 12339 Copyright IBM 2012 5

Why Use a Condition Handler?

�� To detect and react to an issue To detect and react to an issue
encountered during the execution of an encountered during the execution of an
applicationapplication
�� Recover from a failure that might have Recover from a failure that might have

caused an application to terminatecaused an application to terminate

�� Receive notification of a nonReceive notification of a non--fatal situation fatal situation

�� Capture diagnostic information to assist with Capture diagnostic information to assist with
troubletrouble--shootingshooting

SHARE Session 12339 Copyright IBM 2012 6

Language Environment
Condition Handling

�� A stack frameA stack frame--based modelbased model
�� Application can handle conditions at the Application can handle conditions at the

level at which they occurlevel at which they occur

�� Can be written in language of choiceCan be written in language of choice
�� Assembler, C/C++, COBOL, PL/IAssembler, C/C++, COBOL, PL/I

�� Supports mixedSupports mixed--language language
environmentsenvironments

SHARE Session 12339 Copyright IBM 2012 7

Condition Handling Terminology

SHARE Session 12339 Copyright IBM 2012 8

Condition

�� Any change to the normal flow of a Any change to the normal flow of a

programprogram

�� a.k.a. exception, interruptiona.k.a. exception, interruption

SHARE Session 12339 Copyright IBM 2012 9

Condition...

�� A Condition may occur becauseA Condition may occur because……
�� Hardware detects an interruptHardware detects an interrupt

�� SOC7, SOC9, SOCBSOC7, SOC9, SOCB……

�� Operating system detects problemOperating system detects problem
�� Open error, some other file mismatch, out of memory, etcOpen error, some other file mismatch, out of memory, etc

�� Language detects some Language detects some ““situationsituation””
�� COBOL COBOL ““out of rangeout of range”” for table or reference modification and user for table or reference modification and user

has SSRANGE and CHECK(ON)has SSRANGE and CHECK(ON)

�� LE can generate condition via a callable serviceLE can generate condition via a callable service
�� Date Date ““out of rangeout of range”” for CEEDAYS, for examplefor CEEDAYS, for example

�� User routine User routine ““signalssignals”” a conditiona condition
�� Call to CEESGL from COBOLCall to CEESGL from COBOL

�� raise() in C/C++raise() in C/C++

�� SIGNAL in PL/ISIGNAL in PL/I

SHARE Session 12339 Copyright IBM 2012 10

Condition Handler

�� Routine invoked by Language Environment so Routine invoked by Language Environment so
that user programs can analyze and react to that user programs can analyze and react to
conditionsconditions
�� ““RegisteredRegistered”” to LE via:to LE via:

�� call to CEEHDLR callable servicecall to CEEHDLR callable service

�� USRHDLR runUSRHDLR run--time optiontime option

�� Member language semantics, such as PL/I ON statements.Member language semantics, such as PL/I ON statements.

�� Allows an application to resolve or at least react Allows an application to resolve or at least react
to problems that otherwise might have caused it to problems that otherwise might have caused it
to terminateto terminate

SHARE Session 12339 Copyright IBM 2012 11

Condition Handler...

�� Handler can choose to:Handler can choose to:
�� Resume Resume –– after corrective action taken, after corrective action taken,

control returns to a control returns to a ‘‘resume cursorresume cursor‘‘
�� Either back to point of failure, or to a new resume Either back to point of failure, or to a new resume

point set by the condition handlerpoint set by the condition handler

�� Example: Data Exception/S0C7 Example: Data Exception/S0C7 –– application knows application knows
how to handle this, wants to continue processinghow to handle this, wants to continue processing

�� Percolate Percolate -- decline to handle the condition, LE decline to handle the condition, LE
calls next condition handlercalls next condition handler

�� Example: Operation Exception/S0C1 Example: Operation Exception/S0C1 –– usually usually
unexpected, application may want to just give upunexpected, application may want to just give up

SHARE Session 12339 Copyright IBM 2012 12

Condition Handler...

�� Handler can choose to:Handler can choose to:

�� Promote Promote -- change condition meaning and change condition meaning and

percolatepercolate

�� Example: WarningExample: Warning--level condition CEE3QR / level condition CEE3QR /

CEE3931W from CEEDLYM received, but CEE3931W from CEEDLYM received, but

application needs to treat it as criticalapplication needs to treat it as critical

�� FixFix--up and resume up and resume –– resumeresume with new input with new input

value to service or new output value from value to service or new output value from

serviceservice

SHARE Session 12339 Copyright IBM 2012 13

Condition Token

�� a.k.a. Feedback Code, Messagea.k.a. Feedback Code, Message

�� Identifies a specific detected conditionIdentifies a specific detected condition

�� 12 bytes of information, including:12 bytes of information, including:

�� Facility ID (CEE, AFH, IBM, IGZ, EDCFacility ID (CEE, AFH, IBM, IGZ, EDC……))

�� Message NumberMessage Number

�� SeveritySeverity

�� InstanceInstance--specific informationspecific information

SHARE Session 12339 Copyright IBM 2012 14

Stack Frame / DSA

�� Physical representation of the Physical representation of the
activation of a routineactivation of a routine
�� An area of storage allocated on a LIFO An area of storage allocated on a LIFO

stack stack

�� Contains:Contains:

�� Register Save AreaRegister Save Area

�� Automatic / local variablesAutomatic / local variables

SHARE Session 12339 Copyright IBM 2012 15

Stack Frame / DSA...

�� A Stack Frame is created for: A Stack Frame is created for:
�� Function call in C/C++Function call in C/C++

�� Entry into a compile unit in COBOL (not nested)Entry into a compile unit in COBOL (not nested)

�� Entry into procedure or begin block in PL/IEntry into procedure or begin block in PL/I

�� Entry into ONEntry into ON--Unit in PL/IUnit in PL/I

�� Entry into a main or subprogram in FortranEntry into a main or subprogram in Fortran

�� A Stack Frame is destroyed when the driven A Stack Frame is destroyed when the driven
program unit endsprogram unit ends

�� LE allocates LE allocates ““Stack Frame 0Stack Frame 0”” to mark the start of to mark the start of
the stackthe stack

SHARE Session 12339 Copyright IBM 2012 16

Cursors

�� Resume cursorResume cursor
�� Points to the initial Points to the initial ““where to resumewhere to resume”” locationlocation

�� Always on the move as the application executes, Always on the move as the application executes,
tracking the NSI (next sequential instruction)tracking the NSI (next sequential instruction)

�� When condition or signal occurs, resume cursor is When condition or signal occurs, resume cursor is
positioned after the positioned after the machinemachine instruction that caused it instruction that caused it

�� Can be Can be ““movedmoved”” to change the resume locationto change the resume location

�� Handle cursorHandle cursor
�� Points to the current condition handler being processed Points to the current condition handler being processed

during Condition Handlingduring Condition Handling

SHARE Session 12339 Copyright IBM 2012 17

Language Environment
Condition Handling Model

SHARE Session 12339 Copyright IBM 2012 18

Stack Frame-based Model

�� UserUser--registered condition handler is associated registered condition handler is associated
with the stack frame that registered itwith the stack frame that registered it

�� USRHDLR runUSRHDLR run--time option can associate a usertime option can associate a user--
written condition handler with:written condition handler with:
�� Stack frame 0; and/orStack frame 0; and/or

�� Stack frame that incurred the conditionStack frame that incurred the condition

�� Member language handlers may be called at each Member language handlers may be called at each
stack frame to perform languagestack frame to perform language--specific specific
processingprocessing

SHARE Session 12339 Copyright IBM 2012 19

Basic Condition Handling Flow

�� Starts with the most recently activated stack frameStarts with the most recently activated stack frame
�� The stack frame that incurred the conditionThe stack frame that incurred the condition

�� For each stack frame:For each stack frame:
�� Looks for and calls userLooks for and calls user--written handlers for this stack framewritten handlers for this stack frame

�� Looks for and calls member languageLooks for and calls member language--specific handlersspecific handlers

�� If a handler is called, and it percolates or promotes the If a handler is called, and it percolates or promotes the
condition, LE continues to look for another handler to callcondition, LE continues to look for another handler to call

�� Condition handling is complete if a handler requests Condition handling is complete if a handler requests
““resumeresume””
�� Processing resumes at the location defined in the Resume CursorProcessing resumes at the location defined in the Resume Cursor

�� If all handlers have been called and no resume request If all handlers have been called and no resume request
occurred, then normal LE and/or language rules take over occurred, then normal LE and/or language rules take over
to finishto finish

SHARE Session 12339 Copyright IBM 2012 20

An Example

Language
Environment starts
looking here for a
“condition handler”
at this frame

And keeps walking
back up the STACK
frames…looking…..

Still looking for
someone to “handle”
the condition..

And if none found,
then Language
Environment or
language rules apply

Main Program
Call ‘MYPROGA’

MYPROGA

Call ‘MYPROGB’

MYPROGB
……..
exception occurs here

NSI

Stack Frame 0 (Language Environment’s)

Stack Frame 1

Stack Frame 2

Stack Frame 3

RESUME CURSOR

SHARE Session 12339 Copyright IBM 2012 21

Registering a Condition Handler

SHARE Session 12339 Copyright IBM 2012 22

Mechanisms for Registering

�� Via code: CEEHDLR / CEEHDLUVia code: CEEHDLR / CEEHDLU

�� Via runVia run--time option: USRHDLRtime option: USRHDLR

�� (Also language(Also language--specific semantics)specific semantics)

SHARE Session 12339 Copyright IBM 2012 23

CEEHDLR

�� Register UserRegister User--written Condition written Condition
HandlerHandler

�� CEEHDLR(routineCEEHDLR(routine, token, , token, fcfc))
�� routine routine –– entry point of the handlerentry point of the handler

�� token token –– fullwordfullword integer of information integer of information
you want passed to the handleryou want passed to the handler

�� fcfc –– optional feedback code indicating optional feedback code indicating
result of the call to CEEHDLR result of the call to CEEHDLR

SHARE Session 12339 Copyright IBM 2012 24

CEEHDLR...

�� Condition handler is registered with the Condition handler is registered with the
current stack framecurrent stack frame

�� Can register multiple condition handlers Can register multiple condition handlers
from multiple locationsfrom multiple locations
�� Can have specific handlers for specific Can have specific handlers for specific

conditionsconditions

�� Handlers are called in LIFO orderHandlers are called in LIFO order

�� Handlers are automatically unregistered Handlers are automatically unregistered
when the owning stack frame is destroyedwhen the owning stack frame is destroyed

SHARE Session 12339 Copyright IBM 2012 25

CEEHDLR...

**

* REGISTER PROGRAM ECH911 AS A CONDITION HANDLER.

**

SET PGMPTR TO ENTRY 'ECH911'

MOVE 0000 TO MY-ABEND-TOKEN

CALL 'CEEHDLR' USING PGMPTR, MY-ABEND-TOKEN, FEEDBACK

IF FB-SEV = ZEROS

DISPLAY 'ECHMAIN - ECH911 REGISTERED'

ELSE

DISPLAY 'ECHMAIN - ECH911 REGISTRATION FAILED'

DISPLAY 'FB-MSG = ' FB-FAC, FB-MSG

END-IF.

SHARE Session 12339 Copyright IBM 2012 26

CEEHDLU

�� Unregister UserUnregister User--written Condition written Condition

HandlerHandler

�� CEEHDLU(routineCEEHDLU(routine, , fcfc))

�� routine routine –– entry point of the handlerentry point of the handler

�� fcfc –– optional feedback code indicating optional feedback code indicating

result of the call to CEEHDLR result of the call to CEEHDLR

SHARE Session 12339 Copyright IBM 2012 27

CEEHDLU...

**

* UNREGISTER CONDITION HANDLER ECH911

**

SET PGMPTR TO ENTRY 'ECH911'

CALL 'CEEHDLU' USING PGMPTR, FEEDBACK

IF FB-SEV = ZEROS

DISPLAY 'ECHMAIN - ECH911 UNREGISTERED'

ELSE

DISPLAY 'ECHMAIN - ECH911 UNREGISTRATION FAILED'

DISPLAY 'FB-MSG = ' FB-FAC, FB-MSG

END-IF.

SHARE Session 12339 Copyright IBM 2012 28

USRHDLR Run-time Option

�� Register UserRegister User--written Condition Handler written Condition Handler
without code modificationswithout code modifications

�� USRHDLR(lmname1,lmname2)USRHDLR(lmname1,lmname2)
�� lmname1 lmname1 –– name of load module containing name of load module containing

condition handler to be registered at stack condition handler to be registered at stack
frame 0frame 0

�� lmname2 lmname2 –– name of load module containing name of load module containing
condition handler to get control before any condition handler to get control before any
other user condition handlers (other user condition handlers (““SuperSuper””))

SHARE Session 12339 Copyright IBM 2012 29

Writing the Condition Handler

SHARE Session 12339 Copyright IBM 2012 30

Condition Handler Interface

�� condition_handler(c_ctokcondition_handler(c_ctok, token,, token,
result_coderesult_code, , new_conditionnew_condition))
�� c_ctokc_ctok –– Condition token that identifies the current Condition token that identifies the current

condition being processedcondition being processed

�� token token –– 44--byte integer value provided when handler byte integer value provided when handler
was registered with CEEHDLRwas registered with CEEHDLR

�� result_coderesult_code –– Instructs LE condition handling on how Instructs LE condition handling on how
the handler wants to respond (resume, percolate, the handler wants to respond (resume, percolate,
promote, fixpromote, fix--up and resume)up and resume)

�� If unset, LE will assume If unset, LE will assume ““percolatepercolate””

�� new_conditionnew_condition –– The promoted condition, or the fixThe promoted condition, or the fix--up up
action (new input / new output)action (new input / new output)

SHARE Session 12339 Copyright IBM 2012 31

Condition Handler Interface…

�� Condition token values are generally Condition token values are generally
referred to by their symbolic feedback codereferred to by their symbolic feedback code
�� CEE34B = CEE3211S = X'00030C8B59C3C5C5CEE34B = CEE3211S = X'00030C8B59C3C5C5‘‘

�� LE provides definitions in SCEESAMP for LE provides definitions in SCEESAMP for
feedback codes in supported languagesfeedback codes in supported languages

�� Assembler Assembler –– CEEBALCT, AFHBALCT, EDCBALCT, IBMBALCTCEEBALCT, AFHBALCT, EDCBALCT, IBMBALCT

�� C/C++ C/C++ -- CEEEDCCT, AFHEDCCT, EDCEDCCT, IBMEDCCT, CEEEDCCT, AFHEDCCT, EDCEDCCT, IBMEDCCT,
IGZEDCCT IGZEDCCT

�� FORTRAN FORTRAN –– CEEFORCT, AFHFORCT, IBMFORCTCEEFORCT, AFHFORCT, IBMFORCT

�� PL/I PL/I –– CEEIBMCT, AFHIBMCT, EDCIBMCT, IBMIBMCT, CEEIBMCT, AFHIBMCT, EDCIBMCT, IBMIBMCT,
IGZIBMCTIGZIBMCT

�� COBOL COBOL –– CEEIGZCT, AFHIGZCT, EDCIGZCT, IGZIGZCT, CEEIGZCT, AFHIGZCT, EDCIGZCT, IGZIGZCT,
IBMIGZCTIBMIGZCT

SHARE Session 12339 Copyright IBM 2012 32

Condition Handler Processing

�� Handler processing depends on application Handler processing depends on application

needsneeds

�� May handle one condition or manyMay handle one condition or many

�� May capture diagnostic informationMay capture diagnostic information

�� May correct problemMay correct problem

�� May drive cleanMay drive clean--up activitiesup activities

�� Decides whether to resume / percolate / Decides whether to resume / percolate /

promote / fixpromote / fix--up with resumeup with resume

SHARE Session 12339 Copyright IBM 2012 33

Condition Handler Processing...

�� Resume point can also helpResume point can also help

�� Bad record may be written to error file or reportBad record may be written to error file or report

�� Bad record may be marked as errorBad record may be marked as error

�� Resume point may pass control to a place that Resume point may pass control to a place that

can read next record and continue processingcan read next record and continue processing

�� Coordination between application program Coordination between application program

and condition handler is usually a good ideaand condition handler is usually a good idea

�� Communication Area, footprints are helpfulCommunication Area, footprints are helpful

SHARE Session 12339 Copyright IBM 2012 34

Simple Resume

�� Condition Handler sets the Condition Handler sets the result_coderesult_code

to indicate that the handler wants to to indicate that the handler wants to

resume at the instruction following the resume at the instruction following the

one that incurred the conditionone that incurred the condition

SHARE Session 12339 Copyright IBM 2012 35

Simple Resume...

Code from main routine ECHMAIN:

**

* FORCE A DECIMAL DIVIDE EXCEPTION BY DIVIDING BY ZERO.

* WHEN ECH911 DETECTS THIS EXCEPTION, IT WILL REQUEST A

* RESUME TO THE NEXT INSTRUCTION FOLLOWING THE DIVIDE.

**

MOVE 'N' TO ERROR-INDICATOR

DISPLAY "ECHMAIN - ATTEMPTING DIVIDE"

COMPUTE Z = 1 / DIVISOR.

IF ERROR-INDICATOR = 'Y'

DISPLAY "ECHMAIN - RESUMED AFTER DECIMAL DIVIDE EXCP"

ELSE

DISPLAY "ECHMAIN - DID NOT RESUME AFTER DEC DIVIDE"

END-IF.

SHARE Session 12339 Copyright IBM 2012 36

Simple Resume...

Code in condition handler ECH911 recognizes Decimal
Divide Exception (symbolic feedback code CEE34B),
sets the result_code to indicate ‘resume’:

WHEN CEE34B

DISPLAY 'ECH911 - ENTERED FOR DECIMAL DIVIDE EXCP'

MOVE 'Y' TO ERROR-INDICATOR

SET RESUME TO TRUE

DISPLAY 'ECH911 - RESUMING AFTER DECIMAL DIVIDE EXCP'

SHARE Session 12339 Copyright IBM 2012 37

Simple Resume...

Program Output:

ECHMAIN - ATTEMPTING DIVIDE

ECH911 - ENTERED

ECH911 - ENTERED FOR DECIMAL DIVIDE EXCP

ECH911 - RESUMING AFTER DECIMAL DIVIDE EXCP

ECHMAIN - RESUMED AFTER DECIMAL DIVIDE EXCP

SHARE Session 12339 Copyright IBM 2012 38

Resume with
Move Cursor Relative

�� Condition Handler uses CEEMRCR to move Condition Handler uses CEEMRCR to move
the resume cursor to a location relative to the resume cursor to a location relative to
the location of the condition the location of the condition

�� CEEMRCR(type_of_moveCEEMRCR(type_of_move, , fcfc))
�� type_of_movetype_of_move –– the target of the resume the target of the resume

cursor movementcursor movement
�� 0 0 –– Move the resume cursor to the call return point of the Move the resume cursor to the call return point of the

stack frame associated with the handle cursor.stack frame associated with the handle cursor.

�� 1 1 -- Move the resume cursor to the call return point of the stack Move the resume cursor to the call return point of the stack
frame prior to the stack frame associated with the handle frame prior to the stack frame associated with the handle
cursor.cursor. (Cannot be used if nested COBOL routine!)

SHARE Session 12339 Copyright IBM 2012 39

Resume with
Move Cursor Relative...

New location of
resume cursor
when
type_of_move = 0

Main Program
Call ‘MYPROGA’

MYPROGA

Call ‘MYPROGB’

MYPROGB
……..
exception occurs here

NSI

Stack Frame 0 (Language Environment’s)

Stack Frame 1

Stack Frame 2

Stack Frame 3

Original
resume cursor

New location of
resume cursor
when
type_of_move = 1

SHARE Session 12339 Copyright IBM 2012 40

Resume with
Move Cursor Relative...

Code from main routine ECHMAIN:

**

* CALL PROGRAM ECHOUTBD, WHICH WILL FORCE A TABLE

* REFERENCE OUT OF BOUNDS ERROR. WHEN ECH911 DETECTS

* THIS EXCEPTION, IT WILL USE CEEMRCR TO MOVE THE RESUME

* CURSOR TO THE RETURN POINT FOLLOWING THE ECHOUTBD CALL.

**

MOVE 'N' TO ERROR-INDICATOR

DISPLAY "ECHMAIN - CALLING ECHOUTBD"

CALL "ECHOUTBD".

IF ERROR-INDICATOR = 'Y'

DISPLAY "ECHMAIN - RESUMED AFTER OOB ERROR"

ELSE

DISPLAY "ECHMAIN - DID NOT RESUME AFTER OOB
ERROR"

END-IF.

SHARE Session 12339 Copyright IBM 2012 41

Resume with
Move Cursor Relative...
Code from main routine ECHOUTBD:

**

* FORCE A TABLE REFERENCE OUT OF BOUNDS ERROR.

* WHEN ECH911 DETECTS THIS EXCEPTION, IT WILL USE

* CEEMRCR TO MOVE THE RESUME CURSOR TO THE RETURN POINT

* FOLLOWING THE ORIGINAL CALL TO THIS ROUTINE.

**

DISPLAY 'ECHOUTBD - ATTEMPTING AN OUT OF BOUNDS REFERENCE'

MOVE 9 TO J.

MOVE 1 TO SLOT (J).

* EXECUTION SHOULD NOT REACH HERE WHEN COMPILED WITH SSRANGE.

IF ERROR-INDICATOR = 'Y'

DISPLAY "ECHOUTBD - NOT COMPILED WITH SSRANGE"

ELSE

DISPLAY "ECHOUTBD - NOT COMPILED WITH SSRANGE“

END-IF.

DISPLAY 'ECHOUTBD - ENDING'

GOBACK.

SHARE Session 12339 Copyright IBM 2012 42

Resume with
Move Cursor Relative...

Code in condition handler ECH911 recognizes Table Reference Out of
Bounds Exception (symbolic feedback code IGZ006), uses
CEEMRCR to move the resume cursor to the return point of the
caller, and sets the result_code to indicate ‘resume’:

WHEN IGZ006

DISPLAY 'ECH911 - ENTERED AFTER TABLE REF OOB'

MOVE 'Y' TO ERROR-INDICATOR

CALL 'CEEMRCR' USING MOVE-TYPE, FEEDBACK

IF FB-SEV = ZEROS

DISPLAY 'ECH911 - CEEMRCR SUCCESSFUL'

ELSE

DISPLAY 'ECH911 - CEEMRCR FAILED'

DISPLAY 'FB-MSG = ' FB-FAC, FB-MSG

END-IF

SET RESUME TO TRUE

DISPLAY 'ECH911 - RESUMING AFTER TABLE REF OOB'

SHARE Session 12339 Copyright IBM 2012 43

Resume with
Move Cursor Relative...

Program Output:

ECHMAIN - CALLING ECHOUTBD

ECHOUTBD - STARTING

ECHOUTBD - ATTEMPTING AN OUT OF BOUNDS REFERENCE

ECH911 - ENTERED

ECH911 - ENTERED AFTER TABLE REF OOB

ECH911 - CEEMRCR SUCCESSFUL

ECH911 - RESUMING AFTER TABLE REF OOB

ECHMAIN - RESUMED AFTER OOB ERROR

SHARE Session 12339 Copyright IBM 2012 44

Resume with
Move Cursor Explicit

�� A Move Cursor Explicit requires the use A Move Cursor Explicit requires the use

of two different callable services:of two different callable services:

�� CEE3SRP CEE3SRP –– Set Resume PointSet Resume Point

�� Called from mainline to establish a location to Called from mainline to establish a location to

which a condition handler can resumewhich a condition handler can resume

�� CEEMRCE CEEMRCE –– Move Resume Cursor ExplicitMove Resume Cursor Explicit
� Called from a condition handler to set the resume

cursor to the location set by a CEESRP call

SHARE Session 12339 Copyright IBM 2012 45

Resume with
Move Cursor Explicit...

�� Set Resume PointSet Resume Point

�� CEE3SRP(resume_token, CEE3SRP(resume_token, fcfc))

�� resume_tokenresume_token –– a token for the machine a token for the machine

state block built by CEE3SRP representing state block built by CEE3SRP representing

the location to where a condition handler can the location to where a condition handler can

resumeresume

SHARE Session 12339 Copyright IBM 2012 46

Resume with
Move Cursor Explicit...

�� Move Resume Cursor ExplicitMove Resume Cursor Explicit

�� CEEMRCE(resume_tokenCEEMRCE(resume_token, , fcfc))

�� resume_tokenresume_token –– a token from CEE3SRP that a token from CEE3SRP that

represents the resume point in the represents the resume point in the

applicationapplication

SHARE Session 12339 Copyright IBM 2012 47

Resume with
Move Cursor Explicit...
Code from main routine ECHMAIN:

**

* USE CEE3SRP TO SET UP A RESUME POINT AT THE NEXT

* STATEMENT AFTER THE CALL. FORCE A PROTECTION

* EXCEPTION. WHEN ECH911 DETECTS THIS CONDITION, IT WILL

* USE CEEMRCE TO MOVE THE RESUME CURSOR TO THE SAVED

* RESUME POINT.

**

MOVE 'N' TO ERROR-INDICATOR

CALL 'CEE3SRP' USING RECOVER-ADDR, FEEDBACK.

IF ERROR-INDICATOR = 'N'

DISPLAY "ECHMAIN - ATTEMPTING PROTECTION EXCP"

SET SS-POINTER TO NULL

SET ADDRESS OF SIMPLE-STRUCTURE TO SS-POINTER

MOVE 'A' TO SS-CHAR

ELSE

DISPLAY "ECHMAIN - RESUMED AFTER PROTECTION EXCP"

END-IF.

SHARE Session 12339 Copyright IBM 2012 48

Resume with
Move Cursor Explicit...

Code in condition handler ECH911 recognizes the Protection
Exception (symbolic feedback code CEE344), uses CEEMRCE to
move the resume cursor to a location previously established using
CEE3SRP, and sets the result_code to indicate ‘resume’:

WHEN CEE344

DISPLAY 'ECH911 - ENTERED FOR PROTECTION EXCP'

MOVE 'Y' TO ERROR-INDICATOR

CALL 'CEEMRCE' USING RECOVER-ADDR, FEEDBACK

IF FB-SEV = ZEROS

DISPLAY 'ECH911 - CEEMRCE SUCCESSFUL'

ELSE

DISPLAY 'ECH911 - CEEMRCE FAILED'

DISPLAY 'FB-MSG = ' FB-FAC, FB-MSG

END-IF

SET RESUME TO TRUE

DISPLAY 'ECH911 - RESUMING AFTER PROTECTION EXCP'

SHARE Session 12339 Copyright IBM 2012 49

Resume with
Move Cursor Explicit...

Program Output:

ECHMAIN - ATTEMPTING PROTECTION EXCP

ECH911 - ENTERED

ECH911 - ENTERED FOR PROTECTION EXCP

ECH911 - CEEMRCE SUCCESSFUL

ECH911 - RESUMING AFTER PROTECTION EXCP

ECHMAIN - RESUMED AFTER PROTECTION EXCP

SHARE Session 12339 Copyright IBM 2012 50

Simple Percolate

�� Condition Handler sets the Condition Handler sets the result_coderesult_code

to indicate that the handler wants to to indicate that the handler wants to

percolate, allowing other condition percolate, allowing other condition

handlers, if any, to process the handlers, if any, to process the

conditioncondition

SHARE Session 12339 Copyright IBM 2012 51

Simple Percolate...

Code from main routine ECHMAIN:

**

* FORCE A WILD BRANCH TO ADDRESS ZERO, WHICH WILL RESULT

* IN AN OPERATION EXCEPTION. WHEN ECH911 DETECTS THIS

* EXCEPTION, IT WILL REQUEST PERCOLATION.

**

MOVE 'N' TO ERROR-INDICATOR

DISPLAY "ECHMAIN - ATTEMPTING WILD BRANCH"

SET FP TO NULL.

CALL FP.

* EXECUTION SHOULD NOT REACH HERE

DISPLAY "ECHMAIN - AFTER WILD BRANCH"

SHARE Session 12339 Copyright IBM 2012 52

Simple Percolate...

Code in condition handler ECH911 recognizes the
Operation Exception (symbolic feedback code
CEE341), and sets the result_code to indicate
‘percolate’:

WHEN CEE341

DISPLAY 'ECH911 - ENTERED FOR OPERATION EXCP'

MOVE 'Y' TO ERROR-INDICATOR

SET PERCOLATE TO TRUE

DISPLAY 'ECH911 - PERCOLATING AFTER OPERATION EXCP'

SHARE Session 12339 Copyright IBM 2012 53

Simple Percolate...

Program Output:
ECHMAIN - ATTEMPTING WILD BRANCH

ECH911 - ENTERED

ECH911 - ENTERED FOR OPERATION EXCP

ECH911 - PERCOLATING AFTER OPERATION EXCP

CEE3201S The system detected an operation exception (System

Completion Code=0C1)

From compile unit ECHMAIN at entry point ECHMAIN at

compile unit offset -20F00000 at entry offset -20F00000

at address 00000000.

Possible Bad Branch: Statement: 113 Offset: +0000099C

ECH911 - ENTERED

ECH911 - CONDITION NOT RECOGNIZED, PERCOLATE

SHARE Session 12339 Copyright IBM 2012 54

Other Useful Services

�� CEE3CIB CEE3CIB –– Returns pointer to current CIB, Returns pointer to current CIB,
Condition Information BlockCondition Information Block
�� Mapped by CEEBALCI, CEEIBMCI, CEEIGZCI, Mapped by CEEBALCI, CEEIBMCI, CEEIGZCI, leawi.hleawi.h

�� Fields described in LE Vendor Interfaces bookFields described in LE Vendor Interfaces book

�� CEE3GRN CEE3GRN -- Get the routine name of the offenderGet the routine name of the offender

�� CEE3GRO CEE3GRO -- Get the offset of the conditionGet the offset of the condition

�� CEEMOUT CEEMOUT -- Output a message Output a message

SHARE Session 12339 Copyright IBM 2012 55

Other Useful Services...

�� CEEMSG CEEMSG –– get, format, and dispatch a messageget, format, and dispatch a message

�� CEE3SPM CEE3SPM –– query or modify hardware conditionquery or modify hardware condition

�� CEEGQDT CEEGQDT –– get the get the q_dataq_data token from the ISItoken from the ISI

�� CEEITOK CEEITOK –– return return ““initialinitial”” condition token from condition token from

current CIBcurrent CIB

�� CEE3DMP CEE3DMP –– Ask LE to produce a DUMPAsk LE to produce a DUMP

SHARE Session 12339 Copyright IBM 2012 56

Sources of Additional
Information

SHARE Session 12339 Copyright IBM 2012 57

Sources of Additional Info

� All Language Environment documentation is available on
the z/OS DVD collection and on the Language Environment
website
� Language Environment Debug Guide
� Language Environment Runtime Messages
� Language Environment Programming Reference
� Language Environment Programming Guide
� Language Environment Customization
� Language Environment Migration Guide
� Language Environment Writing ILC Applications

� Language Environment Web site
� http://www-03.ibm.com/systems/z/os/zos/features/lang_environment/

SHARE Session 12339 Copyright IBM 2012 58

Appendix

SHARE Session 12339 Copyright IBM 2012 59

Related Run-time Options

SHARE Session 12339 Copyright IBM 2012 60

Related Run-time Options

�� ABPERC(NONE) ABPERC(NONE) -- Percolates (removes from LE Percolates (removes from LE
condition handling) a single condition handling) a single abendabend code you code you
specify via this option (or CEEBXITA)specify via this option (or CEEBXITA)

�� DEPTHCONDLMT(10) DEPTHCONDLMT(10) –– Indicates how deep Indicates how deep
conditions can be conditions can be ““nestednested”” (how many conditions (how many conditions
inside a condition you will tolerate)inside a condition you will tolerate)

�� ERRCOUNT(0) ERRCOUNT(0) –– Number of Number of sevsev 2/3/4 conditions 2/3/4 conditions
before LE terminates the enclave. Depends on the before LE terminates the enclave. Depends on the
language (COBOL, PL/1, C/C++)language (COBOL, PL/1, C/C++)

SHARE Session 12339 Copyright IBM 2012 61

Related Run-time Options...

�� TRAP(ON) TRAP(ON) –– Best to be ON unless instructed Best to be ON unless instructed
otherwise by IBM support!otherwise by IBM support!

�� XUFLOW XUFLOW ––Should exponent underflow cause an Should exponent underflow cause an
interrupt? (PL/I)interrupt? (PL/I)

�� TERMTHDACT(TRACE) TERMTHDACT(TRACE) ––if condition goes if condition goes
unhandled, tells LE the diagnostic documentation unhandled, tells LE the diagnostic documentation
to be produced (CEEDUMP, SYSUDUMP, to be produced (CEEDUMP, SYSUDUMP,
SYSMDUMP)SYSMDUMP)

�� ABTERMENC(ABEND) ABTERMENC(ABEND) –– Indicates whether to end Indicates whether to end
the application with an ABEND or with a return the application with an ABEND or with a return
codecode

