
®

IBM Software Group

© 2013 IBM Corporation

12335: Enterprise PL/I 4.3 Highlights

February 2013

Peter Elderon

elderon@us.ibm.com

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

IBM Software Group | Rational software

2

Enterprise 4.3

 performance

 middleware support

 usability

®

IBM Software Group

© 2013 IBM Corporation

performance

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

®

IBM Software Group

© 2013 IBM Corporation

zEnterprise EC12 exploitation

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

IBM Software Group | Rational software

5

EC12

 The new zEnterprise EC12 hardware was introduced in August

 Enterprise PL/I 4.3 provides immediate and significant exploitation of the
new hardware under the ARCH(10) option

 Specifying ARCH(10) will cause your code to be tuned for the EC12

IBM Software Group | Rational software

6

Decimal-Floating-Point Zoned-Conversion Facility

 This facility adds a new set of instructions for converting between decimal-
floating-point (DFP) and zoned decimal

 Few customers are currently using DFP

 So the usefulness of these new instructions might seem limited

 But the compiler can exploit these for you – even in programs that use no
floating-point data!

 But first a little review:

IBM Software Group | Rational software

7

Terminology review: zoned decimal

 Zoned decimal data consists of bytes where the leftmost 4 bits are called
the zone bits and the rightmost 4 bits are the decimal or numeric bits.

 Most commonly, these are the byte values representing the numbers 0-9

 Zoned decimal data is suitable for input, editing, and output of numeric data
in human-readable form

 There are no arithmetic instructions that operate directly on zoned decimal

 Zoned decimal is represented in PL/I by the PICTURE data type

IBM Software Group | Rational software

8

Terminology review: floating-point

 A finite floating-point number has three components: a sign bit, an
exponent, and a significand.

 Its unsigned value is the product of the significand and a radix (or base)
value raised to the power of the exponent

 It can be used to represent data such as Avogadro’s number (6.022E23)

 Floating-point numbers are very useful in scientific calculations

IBM Software Group | Rational software

9

Terminology review: floating-point

 For many years, IBM mainframes supported floating-point data only with a
radix of 16, and such data is called hexadecimal-floating-point

 The first IEEE standard for floating-point data used a radix of 2, and such
data is called binary-floating-point. IBM mainframes have supported this
representation for over 10 years

 Both binary- and hexadecimal-floating-point can lead to problems when
used to represent decimal data (for example, both represent the value one-
tenth as an approximation)

 Decimal-floating-point (DFP) uses a radix of 10 is part of the latest IEEE
standard and avoids these problems

IBM Software Group | Rational software

10

Terminology review: floating-point

 Floating-point data is represented in PL/I by the FLOAT data type

 Depending on the BINARY/DECIMAL attribute and the settings of the DFT
and FLOAT compiler options, data with any of the 3 radices may be
represented in PL/I:

DFT(HEX)
FLOAT(NODFP)

DFT(HEX)
FLOAT(DFP)

DFT(IEEE)
FLOAT(NODFP)

DFT(IEEE)
FLOAT(DFP)

FLOAT BIN radix = 16 radix = 16 radix = 2 radix = 2

FLOAT DEC radix = 16 radix = 10 radix = 2 radix = 10

IBM Software Group | Rational software

11

Decimal-Floating-Point Zoned-Conversion Facility

 There are no instructions that perform arithmetic on zoned decimal or that
support converting zoned decimal to binary integer

 But for many years there have been instructions to convert from zoned
decimal to packed decimal (for which there are nice arithmetic and
conversion instructions)

 And there are instructions to convert back from packed to zoned

 But: some of these instructions are slow

 Also: packed data cannot be held in registers, and that hinders optimization

IBM Software Group | Rational software

12

Decimal-Floating-Point Zoned-Conversion Facility

 This new facility in the zEnterprise EC12 hardware adds instructions to
convert from zoned decimal to DFP (and back)

 And there are already arithmetic instructions that operate on DFP as well as
instructions to convert between DFP and binary integer

 Also: DFP data can be held in registers, and that helps optimization

 These new instructions will clearly help in programs that use PICTURE and
DFP data

IBM Software Group | Rational software

13

Example: Picture to Decimal-Floating-Point

 So, for example, when given this code to convert PICTURE to DFP

*process float(dfp);

 pic2dfp: proc(ein, aus) options(nodescriptor);

 dcl ein(0:100_000) pic'(9)9' connected;

 dcl aus(0:hbound(ein)) float dec(16) connected;

 dcl jx fixed bin(31);

 do jx = lbound(ein) to hbound(ein);

 aus(jx) = ein(jx);

 end;

 end;

IBM Software Group | Rational software

14

Example: Picture to Decimal-Floating-Point

 Under ARCH(9), the heart of the loop consists of these 17 instructions

 0060 F248 D0F0 F000 PACK #pd580_1(5,r13,240),_shadow4(9,r15,0)

 0066 C050 0000 0035 LARL r5,F'53'

 006C D204 D0F8 D0F0 MVC #pd581_1(5,r13,248),#pd580_1(r13,240)

 0072 41F0 F009 LA r15,#AMNESIA(,r15,9)

 0076 D100 D0FC 500C MVN #pd581_1(1,r13,252),+CONSTANT_AREA(r5,12)

 007C D204 D0E0 D0F8 MVC _temp2(5,r13,224),#pd581_1(r13,248)

 0082 F874 D100 2000 ZAP #pd586_1(8,r13,256),_shadow3(5,r2,0)

 0088 D207 D0E8 D100 MVC _temp1(8,r13,232),#pd586_1(r13,256)

 008E 5800 4000 L r0,_shadow2(,r4,0)

 0092 5850 4004 L r5,_shadow2(,r4,4)

 0096 EB00 0020 000D SLLG r0,r0,32

 009C 1605 OR r0,r5

 009E B3F3 0000 CDSTR f0,r0

 00A2 EB00 0020 000C SRLG r0,r0,32

 00A8 B914 0011 LGFR r1,r1

 00AC B3F6 0001 IEDTR f0,f0,r1

 00B0 6000 E000 STD f0,_shadow1(,r14,0)

IBM Software Group | Rational software

15

Example: Picture to Decimal-Floating-Point

 While under ARCH(10), it consists of just these 8 instructions – and the loop
runs more than 4 times faster

 0060 EB2F 0003 00DF SLLK r2,r15,3

 0066 B9FA 202F ALRK r2,r15,r2

 006A A7FA 0001 AHI r15,H'1'

 006E B9FA 2023 ALRK r2,r3,r2

 0072 ED08 2000 00AA CDZT f0,#AddressShadow(9,r2,0),b'0000'

 0078 B914 0000 LGFR r0,r0

 007C B3F6 0000 IEDTR f0,f0,r0

 0080 6001 E000 STD f0,_shadow1(r1,r14,0)

IBM Software Group | Rational software

16

Decimal-Floating-Point Zoned-Conversion Facility

 But, more importantly, the Enterprise PL/I 4.3 compiler exploits this new
facility in the zEnterprise EC12 hardware to help programs that don’t even
use DFP !

 For programs that convert PICTURE to FIXED BIN (or the reverse) the
compiler has traditionally used packed decimal as an intermediary.

 Now it can use DFP instead, and in many cases this is faster

IBM Software Group | Rational software

17

Example: Picture to Fixed Bin(31)

 So, for example, when given this code to convert PICTURE to FIXED BIN

 pic2int: proc(ein, aus) options(nodescriptor);

 dcl ein(0:100_000) pic'(9)9' connected;

 dcl aus(0:hbound(ein)) fixed bin(31) connected;

 dcl jx fixed bin(31);

 do jx = lbound(ein) to hbound(ein);

 aus(jx) = ein(jx);

 end;

 end;

IBM Software Group | Rational software

18

Example: Picture to Fixed Bin(31)

 Under ARCH(9), the heart of the loop consists of these 8 instructions

 0058 F248 D098 1000 PACK #pd580_1(5,r13,152),_shadow2(9,r1,0)

 005E C020 0000 0021 LARL r2,F'33'

 0064 D204 D0A0 D098 MVC #pd581_1(5,r13,160),#pd580_1(r13,152)

 006A 4110 1009 LA r1,#AMNESIA(,r1,9)

 006E D100 D0A4 200C MVN #pd581_1(1,r13,164),+CONSTANT_AREA(r2,12)

 0074 F874 D0A8 D0A0 ZAP #pd582_1(8,r13,168),#pd581_1(5,r13,160)

 007A 4F20 D0A8 CVB r2,#pd582_1(,r13,168)

 007E 502E F000 ST r2,_shadow1(r14,r15,0)

IBM Software Group | Rational software

19

Example: Picture to Fixed Bin(31)

 While under ARCH(10), it consists of 9 instructions and uses DFP in several
of them – but since only the ST and the new CDZT refer to storage, the loop
runs more than 66% faster

 0060 EB2F 0003 00DF SLLK r2,r15,3

 0066 B9FA 202F ALRK r2,r15,r2

 006A A7FA 0001 AHI r15,H'1'

 006E B9FA 2023 ALRK r2,r3,r2

 0072 ED08 2000 00AA CDZT f0,#AddressShadow(9,r2,0),b'0000'

 0078 B914 0000 LGFR r0,r0

 007C B3F6 0000 IEDTR f0,f0,r0

 0080 B941 9020 CFDTR r2,b'1001',f0

 0084 5021 E000 ST r2,_shadow1(r1,r14,0)

IBM Software Group | Rational software

20

Decimal-Floating-Point Zoned-Conversion Facility

 In converting PICTURE to FIXED BIN, the compiler uses the new CDZT
instruction that converts zoned-decimal to DFP

 In converting from FIXED BIN(31) to PICTURE, the compiler could use the
new instruction CZDT that does the reverse

 However, our tests showed that this set of instructions performed slightly
worse than the old set

 This is another example of the strength of the compiler: it will exploit new
instructions exactly when they help you - and as another example of this,
consider conversions of UNSIGNED FIXED BIN(32) to PICTURE

IBM Software Group | Rational software

21

Example: Unsigned Fixed Bin(32) to Picture

 So, when given this code to convert UNSIGNED FIXED BIN to PICTURE

 uint2pic: proc(ein, aus) options(nodescriptor);

 dcl ein(0:100_000) unsigned fixed bin(32) connected;

 dcl aus(0:hbound(ein)) pic’(10)9’ connected;

 dcl jx fixed bin(31);

 do jx = lbound(ein) to hbound(ein);

 aus(jx) = ein(jx);

 end;

 end;

IBM Software Group | Rational software

22

Example: Unsigned Fixed Bin(32) to Picture

 Under ARCH(9), the heart of the loop consists of these 10 instructions

 005C 586E F000 L r6,_shadow2(r14,r15,0)

 0060 4140 1000 LA r4,#AMNESIA(,r1,0)

 0064 C050 0000 0026 LARL r5,F'38'

 006A 41E0 E004 LA r14,#AMNESIA(,r14,4)

 006E C067 8000 0000 XILF r6,F'-2147483648'

 0074 4E60 D0A0 CVD r6,#pd579_1(,r13,160)

 0078 D207 D0A8 D0A0 MVC #pd581_1(8,r13,168),#pd579_1(r13,160)

 007E FA75 D0A8 5000 AP #pd581_1(8,r13,168),+CONSTANT_AREA(6,r5,0)

 0084 D207 D098 D0A8 MVC _temp1(8,r13,152),#pd581_1(r13,168)

 008A F397 4000 2000 UNPK _shadow1(10,r4,0),_temp1(8,r2,0)

IBM Software Group | Rational software

23

Example: Unsigned Fixed Bin(32) to Picture

 While under ARCH(10), it consists of only 8 instructions (but uses DFP in
several of them), and combined with the facts that only the L and the new
CZDT refer to storage and that packed decimal is avoided, the loop runs
more than 2 times faster

 005C 5851 E000 L r5,_shadow1(r1,r14,0)

 0060 EB30 0003 00DF SLLK r3,r0,3

 0066 EB40 0001 00DF SLLK r4,r0,1

 006C 1E34 ALR r3,r4

 006E 4110 1004 LA r1,#AMNESIA(,r1,4)

 0072 B953 0005 CDLFTR f0,r5

 0076 B9FA 303F ALRK r3,r15,r3

 007A ED09 3000 00A8 CZDT f0,#AddressShadow(10,r3,0),b'0000'

IBM Software Group | Rational software

24

Example: Fixed Bin(63) to Picture

 Or, when given this code to convert FIXED BIN(63) to PICTURE

 quad2pic: proc(ein, aus) options(nodescriptor);

 dcl ein(0:100_000) fixed bin(63) connected;

 dcl aus(0:hbound(ein)) pic’(18)9’ connected;

 dcl jx fixed bin(31);

 do jx = lbound(ein) to hbound(ein);

 aus(jx) = ein(jx);

 end;

 end;

IBM Software Group | Rational software

25

Example: Fixed Bin(63) to Picture

 Under ARCH(9), the heart of the loop consists of these 9 instructions

 005E 585E F000 L r5,_shadow2(r14,r15,0)

 0062 586E F004 L r6,_shadow2(r14,r15,4)

 0066 41E0 E008 LA r14,#AMNESIA(,r14,8)

 006A EB05 0020 000D SLLG r0,r5,32

 0070 1606 OR r0,r6

 0072 E300 D098 002E CVDG r0,_temp1(,r13,152)

 0078 EA11 1000 D098 UNPKA _shadow1(18,r1,0),_temp1(r13,152)

 007E D611 1000 4000 OC _shadow1(18,r1,0),+CONSTANT_AREA(r4,0)

 0084 4110 1012 LA r1,#AMNESIA(,r1,18)

IBM Software Group | Rational software

26

Example: Fixed Bin(63) to Picture

 While under ARCH(10), it consists of 13 instructions (and uses DFP in several of them),
but since only the L and the new CZXT refer to storage and since there are no packed
decimal references, the loop runs more than 2.5 times faster

 005C 5801 E000 L r0,_shadow1(r1,r14,0)

 0060 EB4F 0004 00DF SLLK r4,r15,4

 0066 EB5F 0001 00DF SLLK r5,r15,1

 006C 5861 E004 L r6,_shadow1(r1,r14,4)

 0070 4110 1008 LA r1,#AMNESIA(,r1,8)

 0074 1E45 ALR r4,r5

 0076 B9FA 4042 ALRK r4,r2,r4

 007A EB00 0020 000D SLLG r0,r0,32

 0080 1606 OR r0,r6

 0082 B3F9 0000 CXGTR f0,r0

 0086 EB00 0020 000C SRLG r0,r0,32

 008C ED11 4000 00A9 CZXT f0,#AddressShadow(18,r4,0),b'0000'

 0092 A7FA 0001 AHI r15,H'1'

IBM Software Group | Rational software

27

Decimal-Floating-Point Zoned-Conversion Facility

 To summarize some of the lessons from these examples:

A longer set of instructions may be faster than a shorter set

Reducing storage references helps performance

Eliminating packed decimal instructions can help performance

Using decimal-floating-point may improve your code’s performance even
in program’s that have no floating-point data

The 4.3 PL/I compiler knows when these new ARCH(10) instructions will
help and will exploit them appropriately for you

®

IBM Software Group

© 2013 IBM Corporation

Other performance enhancements

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

IBM Software Group | Rational software

29

VERIFY and SEARCH improved

 When the second argument to VERIFY and SEARCH is a single character,
then the code for them will now be inlined

 Previously this was done only when they had 2 arguments, but not 3

 This makes it easy to write well-performing code that parses a blank-
delimited string

 For example, this code will now perform much better than previously when
both the VERIFY and SEARCH functions were done by library calls

IBM Software Group | Rational software

30

VERIFY and SEARCH improved

 argcount = 0; kx = 1;

 findArgs:

 do loop;

 argcount += 1;

 jx = verify(x,' ',kx); /* find next non-blank */

 if jx = 0 then do;

 argvals(argcount) = substr(x,kx);

 leave findArgs;

 end;

 kx = search(x,' ',jx); /* find blank after that */

 if kx = 0 then do;

 argvals(argcount) = substr(x,jx);

 leave findArgs;

 end; else

 argvals(argcount) = substr(x,jx,kx-jx);

 end;

IBM Software Group | Rational software

31

More conversions from BIT to CHAR inlined

 The compiler now handles more conversions of BIT to CHAR by generating
inline code (rather than a call to a library routine)

 In particular, if the BIT source has length 8 or less and a known offset, then
the conversion will be inlined

 Previously this was done only if it had length 1 and a known offset

 Of particular importance here is that now BIT(8) to CHAR will be inlined

IBM Software Group | Rational software

32

More conversions of BIT to WCHAR inlined

 The compiler now also handles more conversions of BIT to WIDECHAR by
generating inline code (rather than a call to a library routine)

 In particular, if the BIT source has length 8 or less and a known offset, then
the conversion will be inlined

 Previously no conversions of BIT to WIDECHAR were inlined

IBM Software Group | Rational software

33

Faster code for TRIM of FIXED DEC

 The TRIM function is very useful in preparing numbers to be inserted into
strings and messages

 To make it more useful, the code generated for TRIM of FIXED DECIMAL has
been improved so that it performs better

®

IBM Software Group

© 2013 IBM Corporation

Middleware improvements

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

IBM Software Group | Rational software

35

SQL ONEPASS

 The SQL preprocessor now supports the ONEPASS option

 As was true in previous releases, this option requires that host variables be
declared before they are used

 It has no effect on the number of times the preprocessor reads the source –
it always reads it only once

 And no effect on the performance of the preprocessor

IBM Software Group | Rational software

36

SQL statement display

 When EXEC SQL statements are shown in the listing, they will now reflect
their original source formatting (rather than just the tokenized form of the
statement)

 This preserves comments and makes them easier to read

 This change was also made to the 4.2 preprocessor via PTF

IBM Software Group | Rational software

37

SQL and restricted expressions

 The SQL preprocessor will now honor the use of some restricted
expressions in host variable declarations to define the bounds of an array or
the length of a string

 But the restricted expression must contain only

 Integers (either literals or previously declared FIXED BIN VALUEs)
One of the built-in functions INDICATORS, HBOUND, LENGTH, and MAXLENGTH
An add or subtract operator applied to such an expression
A multiply operator applied to such an expression
A prefix operator applied to such an expression

 So, in this example, B could now be used as a host variable
Dcl A char(20), B char(2*(length(A)+3);

IBM Software Group | Rational software

38

SQL and LIKE

 The SQL preprocessor will now recognize host variables that are part of
structures declared with the LIKE attribute

 The preprocessor will handle LIKE in exactly the same way as the compiler
and with exactly the same restrictions

IBM Software Group | Rational software

39

SQL and DEPRECATE

 The SQL preprocessor now has its own DEPRECATE option

 It currently supports only a STMT suboption with only these suboptions

EXPLAIN
GRANT
REVOKE
SET_CURRENT_SQLID

 So specifying PPSQL(DEPRECATE(STMT(GRANT, REVOKE))) would
cause any compilation of a SQL program using EXEC SQL GRANT or EXEC
SQL REVOKE to end with some E-level messages

®

IBM Software Group

© 2013 IBM Corporation

Increased Usability

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

®

IBM Software Group

© 2013 IBM Corporation

Enhanced UTF-8 support

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

IBM Software Group | Rational software

42

New UTF-8 functions

 This release introduces 3 new functions in support of UTF-8 :

UTF8
UTF8TOCHAR
UTF8TOWCHAR

 These allow for easy conversion between CHAR and UTF-8

 They also provide the means to create UTF-8 literals and to initialize
static variables with UTF-8 data

IBM Software Group | Rational software

43

UTF8

 The new UTF8 function converts its argument to its equivalent in UTF-8

 In UTF8(x), x can be FIXED, FLOAT, PICTURE, BIT, CHAR, or WCHAR

 If x is WCHAR, x is converted to UTF-8 under the assumption that x holds
UTF-16 (if not, the generated code will raise the ERROR condition)

 Otherwise, the CODEPAGE option specifies the source codepage of x

IBM Software Group | Rational software

44

UTF8

 So UTF8(’91’) is a 2-byte character literal holding ‘3931’x whether the source
is compiled with DFT(EBCDIC) or DFT(ASCII)

 And this built-in allows you to create STATIC variables such as

 declare months(12) char(10) varying static

 init(

 uft8(‘Januar’),

 utf8(‘Februar’),

 utf8(‘März’),

 …

 utf8(’Dezember’));

IBM Software Group | Rational software

45

UTF8TOCHAR

 The new UTF8TOCHAR function converts a CHARACTER expression from
UTF-8 to CHARACTER

 The CODEPAGE option specifies the target code page

 In UTF8TOCHAR(x), x must have CHARACTER type

 If x holds invalid UTF-8, the generated code will raise the ERROR condition

IBM Software Group | Rational software

46

UTF8TOWCHAR

 The new UTF8TOWCHAR function converts UTF-8 to UTF-16

 In UTF8TOWCHAR(x), x must have CHARACTER type

 If x holds invalid UTF-8, the generated code will raise the ERROR condition

®

IBM Software Group

© 2013 IBM Corporation

Language enhancements

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

IBM Software Group | Rational software

48

ALLCOMPARE built-in function

 The new ALLCOMPARE built-in function compares 2 structures on a field-
by-field basis

 So given

 dcl 1 A1, 2 B fixed bin(15) init(0), 2 C fixed bin(15) init(1);

 dcl 1 A2, 2 B fixed dec(03) init(0), 2 C fixed dec(03) init(1);

 ALLCOMPARE(A1, A2) would return true (namely ‘1’b)

 Note that COMPARE(ADDR(A1), ADDR(A2), STG(A1)) would return false
since COMPARE does a binary byte compare of storage

IBM Software Group | Rational software

49

ALLCOMPARE built-in function

 The ALLCOMPARE built-in function has an optional third argument that
must be a char(2) constant with value ‘EQ’, ‘LE’, ‘LT’, ‘GT’, ‘GE’, or ‘NE’

 So given

 dcl 1 A1, 2 B fixed bin(15) init(0), 2 C fixed bin(15) init(1);

 dcl 1 A2, 2 B fixed dec(05) init(1), 2 C fixed dec(05) init(2);

 ALLCOMPARE(A1, A2) would return false
 ALLCOMPARE(A1, A2, ‘LT’) would return true

 If the third argument is omitted, ‘EQ’ is assumed

IBM Software Group | Rational software

50

ASSERT statement

 The new ASSERT statement resembles the assert statement in Java and the
assert function in C/C++

 It asserts either that a condition is true or false or whether a statement is
unreachable and has 3 formats

 ASSERT TRUE(<test-expression>) TEXT(<display-expression>)
 ASSERT FALSE(<test-expression>) TEXT(<display-expression>)
 ASSERT UNREACHABLE TEXT(<display-expression>)

 And in each format, the TEXT clause is optional

IBM Software Group | Rational software

51

ASSERT statement

 The ASSERT statement is very useful in making your code self-checking and
in an easily understood way

 For example, this code

 SELECT; WHEN(account_number > 0); END;

 will raise ERROR if the account_number is bad, but the code is not very
understandable – unlike this code

 ASSERT TRUE(account_number > 0)
 TEXT (‘account number is not positive!’);

IBM Software Group | Rational software

52

ASSERT statement

 When an ASSERT statement fails, the generated code passes these
arguments to a routine that you must supply

The packagename() value
The procname() value
The sourceline() value
The TEXT display-expression value

 Your routine can then use any or all of these arguments as desired - for
example, inside the compiler we use them as inserts into compiler messages

 The routine can then raise ERROR, do a GOTO, force an abend, etc

IBM Software Group | Rational software

53

ASSERT statement

 The IGNORE compiler option now accepts ASSERT as a suboption

 So, you can have ASSERT statements in your source that would be active in
the development version of your application

 But then, by compiling with IGNORE(ASSERT), the statements would be
compiled out of your production code

IBM Software Group | Rational software

54

LIKE from LIKE

 The LIKE attribute is now permitted to specify names of structures that
contain fields with the LIKE attribute

 BUT: only if those structures are declared first and only if the LIKE reference
does not depend on the expansion of a LIKE reference

 So, the following declares are valid because A is declared before B and B is
declared before C

 dcl 1 A, 2 A1 fixed bin;
 dcl 1 B, 2 B1 like A;

 dcl 1 C, 2 C1 like B;

IBM Software Group | Rational software

55

LIKE from LIKE

 However, the following is not valid

 Dcl

 1 A,

 2 A1,

 3 A11 ,

 3 A12 ,

 2 A2,

 1 B like A,

 1 C like B.A1;

 Because the expansion of the LIKE for B occurs only after the compiler has
tried to resolve all the LIKE references and so B.A1 is unknown

IBM Software Group | Rational software

56

The SUPPRESS attribute

 The SUPPRESS attribute may now be specified on PROCEDURE statements
with these suboptions

 SUPPRESS(LAXNESTED)

This will suppress the RULES(NOLAXNESTED) message

 SUPPRESS(UNREF)

This will suppress the RULES(NOUNREF) message

IBM Software Group | Rational software

57

HANDLE operations

 The following operations are now supported on HANDLEs

 Comparing
 Adding to or subtracting from – with sensitivity to the underlying type
 Computing the difference – with sensitivity to the underlying type

 In the first and third operations, the handles must be to the same type

 The sensitivity to the underlying type makes the behavior like that in C. So,
for example, adding 1 to a handle increases the associated pointer value by
the number of bytes in the underlying structure type

IBM Software Group | Rational software

58

Miscellaneous

 The maximum length of WCHAR strings is now 32767 (the same as CHAR)

 INOUT and OUTONLY now imply BYADDR

®

IBM Software Group

© 2013 IBM Corporation

Miscellaneous user requirements

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

IBM Software Group | Rational software

60

MSGSUMMARY

 Under the new MSGSUMMARY option, the compiler includes a message
summary near the end of the listing

 It is sorted by compiler component and within each component by severity
and then by message number.

 The summary includes the following information:
One instance of each message that is produced in the compilation
The number of times that each message is produced

 If the XREF suboption is specified (NOXREF is the default), then
after each message, the summary lists all the line or statement numbers where the

message is issued.

IBM Software Group | Rational software

61

MSGSUMMARY

 So, when given this intentionally bad code, the listing will now end with the
following summary of the messages produced when compiled with the
options PP(SQL,MACRO,CICS),FLAG(I),MSGSUMMARY(XREF)

 msgsumm: proc;

 exec sql include sqlca;

 exec cics what now;

 exec cics not this;

 %dcl z0 fixed bin;

 %dcl z1 fixed dec;

 end;

IBM Software Group | Rational software

62

MSGSUMMARY

 Summary of Messages

 Component Message Total Default Message Description

 SQL IBM3250I W 1 DSNH053I DSNHPSRV NO SQL STATEMENTS WERE FOUND

 Refs: 4.0

 SQL IBM3250I W 1 DSNH527I DSNHOPTS THE PRECOMPILER OR DB2 COPROCESSOR
ATTEMPTED

 TO USE THE DB2-SUPPLIED DSNHDECP MODULE.

 Refs: 0.0

 SQL IBM3000I I 1 DSNH4760I DSNHPSRV The DB2 SQL Coprocessor is using the level

 2 interface under DB2 V9

 Refs: 0.0

 MACRO IBM3552I E 2 The statement element %1 is invalid. The statement will be

 ignored.

 Refs: 9.0 10.0

 MACRO IBM3258I W 2 Missing %1 assumed before %2.

 Refs: 9.0 10.0

 CICS IBM3750I S 2 DFH7059I S WHAT COMMAND IS NOT VALID AND IS NOT TRANSLATED.

 Refs: 6.0 7.0

 Compiler <none>

IBM Software Group | Rational software

63

CASERULES

 The new CASERULES option allows you to enforce your coding standard for
PL/I keywords. It currently has one suboption, KEYWORD, with 4 suboptions

 MIXED – permits anything (and is the default)
 UPPER – requires all keywords to be in uppercase
 LOWER – requires all keywords to be in lowercase
 START – requires all keywords to start in uppercase and have only

lowercase for any remaining letters

IBM Software Group | Rational software

64

DEPRECATE

 The DEPRECATE option has been enhanced with a new STMT suboption

 With the STMT option, you can list PL/I statements that you want your
programmers not to use (such as, for example, DISPLAY and STOP)

 The list of statements that may be deprecated is limited and does not
include essential PL/I statements such as IF and SELECT

 Since DEPRECATE(STOP) is now supported, the (NO)STOP option of the
RULES compiler option has been dropped

IBM Software Group | Rational software

65

DEPRECATENEXT

 The new DEPRECATENEXT option is essentially the same as the
DEPRECATE option

 They both have the same set of suboptions

 But instead of producing E-level messages, DEPRECATENEXT produces W-
level messages

 This makes it much easier to stage the deprecation of language features

IBM Software Group | Rational software

66

RULES

 The RULES option has been enhanced with these new suboptions

(NO)CONTROLLED

(NO)RECURSIVE

(NO)LAXNESTED

 And RULES(NOLAXIF) will now also flag statements of the form x = y = z if x
is not BIT(1) – under the assumption that x, y = z was meant

IBM Software Group | Rational software

67

RTCHECK

 The RTCHECK option has been enhanced:

 you may now specify NULL370 as a suboption

 the compiled code will then check that any pointer used to load or store data
is not equal to the old NULL() value

®

IBM Software Group

© 2013 IBM Corporation

Im Ueberblick

http://www.ibm.com/software/rational
http://www.ibm.com/software/rational

IBM Software Group | Rational software

69

performance

 zEnterprise EC12 exploitation

 Other performance enhancements
VERIFY and SEARCH improved
More conversions from BIT to (W)CHAR inlined
Faster code generated for TRIM of FIXED DEC

IBM Software Group | Rational software

70

middleware support

 Improved SQL support

Restricted expressions allowed in host variables
ONEPASS option supported
LIKE supported
EXEC SQL DECLARE allowed at PACKAGE level
DEPRECATE option introduced

IBM Software Group | Rational software

71

usability

 Enhanced UTF-8 support
 ASSERT statement introduced
 ALLCOMPARE built-in allows for structure compares
 MSGSUMMARY option enhances the listing
 CASERULES option enforces naming conventions
 DEPRECATENEXT option allows staged deprecation
 Additional RULES suboptions to control code quality

IBM Software Group | Rational software

72

© Copyright IBM Corporation 2008. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any
kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor
shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use
of IBM software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or
capabilities referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product
or feature availability in any way. IBM, the IBM logo, the on-demand business logo, Rational, the Rational logo, and other IBM products and services are trademarks of the International Business
Machines Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

Learn more at:
 IBM Rational software
 IBM Rational Software Delivery Platform
 Process and portfolio management
 Change and release management
 Quality management

 Architecture management
 Rational trial downloads
 developerWorks Rational
 IBM Rational TV
 IBM Rational Business Partners

http://www.ibm.com/software/rational
http://www-306.ibm.com/software/info/developer/index.jsp
http://www-306.ibm.com/software/rational/offerings/lifecycle.html
http://www-306.ibm.com/software/rational/offerings/scm.html
http://www-306.ibm.com/software/rational/offerings/testing.html
http://www-306.ibm.com/software/rational/offerings/design.html
http://www.ibm.com/developerworks/rational/downloads/?S_TACT=105AGX23&S_CMP=RCD
http://www.ibm.com/developerworks/rational
http://www-306.ibm.com/software/info/television/index.jsp?cat=rational&media=video&item=en_us/rational/xml/M259765N40519Z80.xml
http://www-306.ibm.com/software/rational/partners/

	12335: Enterprise PL/I 4.3 Highlights February 2013
	Enterprise 4.3
	performance
	zEnterprise EC12 exploitation
	EC12
	Decimal-Floating-Point Zoned-Conversion Facility
	Terminology review: zoned decimal
	Terminology review: floating-point
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Example: Picture to Decimal-Floating-Point
	Slide 14
	Slide 15
	Slide 16
	Example: Picture to Fixed Bin(31)
	Slide 18
	Slide 19
	Slide 20
	Example: Unsigned Fixed Bin(32) to Picture
	Slide 22
	Slide 23
	Example: Fixed Bin(63) to Picture
	Slide 25
	Slide 26
	Slide 27
	Other performance enhancements
	VERIFY and SEARCH improved
	Slide 30
	More conversions from BIT to CHAR inlined
	More conversions of BIT to WCHAR inlined
	Faster code for TRIM of FIXED DEC
	Middleware improvements
	SQL ONEPASS
	SQL statement display
	SQL and restricted expressions
	SQL and LIKE
	SQL and DEPRECATE
	Increased Usability
	Enhanced UTF-8 support
	New UTF-8 functions
	UTF8
	Slide 44
	UTF8TOCHAR
	UTF8TOWCHAR
	Language enhancements
	ALLCOMPARE built-in function
	Slide 49
	ASSERT statement
	Slide 51
	Slide 52
	Slide 53
	LIKE from LIKE
	Slide 55
	The SUPPRESS attribute
	HANDLE operations
	Miscellaneous
	Miscellaneous user requirements
	MSGSUMMARY
	Slide 61
	Slide 62
	CASERULES
	DEPRECATE
	DEPRECATENEXT
	RULES
	RTCHECK
	Im Ueberblick
	Slide 69
	middleware support
	usability
	Slide 72

