
OOM Lab Part 1 - SimpleOOM

Locate the OOM folder on the C drive

WordPad or Notepad will be used to open several of the files.

You will also need to open a Command Prompt window (ie, DOS prompt)

In the OOM folder, open the file named
 Simplejavacore.20100727....txt

and answer the following questions:

1. What is the exception thrown?
 What field name contains the exception?
 The exception is "java/lang/OutOfMemoryError", found in the field
1TISIGINFO

2. What is the zOS release in use?
 See the field 2XHOSLEVEL
3. What is the java version in use?
 See the field 1CIJAVAVERSION
4. What java 'command' was executed?
 See the field 1CICMDLINE
5. What is the Application or Class name in use?
 (this is included in 1CICMDLINE)The answer is " SimpleOOM"

6. Locate the MEMINFO section: This section of a ja vacore includes
MEMory INFOrmation

7. How much heap is available? See the field 1ST HEAPFREE
 How much is allocated? See the field 1ST HEAPALLOC
 What can you determine based on these numbers?
 In this case, you can tell that the entire jav a heap contents have
been exhausted
 because HEAPFREE is zero. You also can tell t he maximum heapsize
is defined as xA00000.
 The heap will be in HEX, in decimal it is 1048 5760 bytes (or 10
Meg).
 NOTICE that this value shows up in multiple fi elds :
 1CICMDLINE java -Xmx10m SimpleOOM
 and
 2CIUSERARG -Xmx10m

 this helps determine the heap size was passed to the jvm as an
argument

8. Find the 'Current Thread Details' and review the java stack:
 What is the field of interest? 1XMCURTHDINFO

9. What source code line number was last executed w hen the exception
occurred?
 First, look at the field 3XMTHREADINFO, this is the 'Main' thread
running, but to find out what
 code is executing, look at 4XESTACKTRACE . Th is is a very simple
testcase, containing only a single stack
 entry. To determine the line number, let's br eak down the stack
entry:
 at SimpleOOM.main(SimpleOOM.java:7(Compiled Code))

 The first part is the class and method n ame (SimpleOOM is the

class, main is the method)
 Next is the name of the source file for the class
(SimpleOOM.java)
 The number following is the source code line number (7)
 So, the last line to execute was number 7 . Keep in mind,
though, that many times the code executing
 when an OutOfMemory occurs may be just a victim, not the
actual problem source.

10. Is the method JIT (Just in Time) compiled? Wh at might that mean?
 on the stack trace entry we just covered, n ote the (Compiled
Code) at the end of the line.
 This indicates the method within this class (method main within
class SimpleOOM) has been JIT
 compiled. This means the method has been "c ompiled" into
assembler code, which helps improve
 performance.

NEXT, Open the file named SimpleGCOut using Notepa d or WordPad

11. What is this output? And how is it captured?

 I'll help you here: if you've not seen this before ,
 this is a Garbage Collection trace, captured by pa ssing -verbosegc
 when java is initialized. If you returned to the javacore, you could
find -verbosegc within
 the 1CICMDLINE field, or within a 2CIUSERARG fie ld. In this case,
I've thrown you a curve -
 you won't find it within the javacore, as this tra ce was collected on a
second invocation of the
 class.

 The key gc entry type is the 'Global' entry, this is what performs the
actual garbage collection

12. How frequently are Global GC's occurring?
 Make note of the 'intervalms' field: discount the first entry
found ,
 <gc type="global" id="1" totalid="1" interv alms="0.000">
 Why? Because the FIRST entry will always be ZERO

13. By browsing the 'global' entries , and noting the intervalms field,
does GC activity seem excessive?
 Keep in mind 'intervalms' represents the inte rval in milliseconds.
 In general, this would be considered somewhat excessive due to the
frequency.
 How would you correct this? Consider increas ing the maximum heap
size. But, there
 may be more to investigate if more storage doe sn't change the
results.

Given the simplicity of this example, you may be ab le to review the GC
trace
activity easily. But, what if this were data colle cted over a long
period of
time? We'll answer this in a moment...

BUT, what if -verbosegc wasn't in use? Let's move t o the Snap trc

files...

Snap trc files contain raw JVM trace data. It is fo rmatted using the
command (using an IBM JVM)

java com.ibm.jvm.format.TraceFormat <Snap....trc>

The default output file will be named with a suffix of '.fmt'
appended to the Snap trace input filename

So, let's look at the the file named
SimpleSnap.20100727.141018.33620725.0001.trc.fmt
Use WordPad or Notepad. Scroll to the bottom of the file.
The key entry to look for is J9Allocateobject()

18:10:18.926222374*00000000 j9mm.100 Event J 9AllocateObject()
returning NULL! 32 bytes requested for object of cl ass 0x225026b0 from
memory
 s pace '' id=0x0

14. What size of an object was requested but faile d?
 In this case, the last allocation that failed was a request for 32
bytes.

Next, we'll try using PMAT (Pattern Modeling and An alysis Tool)
From a DOS window,
 cd OOM
and enter the following at the prompt:

 java -Xmx900m -jar ga439.jar SimpleGCOut

Note the GCStats, etc...
Move your cursor to the top of the tool bar, and se lect the option
 "Graph View All"

15. Notice the vertical bar to the right? What is that displaying?
 (hint:recall the Gc's occured milliseconds apart)

Take some time to investigate the various display o ptions.

*** *********************

OOM Lab Part 2 - StartThreads
With what you learned in Lab 1,
Try answering the same questions about the Javacore , GC trace, and Snap
trace for Lab 2. All the files for Lab 2 will begin
with 'Start', ie, Startjavacore...., StartSnap.. etc.

When reviewing the javacore, take note of any diffe rences, especially in
the 1TISIGINFO field, and
the 1XMCURTHDINFO 'Current Thread Details' field

16. What does Native Method mean?
 the top of the stack for the failing thread i s:
 4XESTACKTRACE at java/lang/Thread.startIm pl(Native Method)

 Native Method indicates the code in question is N OT java, but is C,
C++, Assembler, etc.

Review the ENVINFO

17. is there anything there that warrants further i nvestigation?
 One worth considering would be
 -Xss500k
 This defines a stack size of 500K for every th read started. This
may or *may not* be interesting, depending on the application.

Review the gc tracing in StartGCOut

?????????
 Why are there no entries?
 Remember, Garbage Collection doesn't execute u nless it's needed.
So, this application doesn't appear to use much hea p space.

 So, PMAT won't help..... there is no data availab le for it to use.

Review StartSnap....trc.fmt

?????????
 There's no object allocation failure, here, eith er..

HINT: If you didn't notice, return to Startjavacore ...txt , and review
the exception.. and make note of the
 FULL exception text

Detail "java/lang/OutOfMemoryError" "Failed to crea te a thread: retVal -
1073741830, errno 112" received

This error is actually a NATIVE storage OOM error, requiring a zOS
tdump to analyze further.
Capturing a tdump requires use of :

-Xdump:system:events=systhrow,filter=java/lang/OutO fMemoryError

