

A Deeper Look into the Inner Workings and Hidden Mechanisms of FICON Performance

- David Lytle, BCAF
- Brocade Communications Inc.
- Tuesday March 13, 2012 1:30pm to 2:30pm
- Session Number 12071

QR Code

Legal Disclaimer

- All or some of the products detailed in this presentation may still be under development and certain specifications, including but not limited to, release dates, prices, and product features, may change. The products may not function as intended and a production version of the products may never be released. Even if a production version is released, it may be materially different from the pre-release version discussed in this presentation.
- NOTHING IN THIS PRESENTATION SHALL BE DEEMED TO CREATE A WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY RIGHTS WITH RESPECT TO ANY PRODUCTS AND SERVICES REFERENCED HEREIN.
- Brocade, Fabric OS, File Lifecycle Manager, MyView, and StorageX are registered trademarks and the Brocade B-wing symbol, DCX, and SAN Health are trademarks of Brocade Communications Systems, Inc. or its subsidiaries, in the United States and/or in other countries. All other brands, products, or service names are or may be trademarks or service marks of, and are used to identify, products or services of their respective owners.
- There are slides in this presentation that use IBM graphics.

Notes as part of the online handouts

I have saved the PDF files for my presentations in such a way that all of the audience notes are available as you read the PDF file that you download.

If there is a little balloon icon in the upper left hand corner of the slide then take your cursor and put it over the balloon and you will see the notes that I have made concerning the slide that you are viewing.

This will usually give you more information than just what the slide contains.

I hope this helps in your educational efforts!

A deeper look into the Inner Workings and Hidden Mechanisms of FICON Performance

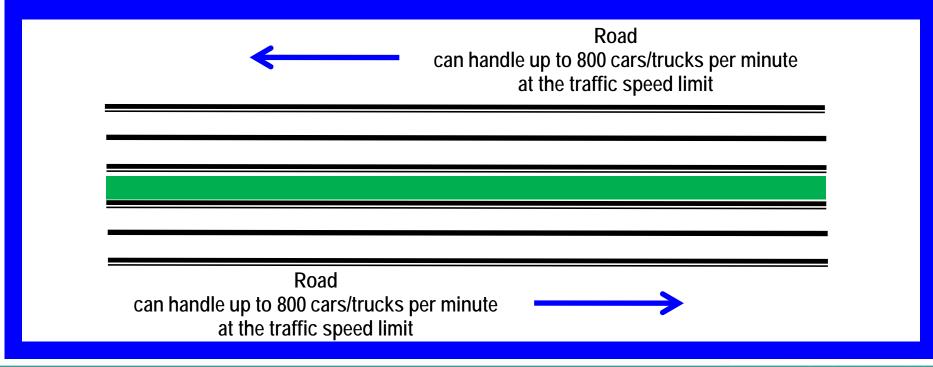
This technical session goes into a fairly deep discussion on some of the design considerations of a FICON infrastructure.

- Among the topics this session will focus on is:
 - Congestion and Backpressure in FC fabrics
 - How Buffer Credits get initialized
 - How FICON utilizes buffer credits
 - Oversubscription and Slow Draining Devices
 - Determining Buffer Credit Requirements
 - FICON RMF Reporting

NOTE: Please check for the most recent copy of this presentation at the SHARE website as I make frequent updates.

This Section

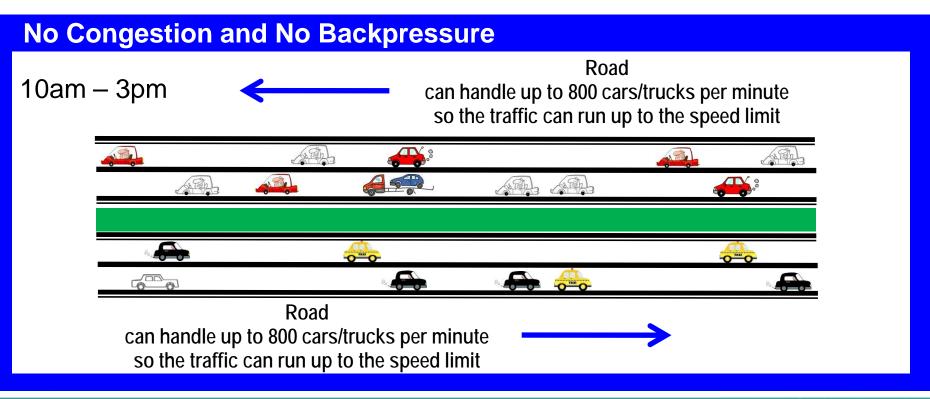
Congestion and Backpressure Overview



Congestion and Backpressure Overview These two conditions are not the same thing

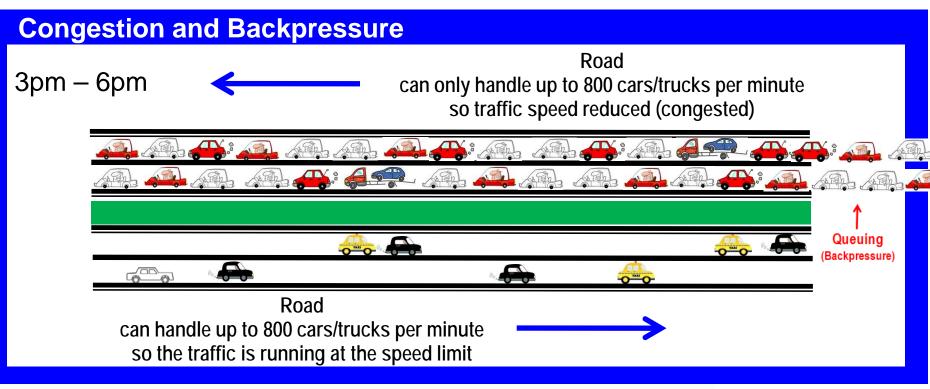
- **Congestion** occurs at the point of restriction
- Backpressure is the effect felt by the environment leading up to the point of restriction

I will use an Interstate highway example to demonstrate these concepts



Congestion and Backpressure Overview

- The highway handles up to 800 cars/trucks per minute and less than 800 cars/trucks per min are arriving
- Time spent in queue (behind slower traffic) is minimal
 - Cut-through routing (zipping along from point A to point B) works well



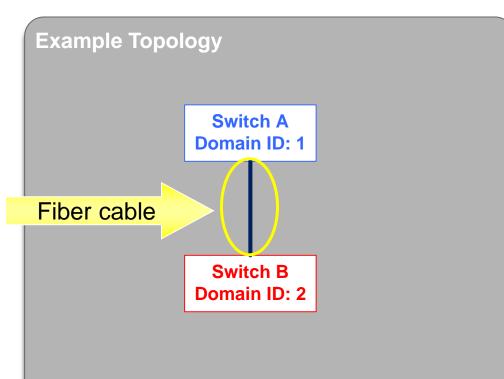
Congestion and Backpressure Overview

Congestion

- The highway handles up to 800 cars/trucks per minute and more than 800 cars/trucks per min are arriving
- Latency time and buffer credit space consumed increases
 - Cut-through routing cannot decrease the problem
- Backpressure is experienced by cars slowing down and queuing up

This Section

 Very basic flow for the Build Fabric process and how Buffer Credits get initialized



Build Fabric Process

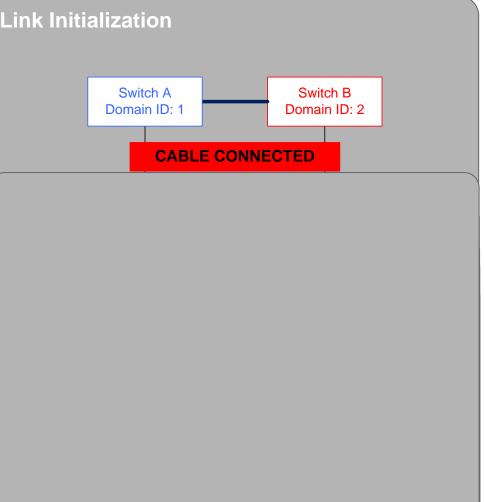
Assume

- A fiber cable will be attached between switch A and B
- This will create an ISL (E_Port) between these two devices

Assume 8 credits are being

- granted for this example
- Link becomes an E Port
- Send Link Resets (LR)
 - Initializes Sender credit values
- Link Reset Response (LRR)
 - Initializes Responder credit values

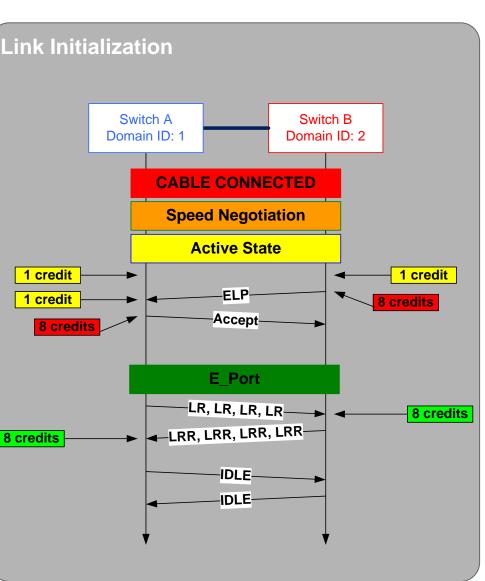
Complete your sessions evaluation online at SHARE.org/AnaheimEval


Build Fabric Process

- Cable connected
- Link Speed Auto-Negotiation
- Link is now in an Active state
- One credit is granted by default to allow the port logins to occur
- **Exchange Link Parms (ELP)**
 - Contains the "requested" buffer credit information for the sender
 - Assume 8 credits are being granted for this example

Responder Accepts – then does its own ELP

- Contains the "requested" buffer credit information for the responder

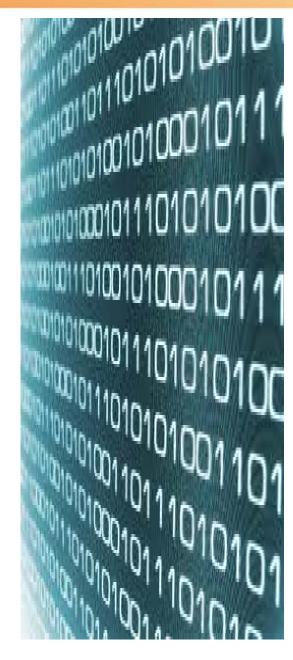

© 2012 Brocade - For Anaheim Fall SHARE 2012 Attendees

Build Fabric Process

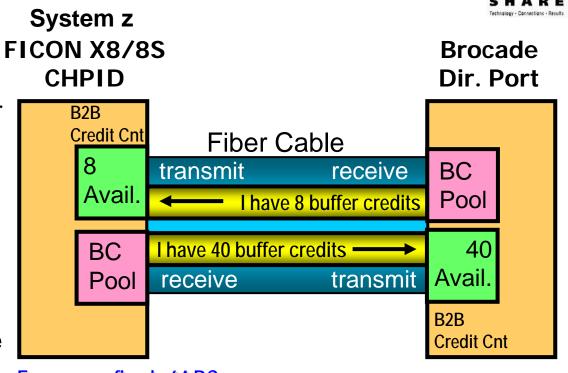
- Cable connected
- Link Speed Auto-Negotiation
- Link is now in an Active state
- One credit is granted by default to allow the port logins to occur
- Exchange Link Parms (ELP)
 - Contains the "requested" buffer credit information for the sender
 - Assume 8 credits are being granted for this example

Responder Accepts – then does its own ELP

- Contains the "requested" buffer credit information for the responder
- Assume 8 credits are being granted for this example
- Link becomes an E_Port
- Send Link Resets (LR)
 - Initializes Sender credit values
- Link Reset Response (LRR)
 - Initializes Responder credit values
- Ready for I/O to start flowing



This Section


How FICON uses Buffer-to-Buffer Credits

- Howard Johnson, BCAF and a Brocade FICON Engineer, will present an excellent session entitled, "Buffer-to-Buffer Credits, Exchanges, and Urban Legends" tomorrow at 8:00am
- I hope you'll take the opportunity to hear it

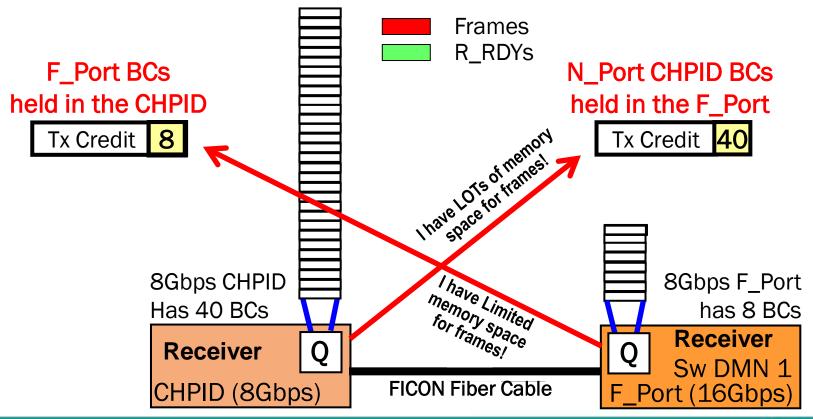
How Buffer Credits Work

- A Fiber channel link is a PAIR of paths
- A path from "this" transmitter to the "other" receiver and a path from the "other" transmitter to "this" receiver
- The "buffer" resides on each receiver, and that receiver tells the linked transmitter how many BB_Credits are available
- Sending a frame through the transmitter decrements the B2B Credit Counter
- Receiving an R-Rdy or VC-Rdy through the receiver increments the B2B Credit Counter
- DCX family has a buffer credit recovery capability

Express = fixed 64 BC Express2 = fixed 107 BC Express4 = fixed 200 BC Express8 = fixed 40 BC

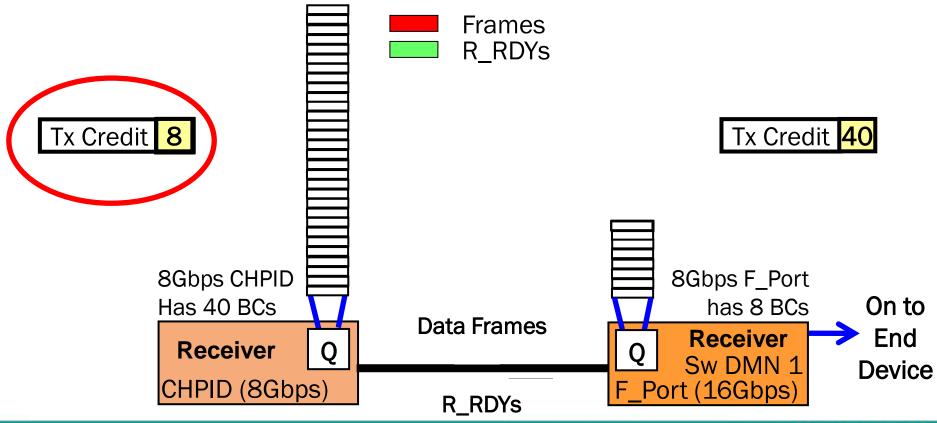
- Switch has variable BCs

- DASD has fixed BCs
- Old Tape had variable BCs

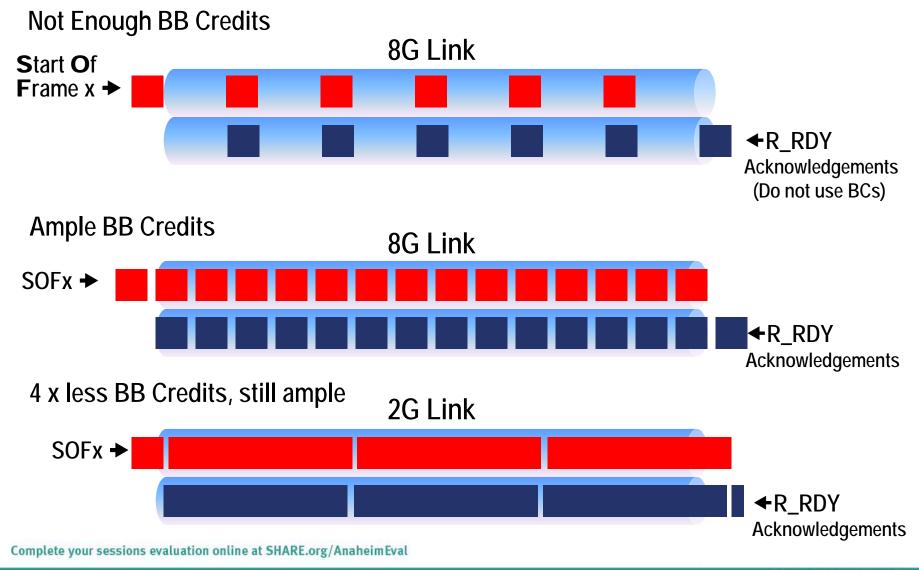

Each receiver on the fiber cable can state a different value!

Once established, it is transmit (write) connections that will typically run out of buffer credits

Buffer-to-Buffer Credits Buffer-to-Buffer flow control

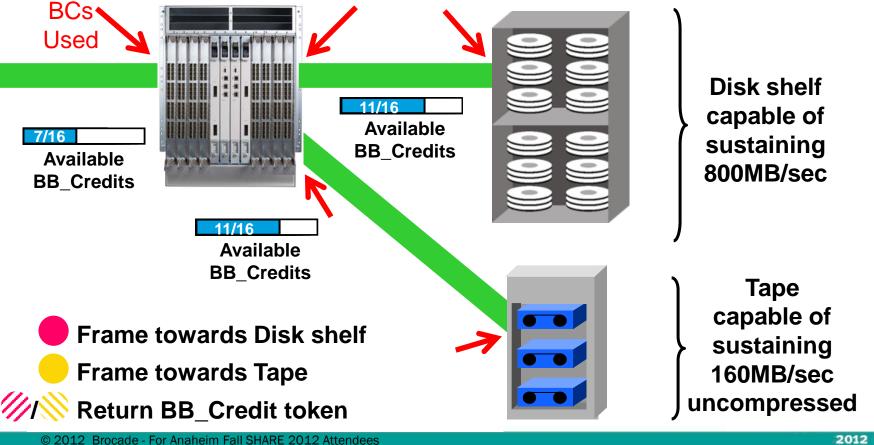

- After initialization, each port knows how many buffers are available in the queue <u>at the other end of the link</u>
 - This value is known as Transmit (Tx) Credit

Buffer-to-Buffer Credits Buffer-to-Buffer flow control Example



- Tx Credit is decremented by one for every frame sent from the CHPID
- No frames may be transmitted after Tx Credit reaches zero
- Tx Credit is **incremented** by one for each R_RDY received from F_Port

BB Credit Droop



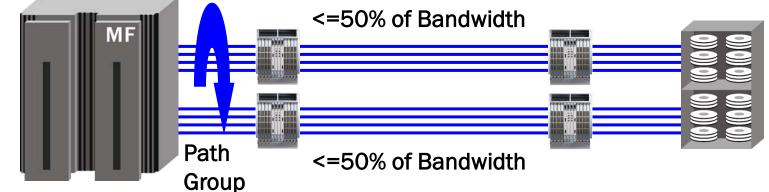
Buffer Credits Working Ideally

Buffer Credits are a "Flow Control" mechanism to assure that frames are sent correctly (engineers call this "Frame Pacing")

In an ideal FC network all devices can process frames at the same rate and negotiate equal levels of BB_Credits)

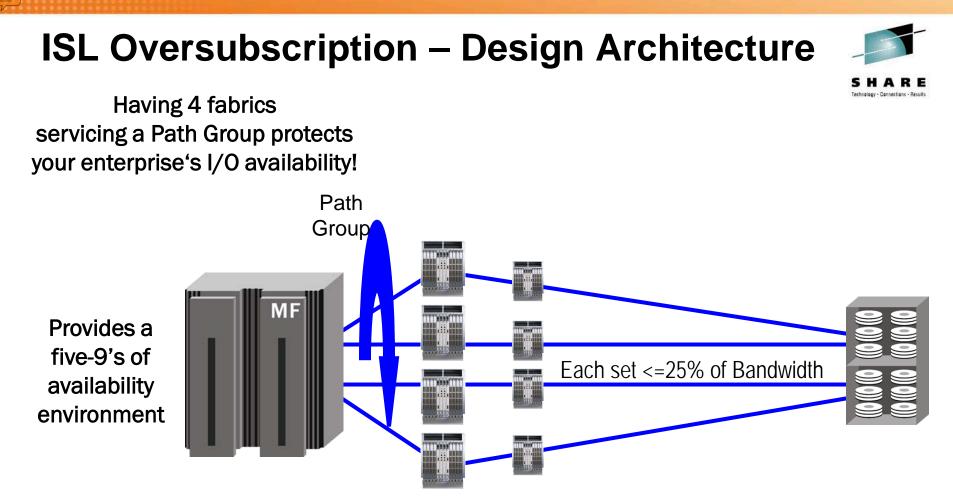
This Section

ISL Oversubscription


NOTE:

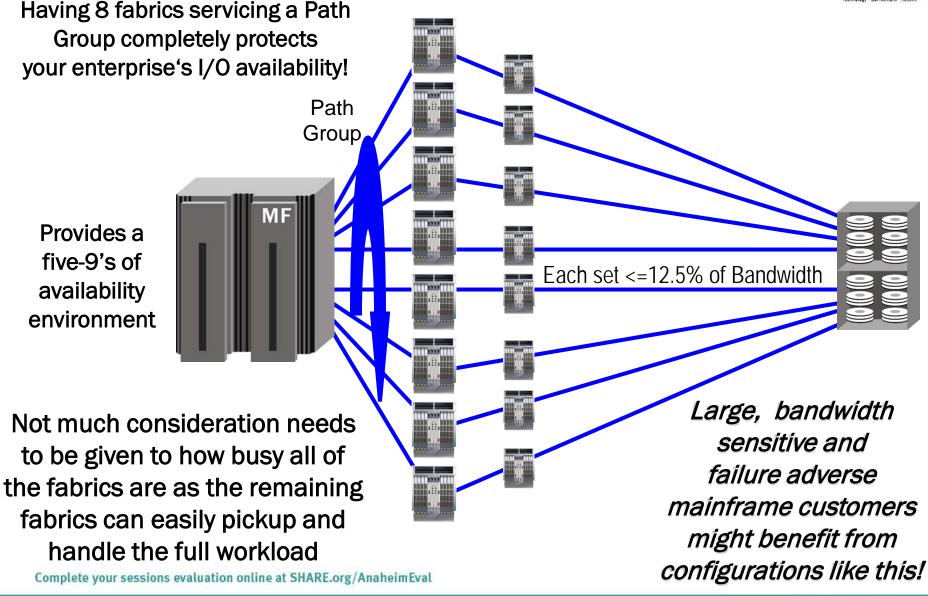
There is also fabric oversubscription and link oversubscription. In this session I think that **ISL Oversubscription** will demonstrate how serious a concern that oversubscription really can be to the enterprise.

ISL Oversubscription – Design Architecture


Provides a potential five-9's of availability environment

But each fabric really needs to run at no more than 45% busy so that if a failover occurs then the remaining fabric can pickup and handle the full workload z/OS's IOS automatically load balances the FICON I/O across all of the paths in a Path Group (up to 8 channels in a PG)

- Although this *potentially* provides a five-9s environment, when a fabric does fail how devastating will it be to you in the event that <u>another event occurs</u> and the remaining fabric also fails ?
- Especially when humans get involved, multiple failures too often do occur!



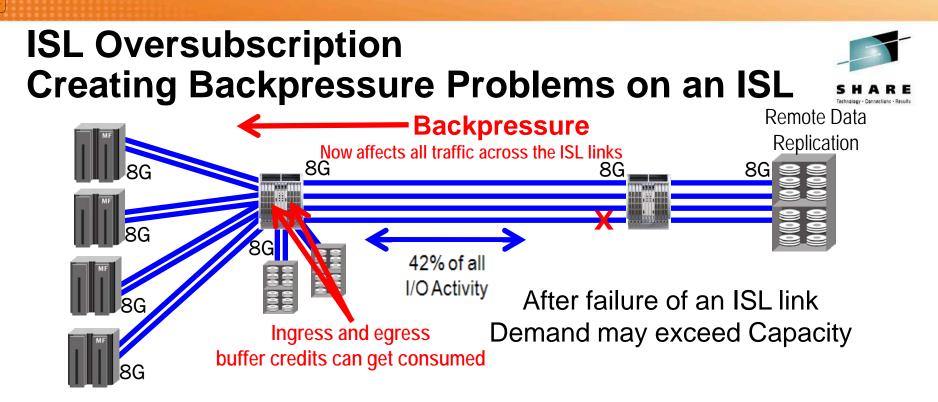
A little consideration needs to be given to how busy all of the fabrics are but the remaining fabrics should easily pickup and handle the full workload

Complete your sessions evaluation online at SHARE.org/AnaheimEval

© 2012 Brocade - For Anaheim Fall SHARE 2012 Attendees

ISL Oversubscription – Design Architecture

© 2012 Brocade - For Anaheim Fall SHARE 2012 Attendees


- Risk of Loss of Bandwidth is the motivator for deploying FICON fabrics like this
- In this case, 2 paths from an 8 path Path Group are deployed across four FICON fabrics to limit bandwidth loss to no more than 25% if a FICON fabric were to fail
- Each fabric needs to run at no more than ~50-60% busy so that if a failover occurs then the remaining fabrics can pickup and handle the full workload without over-utilization and with some extra utilization to spare per fabric
- If an ISL link in a single fabric fails then that fabric runs at only 50% capability

ISL Oversubscription – After a Failure Demand may exceed capacity

- In this case if a switching device fails ...or... if the long distance links in a fabric fails then the frame traffic that was traveling across the now broken links will be rerouted through the other fabrics to reach the storage device
- Those remaining fabrics must have enough reserve capacity in order to pick up all of the rerouted traffic while maintaining performance
- Congestion and potential back pressure could occur if all fabrics are running at high utilization levels – again, probably above 50% or 60% utilization
- Customers should manage their fabrics to allow for rerouted traffic

- In This Example:
 - 8G CHPIDs and ISLs are capable of 760MBps send/receive (800 * .95=760)
 - Two CHPIDs per mainframe (1520MBps) and 4 mainframes (6080MBps)
 - About 42% of I/O activity is across the ISLs and requires 2550MBps
 - Four ISLs provides 3040MBps (760MBps * 4) and a little extra
 - Then one ISL fails leaving only 2280MBps (760MBps * 3) not enough redundancy
 - 2280MBps / 2550MBps = 89% of what is required (Congestion Will Occur)
 - Each CHPID experiences backpressure as the remaining 3 ISLs become congested and unable to handle all of the I/O traffic

Some of my favorite photos

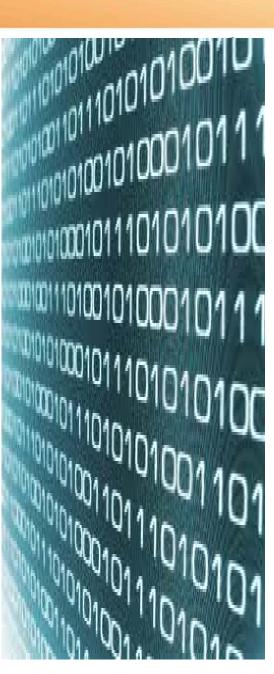
In Technical Sessions, Your Brain Should Be Allowed To Take A Break!

Big Sur - California

Bryce Canyon, USA

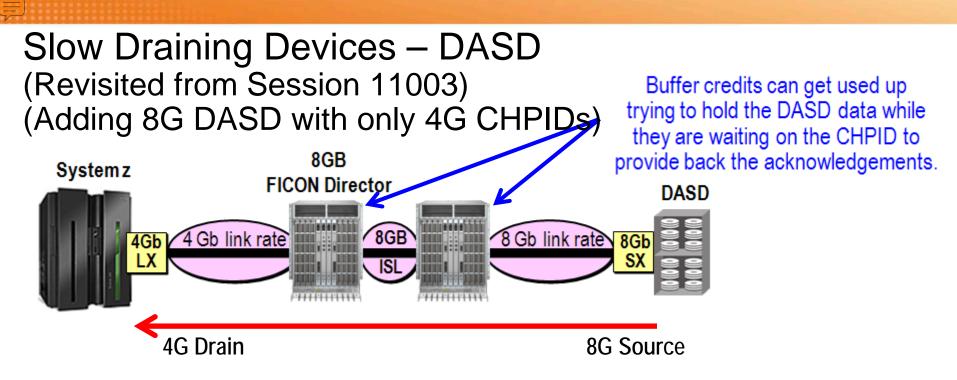
Alesund, Norway

Lock Lomond Scotland from Lock Lomond Castle


Brain Interlude Is Over....

Back to Work!

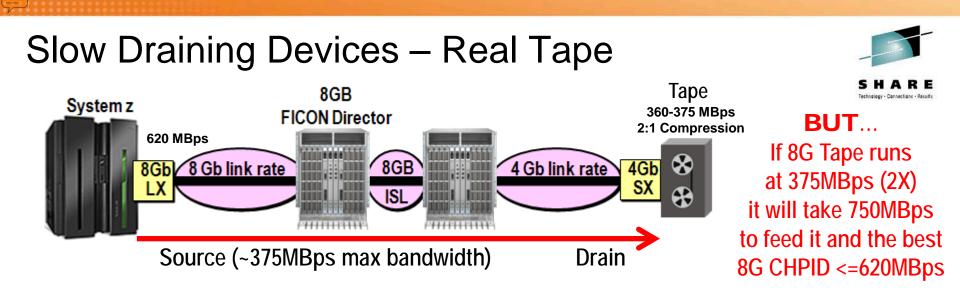
This Section


Slow Draining Devices

Slow Draining Devices

- Slow draining devices are <u>receiving ports</u> that have more data flowing to them than they can consume.
 - This causes external frame flow mechanisms to back up their frame queues and potentially deplete their buffer credits.
- A slow draining device can exist at any link utilization level
- It's very important to note that it can spread into the fabric and can slow down unrelated flows in the fabric.
- What causes slow draining devices?
- The most common cause is within the storage device or the server itself. That happens often because a target port has a slower link rate then the I/O source ports(s) or the Fan-In from the rest of the environment overwhelms the target port.

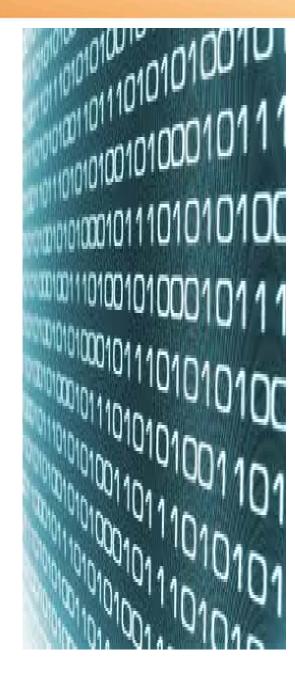
- This is potentially a very poor performing, infrastructure!
- DASD is about 90% read, 10% write. So, in this case the "drain" of the pipe is the 4Gb CHPID and the "source" of the pipe is the 8Gb storage port.
- The Source can out perform the Drain!
- This can cause congestion and back pressure towards the CHPID. The switch port leading to the CHPID becomes a slow draining device.



The Affects Of Link Rates (watch out for ISLs!)

Source Drain **Buffer Credit** Once an ISL begins ingress port queuing then quite a bit queuing will more backpressure can build up in the fabric because of create backmulti-exchange congestion building up on the ISL link(s) pressure on the The Bottleneck Starts Here! Q channel paths. Systemz Now a 4G I/ <u>Start 8G I/O</u> DASD Exchange Exchange 4Gb 4 Gb link rate 8 Gb link rate 8Gb '8GB` This example ISL assumes that all of the I/O traffic is going Data is being sent to the one CHPID Gbps faster than it can or replication of be received so data is going across 4 Gbps after the first few \bigotimes the ISL Gbp Gbps frames are received queuing begins.

- The is a simple representation of a single CHPID connection
- Of course that won't be true in a real configuration and the results could be much worse and more dire for configuration performance



- For 4G tape this is OK Tape is about 90% write and 10% read on average
- The maximum bandwidth a tape can accept and compress (@ 2:1 compression) is about 360MBps for Oracle (T1000C) and about 375MBps for IBM (TS1140)
- A FICON Express8S CHPID in Command Mode FICON can do about 620MBps
- A 4G Tape channel can carry about 380MBps (400 * .95 = 380MBps)
- So a single CHPID attached to a 4G tape interface:
 - Can run a single IBM tape drive
 - Can run a single Oracle (STK) tape drive

(620 / 375 = 1.65)(620 / 360 = 1.72)

This Section

- Determining Buffer Credits Required
- RMF Reports for Switched-FICON
- Brocade's Buffer Credit Calculation Spreadsheet

Buffer Credits Why FICON Never Averages a Full Frame Size

- There are three things that are required to determine the number of buffer credits required across a long distance link
 - The speed of the link
 - The cable distance of the link
 - The average frame size
- Average frame size is the hardest to obtain
 - Use the RMF 74-7 records report "FICON Director Activity Report"
 - You will find that FICON just never averages full frame size
 - Below is a simple FICON 4K write that demonstrates average frame size

4K will not fit into 2 BCs because of headers for FC as well as SB3 protocol that is used and the 64 byte FICON header that is placed into the payload field of the 1st frame of every FICON exchange.

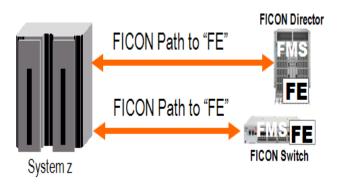
Average = (76+2084+2148+72+68) / 5 = 890 Bytes

Buffer Credits for Long Distance The Impact of Average Frame Size on Buffer Credits

A distance	of 20KM wi	th 100% link	utilization	2Gbps	4Gbps	8Gbps	10Gbps	16Gbps
SOF,			Smaller than	Buffer	Buffer	Buffer	Buffer	Buffer
Header,	Payload	Total Frame	full frame by	Credis	Credis	Credis	Credis	Credis
CRC, EOF	Fayload	Bytes	xx%	Required	Required	Required	Required	Required
CRC, EOF			XX /0	8b10b	8b10b	9610b	64b66b	64b66b
36	2112	2148	0.00%	20	40	80	99	159
36	1966	2002	6.80%	22	43	05	107	170
36	1824	1860	13.41%	23	46	92	115	183
36	1682	1718	20.02%	25	50	99	124	198
36	1540	1576	26.63%	27	54	108	135	216
36	1398	1434	33.24%	30	60	119	149	238
36	1256	1292	39.85%	33	66	132	165	264
36	1114	1150	46.46%	37	74	148	185	296
36	972	1008	53.07%	43	85	160	211	338
36	830	866	59.68%	50	99	197	246	393
36	699	724	66.29%	59	118	995	294	470
36	546	582	72.91%	74	147	293	366	585
36	404	440	79.52%	97	194	387	484	773
36	262	298	86.13%	143	286	571	714	1142
36	120	156	92.74%	273	545	1090	1363	2180
36	36	72	96.65%	591	1181	2362	2952	4724

Created by using Brocades Buffer Credit Calculator

Buffer Credit Starvation Why not just saturate each port with BCs?


- If a malfunction occurs in the fabric or....
- If a CHPID or device is having a problem...
- It is certainly possible that some or all of the I/O will time out
- If ANY I/O does time out then:
 - All frames and buffers for that I/O (buffer credits) must be discarded
 - All frames and buffers for subsequently issued I/Os (frames and buffer credits) in that exchange must be discarded
 - Remember queued I/O will often drive exchanges ahead of time
 - The failing I/O must be re-driven
 - Subsequent I/O must be re-driven
- The recovery effort for the timed out I/O gets more and more complex – and more prone to also failing – when an over abundance of buffer credits are used on ports

Buffer Credit Starvation Detecting Problems with FICON BCs

Produce the FICON Director Activity Report by creating the RMF 74-7 records – but this is only available when utilizing switched-FICON!

 A FICON Management Server (FMS) license per switching device enables the switch's Control Unit Port (CUP) – always FE – to provide information back to RMF at its request

• Analyze the column labeled AVG FRAME PACING for non-zero numbers. Each of these represents the number of times a frame was waiting for 2.5 microseconds or longer but BC count was at zero so the frame could not be sent

Complete your sessions evaluation online at SHARE.org/AnaheimEval

FICON DIRECTOR ACTIVITY	I DIRECTOR ACTI	TI	TIV	ITY
-------------------------	-----------------	----	-----	-----

PAGE 1

	z/OS	V1R8		SYSTEM ID	PRD1	STAN	RT 04.	/12/200	9-04.30.00	INTERVAL	. 000.15.00
				RPT VERSIO	ON VIR8 F	MF END	04.	/12/200	9-04.45.00	CYCLE 1.	000 SECONDS
IODF =	A2 CR-	DATE: 0	3/27/2009	CR-TIME: 1	5.43.51	ACT: ACTIV	ATE				
SWITCH	DEVICE:	032B	SWITCH ID: 2	B TYPE:	006140	MODEL: 001	MAN	: MCD	PLANT: 01	SERIAL	00000131656G
PORT	-CONNEC	CTION-	AVG FRAME	AVG FRAM	ME SIZE	PORT BAND	IDTH	(MB/SE	C) ERR	OR	
ADDR	UNIT	ID	PACING	READ	WRITE	READ		WRITE .	COU	NT	
05	CHP	05	U	849	1436	8.63	3	17.	34	0	
07	CHP-H	6B	0	1681	1395	0.8	7	0.3	32	0	
09	CHP	15	7	833	1429	11.9	5	20.	49	0	
OC	CHP-H	64	0	939	1099	0.3	9	0.	50	0	
OD	CHP	6B	1	1328	1823	3.5	5	12.	73	0	
OF	CHP-H	66	0	1496	1675	1.85	5	2.	61	0	
10	CHP	64	0	644	1380	0.03	3	0.	13	0	
13	CHP-H	19	0	907	885	0.58	3	0.	45	0	
16	CHP	12	0 0 0	1241	1738	0.9	1	1.	72	0	
17	CHP	08	0	685	1688	0.10)	0.1	82	0	
1A	CHP	15	0	1144	1664	0.6	5	1.	18	0	
1B	CHP	OD	0	510	1759	0.13	2	1.	72	0	
1E	CHP-H	05	0	918	894	0.55	9	0.	45	0	
1F	CHP	21	0	1243	1736	0.9	7	1.	70	0	
20	CU	E900	0	1429	849	17.6	5	8.1	85	0	
	CU	E800									
	CU	E700									
22	CHP	10	0	923	1753	0.55	5	2.	78	0	
23	CHP	54	0	1805	69	0.80)	0.0	00	0	
24	CHP	64	0	89	1345	0.00)	0.	00	0	
27	CHP	6B	0	1619	82	0.03	i.	0.0	00	0	
28	CHP	95	27	918	1589	10.3	2	30.	56	0	
2B	CHP	70	0	69	2022	0.00)	0.	71	0	

FICON Director Activity Report With Frame Delay

FICON

Using Buffer Credits is how FC does Flow Control, also called "Frame Pacing"

DIRECTOR ACTIVITY

o cai	ied Frai	me P	acing						PAGE 1
		V1R8	0	SYSTEM ID	ABCD	START	04/12/2009-04	4.30.00 I	NTERVAL 000.15.00
				RPT VERSI	ON V1R8 R	MF END	04/12/2009-04	4.45.00 C	YCLE 1.000 SECONDS
IODF	= A2 CR	-DATE:	03/27/2009	CR-TIME: 1	8.43.51	ACT: ACTIVA	TE		
SWIT			SWITCH ID. 3	2B TYPE	: 006140	MODEL: 001	MAN: MCD PI	LANT: 01	SERIAL: 00000HIJKLMN
PORT	-CONNE	CTION-	AVG FRAME	AVG FRA	ME SIZE		DTH (MB/SEC)	ERROR	N
ADDR		ID	PACING	READ	WRITE	READ	WRITE	COUNT	
05	CHP-H	05		849	1436	8.63	17.34	0	In the last
07	CHP	6B		1681	1395	50.87	10.32	0	15 minutes
09	CHP	15	0	833	1429	11.96	20.49	0	•
00	CHP-H	64	0	939	1099	0.39	0.50	0	
0D	CHP	6B	0	1328	1823	3.56	12.73	0	V
OF	CHP-H	66	0	1496	1675	1.85	2.61	0	This port had a
10	CHP	64	0	644	1380	0.03	0.13	0	•
13	CHP-H	19	0	907	885	0.58	0.45	0	frame to send
16	CU	C800	0	1241	738	20.97	5.72	0	but did not
1.7	CU	CA00	0	1144	1664	70.10	3.82	0	
1A 1B	CHP CHP	15 0D	0	1144	1664 1759	0.65	1.18	-	have any
1B 1E	CHP CHP-H	05	0	510 918	894	0.12	1.72	0	Buffer Credits
1E 1F	CHP-H CHP	21	0	1243	1736	0.59	0.45	0	left to use
20	CU	E900	0	1429	849	17.66	8.85	0	
20	CU	E800	0	1125	015	17.00	0.00		to send them.
	CU	E700							
22	CHP	10	0	923	1753	0.55	2.78	0	And this
23	CHP	54	0	1805	69	20.80	7.30	0	
24	CHP	64	0	89	1345	0.00	0.00	ō	happened
27	CHD	6B		1619	82	0.01	0.00	-	270 times
28	SWITCH	95	270		789	50.32	10.56	0	during the
2B	UIII	70	U	69	2022	0.00	0.71	0	
	/								interval.

And this is an ISL Link!

Indicators of Buffer Credit Starvation

Fabric with zHPF Enabled

© 2012 Brocade - For Anaheim Fall SHARE 2012 Attendees

³⁷

We have a BC Calculator that you can use!

Ā	В	C	D	E	Ē	G	Ĥ	Ĩ	SI.	K	L	М	- N	0	P
B	rocade's Buffer Cre	edit Calcu	lation fo	r Fibre C	hannel	(FICON a	nd/or S/	AN)							
16		an ar an		5	118901.00	V. 1	and the second second	10.150							
			100 MARCON C	1	11010242/0010	the second se	Speed	(A & 72/41 K - 1		Concerned to					
			1 Gbps	2 Gbps	4 Gbps	8 Gbps	10 Gbps	16 Gbps	32 Gbps	40 Gbps	100 Gbps				
aramete	or		1.0625E-0	9 2.1250E-09	4.2500E-09	8.5000E-09	1.0625E-08	3.4000E-08	1.3600E-07	3.4000E-07	1.0625E-06				
and the second of	er ight in fibre	200000km/s	5.00E-0	6 5.00E-06	5.00E-06	5.00E-06	5.00E-06	5.00E-06	5.00E-06	5.00E-06	5.00E-06				
ano seconi	ds per byte		9.41E-0	9 4.71E-09	2.35E-09	1.18E-09	9.41E-10	5.88E-10	2.94E-10	2.35E-10	9.41E-11				
	in seconds (dependent on cell i19) in km (dependent on cell i19)		8.05E-0		2.01E-06 0.40		8.05E-07 0.16	5.03E-07	2.51E-07	2.01E-07 0.04	8.05E-08				
amelength	in km (dependent on cell (19)		1.6	0.00	0.40	0.20	0.16	0.10	0.05	0.04	0.02				
						10 Gig has 64b/66	B en/decoding and								
Suffer (Credit Calculation					therefore a better (performance								
	1	1													
	ine kilometers from miles, type miles 609344 kilometer)	into cell D15:	15	Miles Equals	24	Vilete steen worked at									
11110 - 17	uusatt kuunicici j		15	Miles Equais	24	Kilometers rounded	to the nearest int	eger							
o Calcula	te the proper number of buffer credits	s that you will need	to keep the ISL I	ink 100% utilized -	especially ove	r long distances:									
			819				-	855	2325						-
	frame "Payload" size in Bytes (in cell I	and a state of the	013	Payload bytes	and 36 overnead	bytes equals a tota	frame size of	033	Bytes						
	e total <u>kilometers</u> of the wire run (in ce alculated kilometers from cell F15 if red		24	Kilometers											
		lan cal													
		a de la companya de la	0.0000	A Sector	10.000	215245	75537-0		54019	0051-5110-011					
	Description	1 Gbps	2 Gbps	4 Gbps	8 Gbps	10 Gbps	16 Gbps	32 Gbps	40 Gbps	100 Gbps					
A CONTRACTOR OF	takes up this many kilometers on the wire	1.61	0.80	0.40	0.20	0.16	0.10	0.05	0.04	0.02					
	om frame size in cell 119) @ 100% B/W Utilization raw calculation:	29.83	59.66	119.32	238.64	298.30	477.28	954.56	1193.21	2983.02					
	@ 100% B/W Utilization rounded up:	30	60	120	239	299	478	955	1194	2984					
Junerorcuna	Servere or a danzadon rounded ap.			120	200	200	10		1194	LVVT				4	
	Brocade Communications System	ns, Inc.	© Copyright	2002-2010, all rig	hts reserved.										
			230-247-8510		narossa keuroleksiin										
		1													
HH SI	plash B2B Calucator							/			11				

Ask your local Brocade SE to provide this to you free of charge!

Brocade Proudly Presents... Our Industries ONLY FICON Certification

Brocade Certified Architect for FICON

Industry Recognized Professional Certification We Can Schedule A Class In Your City – Just Ask!

Certification for Brocade Mainframe-centric Customers – Available since Sept 2008 For people who do or will work in FICON environments

Brocade provides a free on-site or in area 2-day class (Brocade Design and Implementation for FICON Environments – FCAF200), to assist customers in obtaining the knowledge to pass this certification examination – ask your local sales team about this training – also look at <u>www.brocade.com</u> under Education

Certification tests a person's ability to understand IBM System z I/O concepts, and demonstrate knowledge of Brocade FICON Director and switching fabric components

After the class a participant should be able to design, install, configure, maintain, manage, and troubleshoot Brocade hardware and software products for local and metro distance (100 km) environments

Check the following website for complete information:

http://www.brocade.com/education/certification-accreditation/certified-architect-ficon/index.page

Industry Recognized Professional Certification

Brocade FICON Certification

Brocade Certified Architect for FICON

- Certification for Brocade Mainframe-centric Customers
- Available since September 2008
- Updated for 8Gbps in June 2010
- Slated for 16Gbps update in September 2012
- This certification tests the attendee's ability to understand IBM System z I/O concepts, and demonstrate knowledge of Brocade FICON Director and switching infrastructure components
- Brocade would be glad to provide a free 2-day BCAF certification class for Your Company or in Your City!
- Ask me how to make that happen for you!
 © 2012 Brocade For Anabeim Fall SHARE 2012 Attendees

SAN Sessions at SHARE this week

Wednesday:

Time-Session 0800 - 12076: <u>Buffer-to-Buffer Credits, Exchanges, and Urban Legends</u> 1500 - 12075: <u>zSeries FICON and FCP Fabrics - Intermixing Best Practices</u>

Thursday:

Time-Session 1630 - 12084: <u>Buzz Fibrechannel - To 16G and Beyond</u>

Mainframe Resources For You To Use

Visit Brocade's Mainframe Blog Page at:

http://community.brocade.com/community/brocadeblogs/mainframe

Also Visit Brocade's New Mainframe Communities Page at:

http://community.brocade.com/community/forums/products_and_solutions/mainframe_solutions

Please Fill Out Your Evaluation Forms!! This was session: 12071

And Please Indicate On Those Forms If There Are Other Presentations That You Would Like To See In This SAN Track At The Next SHARE.

QR Code

