Application Performance in the
Cloud

Understanding and ensuring
application performance in highly
elastic environments

Albert Mavashev, CTO
Nastel Technologies, Inc.
amavashev@nastel.com

What is Cloud?

e Typically defined by it properties
— Elastic — on-demand scalability
— Agile — quick to deploy provision
— Reliable — business continuity, ability to survive failures
— Maintenance — single deployment, no need to deploy on each user
— Independence -- device, hardware, location independence
— Cost — typically pay-per-use

— Performance — could be very well defined for l1aaS, less so for PaaS,
and even less so for SaaS

e Clouds can be public, private, hybrid, federated
— Hybrid and federated are the most complex

— Public and Private -- off premise vs. on-premise (similar but differ in
delivery mechanism)

What does it mean Application
Performance in the Cloud?

Level
And v

Application in the Cloud

Users
of impact T

isibility Last-Mile-Connectivity

Application as a Service ’

Platform as a Service (PaaS)

e

Infrastructure as a Service (laaS) 3¢
(EC2, Azure, etc.)

Demanding
Opinionated

Socially connected
Facebook, twitter, etc.

User-experience
Multi-tenancy
Security
Mobility

Clustering

Workload management
Inter-connectivity

Big Data (structured storage)

Virtualization
On-demand provisioning
Resource auto-scaling

Application Performance: Take 1
Monitoring Performance of each stack

Application as a Service

Platform as a Service (PaaS)

e ¥k

Infrastructure as a Service (laaS) ¢
(EC2, Azure, etc.)

Measure user experience
Orders filled, missed

Users serviced, revenue booked
Web page response times

JVM, CLR performance, Clustering
Servlet, web service response times

GC behavior, resource pool utilization
Replication, data availability, data delivery

CPU, Memory, I/O
Storage capacity, utilization
Network bandwidth

Application Performance: Take 2
What happens when problems are between stacks?

What if performance impact is
data dependent?
What about Last-Mile-Connectivity?

User experiences a timeout

(May be not so much in US, but other countries LMC is
a big issue

Application as a Service .
All SaaS indicators are normal

|

All PaaS indicators are normal

Slow query??

Platform as a Service (PaaS) oeaioc

saL

Infrastructure as a Service (laaS) G

(EC2, Azure, etc.) All 1aas indicators are normal

Application Performance: Take 3

Monitoring each stack as well as transactions that flow between stacks?

Transaction
Profiling

Live view of data flows

Application as a Service

Transaction
executed by
Bob —

timed out due
to a slow
query hitting

Slow query??
MysQL Platform as a Service {PaaS) Dead.‘i,ck%
instance
Infrastructure as a Service (IaaS) é

(EC2, Azure, etc.)

All SaaS indicators are normal

|

All PaaS indicators are normal

All 1aaS indicators are normal

Application Performance: Take 4

What about proactively monitoring trends before service degrades?

Users are happy buying stuff

@

All SaaS indicators are normal

®

Detected
slow
degradation

in query
execution
. sSQL, NosQL
Platform as a Service (PaaS

All PaaS indicators are normal

Application as a Service

Take

preventive . é
Infrastructure as a Service (laaS)

measures
(EC2, Azure, etc.) All laaS indicators are normal

Traditional Monitoring vs. Transaction Profiling

Traditional Monitoring Transaction Profiling

Monitored Individual System
Object Components

Transactions, messages and
exchanges between components

VEESIEEIa CPU, Memory, Disk,
Granularity Server Utilization

Individual messages, invocations,
requests and calls

Performance IT Availability,
Metric Fault Detection

Business Service QoS
(Quality of Service)

Remediation Time and resource
Cycle intensive

Fast, with root-cause analysis of
offending messages or requests

VY

Nastel Technologies Confidential 9

What about Hybrid deployments?

(More complex)

Last-Mile-Connectivity

Application as a Service On Premise Application

SQL, NoSQL

Application Infrastructure
Platform as a Service (PaaS) PP

JMS

Store (JEE, .NET, Middleware)
Infrastructure as a Service (laaS) Virtualized Infrastructure j \
(EC2, Azure, SmartCloud etc.) (VMWare, XEN, z/VM)

On-premise and off-premise (Cloud Service) resources need to be monitored
Monitoring itself could be delivered as on-premise or off-premise

Monitoring instrumentation must be cloud/firewall ready/friendly (HTTP/HTTPS)
Inter-cloud interactions need to be monitored as well

USE CASE: TREND ANALYSIS

Ways to detect performance trends

e Measure relevant application performance indicators
— Orders filled, failed, missed
— JMV GC activity, memory, I/0O

e (Create a base line for each relevant indicator

— 1-60 sampling for near real-time baseline
— 1,10, 15 min =2 daily, weakly, monthly for short, long term baseline

— Samples can range anywhere from 1-60 seconds depending on level of
required resolution

e Apply analytics to determine trends and behavior
— Canvary from simple to complex
— Prefer KISS approach (Keep It Simple and Stupid)

3 Simple methods to detect trends
(No complex math required)

* Bollinger Bands
— Determine high and low bands based on available baseline

— Defines a normal channel which is typically within 2
standard deviations from the mean

— Compute STDDEV, Mean, Current sample
* % Change

— Sample to sample, day-to-day, week-to-week, etc.

* Velocity

— Number of measured units per unit of time (example:
response time drops from 10 to 20 seconds over 5 sec
interval — means (20-10/5)=2 units/sec.

Typical Usage

e High Band

— Given a set of metrics, alert when one or more are above High band
for at least 2+ samples

— Indication of abnormal activity over a period of time
— Caution: abnormal can become the new normal

* % Change

— Useful indicator for near real-time monitoring of resources (such as
heap, memory, CPU, storage)

— Useful indicator for long term trends (daily, weekly)
e Velocity

— Very useful for monitoring metrics that measure usage of

resource that have a finite upper bound (memory, storage, table
space etc.)

— Measuring velocity can help measure when upper limits can be
reached

Required instrumentation

Data collectors

— Attempt to collect all relevant indicators within the same time tick
* Response time, GC activity, memory usage, CPU usage

Build a history for each collected metric
— Either in memory for near real-time analysis
— Storage for short, long term (min, hours, days)
Pattern matching, analytics

— Need to scan and pattern match application metrics (such as find all
applications whose GC is above High Bollinger Band for 2+ samples)

— Run as a continuous query, which is executed as metrics are collected
and updated

Actionable Outcome
— Alerts, notifications, actions
— Visualization, dashboards

Example: Monitoring Java Application
by examining GC Activity

e Java Application running in a standalone JVM
container

 Monitoring JVM GC (Garbage Collection) as a
byproduct of application activity

— Sample GC every 10 seconds

— # GC Samples

— GC Duration (ms.)

— GC CPU Usage %

— Avg. GC CPU Usage (since JVM startup)
— JVM Heap Utilization %

Example 1: Java Application, Sudden

Data provided by Nastel AutoPilot™

@ CEP Server Health - ds://SYSTEM/nodes/node_health.bsv [active]

4

e
b ® §04:
W ©Y6: Server sObscrbiion Load
ﬂ 531: Total Running Sensors

Utilization
9 0: Timeout Count
9 2: Peak Response Time (ms)

% 99.91: Rule Engine CPU Idle %

€9 11: cC Collections

ﬁ 2,334: GC Duration (ms)
€9 2.92: GC CPU Usage %

€9 0.09: Avg GC CPU Used %
@ 46.71: Memory Utilization %
T'"" Task Statistics

™ communications
Fact Pipeline Statistics
@ Service Fact Utilization
~y Policy Deployment Utilization

@9 Performance

Sensor
@ 2: Peak Response Time (ms)

& 11: GC Collections

Duration
GC CPU Usag

& 0.09: Avg GC CPU Used

: Memory Utilizatio...
@®Ta ics
& 0: Total Active T
& 1:Total Queued Tasks
& 1: Total Completed Tasks
& 1:Total Scheduled Tasks
@ Communications

636.29: Fact Storage Utilization %

F+@je/ev]

Spike in Activity

']' XOMEGA_Facts ‘) SYS_node_health.bsv

19.91 max

m

v '.J-, 00

3

Graphs (Memory and GC Activity

% Change % Dispersi

v

5

)

m

Example 2:)

ava Application, Adjustment to

new workload — The New Normal

Data provided by Nastel AutoPilot™

CEP Server Health - d=i//SYSTEM/nodes/node_health.bsv [active]

S [S

“ 531: Total Running Sensors

=i Utilization

- 0: Timeout Count

*a 2: Peak Response Time (ms)
557.12: Fact Storage Utilization 9

: 5 99.91: Rule Engine CPU Idle %

i...p4|

€ 12: GC Collections

€ 2.200: GC Duration (ms)

€D 275 GC CcPU Usage %

€) 0.09: Avg GC CPU Used %

...... 9 39.67: Memory Utilization %
?---’ ¥ Task Statistics

+- @ Communications

+ Fact Pipeline Statistics
Y W

4 1 3

Sensor
@ 2: Peak Response Time ...
@ 557.12: Fact Storage Uti..
@ 99.91: Rule Engine CPU...

& 12: GC Collections
ration (...
U Usage ..

Avg GC CPU Us..
. Aemory Utiliz..
@ Task Statistics

& 0: Total Active Tas

& 0: Total Queued Tas

@ 0: Total Completed Tasks

100.00 max WE b ctivi n 1991 max

Resource Leak Detection

Detecting Leaks using Trend Analysis
(Java Example)

Typical causes of Java leaks

* Programming errors, bugs
— Unchecked array, list, hash map growth
— Not closing JDBC Prepared Statements
— Not closing Sockets, File handles
— Thread leaks, handle leaks
— Class loader leaks
— Resources allocated outside JVM

Value

Value

100

Q0

80

70

60

50

30

100

20

80

70

80

50

30

20

Leaking Chart Pattern — Detecting

Resource Accumulation

VM Resource Monitor

VM Heap Usage %

10:03:00 10:03:30 10:04:00 10:04:30 10:.05:00 10:05:30 10:06:00 10:06:30 10:07:00 10:07:30 10:08.00 10:08:30 10:09:00 10:09:30 10:10:00 10:10:30 10:11:00 10:11:30 10:12:00 10:12:30

VM Resource Monitor

G

VM Heap Usage %

10:03:00 10:03:30 10:04.00 10:04:30 10:05:00 10:05:30 10:Oé:00 10:06:30 10:07:00 10:07:30 10:08:.00 10:08:30 10:00:00 10:00:30 10:10:00 10:1b:30 10:11:00 10:11:30 10:12:00 10:12:30

Detecting Resource Leaks using
Momentum Oscillator

Heap not yet exhausted

@& VM Resource Monitor - ds://Memory/java-monitor. pxml [active]

w

I

! 72.00\gemory Leak Detection
441: vM Instance(vm-was4) % Heap Utlization
@ 55 vm Instance(vm-was3) % Heap Utlization
P s5: v Instance(vm-was2) 9% Heap Utiization
(i EXR Instance(vm-was1) % Heap Utlization
=71 55.,62: Memory Momentum Index
-0 70.68: VM Instance(vm-was4) Momentum Index
@ a9.53:vm Instance(vm-was3) Momentum Index
@ s0.93: vm Instance(vm-was2) Momentum Index
~@® 51.33: M Instance{vm-was 1) Momentm Index

2 A)l 391 £ (2 C2)10) N I

Graphs (VM Instance(vm- waSA) % Heap Utilization)
Vi Instance(vm-wasd) % Heap Utiliza

Leak pattern
detected

Value

Momentum Oscillator

Momentum Oscillator: values between 0-100, difference between the sum of all recent Trending hlgher
gains and losses in the underlying metric. Value of 50 means that the net difference of gains

and losses is zero — 0 net gain and loss.

Conclusion: Monitoring Elastic
Environments

e Elastic Applications can’t be monitored using static models
— Static thresholds
— Static data/transaction flow models
e Complex systems layered on top of complex systems
— Too many constantly changing variables
— Makes root cause analysis very difficult
— Requires extensive cross technology expertize
* Preferred approach — Holistic Application Monitoring

— Granular data collection:
e Application and infrastructure metrics
— Analytics, automated base lines
e Real-time and historical
— Resource monitoring coupled with Transaction Profiling
— Visualization that connects different teams:
e Application support, DevOps, IT Support

For more information

Visit us at:

— WwWw.hastel.com

Questions:

— info@nastel.com

Twitter:

— twitter.com/nastel

FaceBook:

— facebook.com/NastelTechnologies

LinkedIn:

— linkedin.com/companies/nastel-technologies

Phone:
— +1.800.580.2344

24

