
z/OS UNIX for all

Vit Gottwald

CA Technologies

August 8, 2012

This session was previously presented at SHARE in Atlanta,

March 15, 2012

• Motivation

• Introduction to UNIX

• Interfacing with z/OS UNIX

• Shells and scripts

• Copying between files and datasets

• ISHELL

Motivation for using z/OS UNIX

If you know Linux / UNIX

• Get started quickly

• Use familiar set of tools

If you know MVS

• New programming tools

• Text processing utilities

• Connecting to the web

Typical roadblocks

• EBCDIC

• Not a "GNU" system

• “Weird” error messages

• External security

• EBCDIC, but not IBM-037

• Files instead of data sets

• “Shell” instead of ISPF

• How does it all map to

good old MVS?

Where to start

• IBM doc is great

• However, it takes a while to read through

• You are expected to already have basic knowledge of UNIX

• Tutorials on the web

• Is there no z/OS UNIX tutorial?

• Let‟s pick a tutorial and comment on z/OS UNIX specifics

• The rest of the session is loosely modeled after and extends

http://www.ee.surrey.ac.uk/Teaching/Unix/

http://www.ee.surrey.ac.uk/Teaching/Unix/

Where to start

• Download a portable Linux distribution (e.g. Debian Live or

Slax) and run it in a virtual machine (e.g. VirtualBox) on

your PC (all for free)

• Play with the Linux virtual machine

• there are many tutorials on the web

• don't be afraid to experiment

• most of what you learn will be applicable on z/OS UNIX

• When something in z/OS UNIX doesn't work as expected

• go back to your Linux box and compare results

• check this session

• Search man pages or IBM z/OS UNIX Command Reference.

http://www.debian.org/CD/live/
http://www.slax.org/
http://www.virtualbox.org/

• Motivation

• Introduction to UNIX

• Interfacing with z/OS UNIX

• Shells and scripts

• Copying between files and datasets

• ISHELL

• Kernel

• The heart of the system – provides UNIX services to it‟s

callers (“system calls”)

• In z/OS part of the Basic Control Program (BCP)

• Shell

• An interface between a User and the Kernel

• Accepts, interprets, and executes your commands

• File system

• Hierarchical directory structure for storing data (in “files”)

• A whole file system in z/OS UNIX is stored in one or more

Data Sets (HFS or zFS)

Introduction to UNIX

• “commands” or “utilities”

• standard set of programs available with every UNIX

• described in the POSIX standard and its extensions

http://en.wikipedia.org/wiki/Single_UNIX_Specification

• Sample categories:

• Administration tools

• Text processing utilities

• Programming tools

• SHARE in Seattle Session 2285, Basic UNIX Shell

Commands for the z/OS System Programmer (link)

Introduction to UNIX

http://en.wikipedia.org/wiki/Single_UNIX_Specification
http://proceedings.share.org/client_files/SHARE_in__Seattle/S2285AR180529.pdf

• Motivation

• Introduction to UNIX

• Interfacing with z/OS UNIX

• Shells and scripts

• Copying between files and datasets

• ISHELL

Interfacing with z/OS UNIX

• UNIX terminal (VT100, VT220, xterm)

• Interactive work via telnet or ssh

• This is the standard (and typically only way) on other platforms

• 3270 (TSO OMVS, ISPF Shell)

• OMVS

• Type in a command or two and read the output

• ISHELL

• The MVS-like way of doing things (through ISPF panels)

• Batch

• UNIX services (APIs) in application programs

• TCP/IP, Java, Web servers, Application servers

• UNIX tools to process datasets (text processing tools)

UNIX terminal over telnet

• Telnet

• network protocol used on Internet or local area networks to

provide a bidirectional interactive text-oriented communication

• operates in one of two modes (known as "line discipline")

• Line / canonical – sends characters to and from the UNIX box

line at a time – when you type, echoing to your terminal and line

editing takes place locally; the whole line is sent only after you

press the ENTER key

• Character / non-canonical / raw – every key pressed is sent

immediately to the remote machine for processing; every key

stroke has to be sent, remotely processed, and returned back for

echoing on your screen

UNIX terminal over telnet

• From Linux or UNIX system

you can login through
telnet ip_address port

• Watch out for message
“Escape character is …”

• „^]‟ stands for Ctrl+] and

represents the "Escape

character" or "Escape key"

 12

line v.s. character mode
UNIX terminal over telnet

13

• To change the “line discipline”

• Press “Escape key.”

• If currently in line mode,

press ENTER

• Watch for “telnet> “ prompt

• Now type in the command:

• mode character

• mode line

• to get help help

• Hit ENTER twice

PuTTY
UNIX terminal over telnet

• Standard terminal emulator over telnet for MS Windows is PuTTY

http://www.chiark.greenend.org.uk/~sgtatham/putty/

PuTTY - line v.s. character mode
UNIX terminal over telnet

PuTTY - line v.s. character mode
UNIX terminal over telnet

PuTTY - line v.s. character mode
UNIX terminal over telnet

PuTTY - line v.s. character mode
UNIX terminal over telnet

line mode

PuTTY - line v.s. character mode
UNIX terminal over telnet

character mode

SSH
UNIX terminal over secure shell

• Same appearance and functionality as telnet, but

• Connection is encrypted

• Operates only in character mode

• Supports

• Private/public key authentication

• File transfers (via scp command and sftp, or ftps client)

• Port forwarding (secure tunnel)

• Multiple sessions via one connection
• Not supported on MS Windows

• Remote command execution
• Execute z/OS UNIX commands on the mainframe from your PC

SSH
UNIX terminal over secure shell

• SSH server on z/OS

• Port of OpenSSH - a popular open source

implementation of SSH, Part of Ported Tools

• Can use Integrated Cryptographic Service Facility

(ICSF) for hardware acceleration
• V1R2 with APAR OA37278

• Automatically converts EBCDIC on the mainframe side

to ASCII on the user side (and vice versa)

• Binary file transfer
• Use sftp or ftps, not supported for scp

• OpenSSH User's Guide for z/OS

http://www-03.ibm.com/systems/z/os/zos/features/unix/ported/openssh/index.html
http://www-03.ibm.com/systems/resources/fotza501.pdf

Summary
UNIX terminal

• To work with a remote UNIX system we need

• Network connectivity to the system

• UNIX terminal emulator (vt100, xterm)
• PuTTY when on a Windows machine

• xterm when in a graphical user interface on a UNIX

• xterm, rxvt, gnome-terminal, or konsole when in a GUI on Linux

• (native terminal interface if signed on to Linux or UNIX console)

• Protocol to communicate with the remote host
• telnet or ssh

• In Linux/Unix implemented as standalone commands

• In Windows included as part of PuTTY

How about running UNIX commands from
TSO ?

• Already have connection to the mainframe

• What about the UNIX terminal?

• Cannot use 3270 directly – not compatible with UNIX

• Dumb terminal (in the UNIX world)
• Send and receive data as a sequence of bytes

• Doesn‟t understand cursor and anything related to it

• Understands no special characters but a newline

• Use 'dumb' terminal and emulate it within TSO

• This is exactly what OMVS does

3270 (TSO OMVS)

• Handy if you want to just execute couple commands and

look at the output

• Not very practical for longer sessions, I would rather

recommend using the UNIX terminal over telnet or SSH

• To start the session enter

• OMVS from TSO command line or TSO OMVS from ISPF

• To terminate the session:

• Type exit and hit ENTER

• hit PF2 (SubCmd), then type in quit and hit ENTER

• Works even during a program execution (e.g. handy if hang)

• To return back to your session after PF2 type in return

3270 (TSO OMVS)

input

output

status

PF key settings

3270 (TSO OMVS)

• Motivation

• Introduction to UNIX

• Interfacing with z/OS UNIX

• Shells and scripts

• Copying between files and datasets

• ISHELL

Shells available in z/OS

• z/OS shell – from the Bourne shell family /bin/sh

• implements most scripting features of modern UNIX shells

• syntax very much compatible with Bash

• learn from the tutorials and samples available on the web

• lacks interactive features like command or filename completion

• Bourne Again SHell (Bash) /sys/s390util/bin/bash

• port of GNU Bash - modern shell used in most Linux distributions

• provided as part of Tools and Toys, not supported

• C shell /bin/tcsh

• syntax similar to C language, nowadays probably obsolete

• command and filename completion

• nice for interactive sessions in character mode (line discipline)

http://www-03.ibm.com/systems/z/os/zos/features/unix/tools/

Several UNIX commands

• Manipulating files/directories

• cp – copy files/directories

• mv – move files/directories

• rm, rm -r (rmdir) – remove files, directories

• Displaying contents of a file on the screen

• head – print couple lines from the beginning of a file

• tail – print couple lines from the end of a file

• cat – print all the contents of input files

• cut – print selected columns or fields of every line of the input

• SHARE in Seattle Session 2285, Basic UNIX Shell

Commands for the z/OS System Programmer

http://proceedings.share.org/client_files/SHARE_in__Seattle/S2285AR180529.pdf
http://proceedings.share.org/client_files/SHARE_in__Seattle/S2285AR180529.pdf

Simple shell script

• Sample script using GNU diff:

#!/bin/sh

Work files

TMP1="/tmp/$$.1.tmp"

TMP2="/tmp/$$.2.tmp"

Ignore record numbers

cut -c 1-72 "$1" > "$TMP1"

cut -c 1-72 "$2" > "$TMP2"

Compare the content

/sys/s390util/bin/diff -auw \

"$TMP1" "$TMP2" \

--label "$1" --label "$2"

Delete work files

rm "$TMP1" "$TMP2"

• /u/users/gotvi01/diff.sh \

file1 file2

• Sample output

Shell variables

• TMP1="/tmp/$$.1.tmp"

• Set a shell variable
• VAR=value (no space allowed around =)

• Variable name can contain only alphanumeric and _

• Case-sensitive

• Value can contain any characters

• Use variable later on as part of a command
• $VAR, "$VAR"

• to avoid unexpected problems use quotes when spaces in $VAR

• Sample variables available in a script:
• $1 $2 ... parameters passed to script from command line

• $$ process id – often used to generate unique names

• $? return code of last command

Environment Variables

• A way of passing information from SHELL to the

commands or scripts it executes
• export var make shell variable var an environment variable

• export var=value define an environment variable var

• Examples
• HOME – your home directory

• HOST – name of the system you are logged on

• PATH – where the shell looks for commands; colon separated

• Printing the current values (to the terminal)
• echo $variable_name

• e.g. echo $PATH; echo $HOME; echo $HOST

• set prints all currently defined variables (environment and shell)

• env prints all curently defined environtment variables

Input/Output redirection, pipes

• cut -c 1-72 "$1" > $TMP1

• If no parameters specify files to be processed many

commands process the "standard input" (default keyboard)

• Commands print their output to "standard output" and error

messages to "standard error" (default terminal screen)

• Shell allows you to override them

 cmd > file create /

 overwrite

 cmd >> file create /

 append

 cmd1 | cmd2 pipe

cmd < file input from a file

cmd << END input from keyboard

line 1 terminated by the

line 2 same word as typed

END right after <<

Input/Output redirection, pipes

• In special case one program can pass its output as input to

another program. This is called a pipe

• Redirecting input/output from/to datasets is not directly

supported

• Indirectly via pipes and readmvs/writemvs utilities from Tools
and toys, for input also via other commands (cat, cut)

• Tools and toys contain many useful utilities

• pdsdir – simple rexx script that reads PDS directory and

prints it in text to the standard output

http://www-03.ibm.com/systems/z/os/zos/features/unix/tools/
http://www-03.ibm.com/systems/z/os/zos/features/unix/tools/
http://www-03.ibm.com/systems/z/os/zos/features/unix/tools/

Input/Output redirection, pipes

• Imagine we have an MVS utility that

• Adds members of a PDS into a proprietary dataset format

• Reads input statements from a SYSIN

• In order to add a member you have to code these cards:

 -ADD member,PRMOD

 -AUX DD1(member)

 -EMOD

• Now imagine you have hundreds or thousands of

members in your PDS and you want to add them all

• How would you quickly generate all the input statement for

the utility?

35

Simple shell script using a pipe

• Sample script read from pipe

#!/bin/sh

while read member

do

 echo "-ADD $member,PRMOD"

 echo "-AUX DD1($member)"

 echo "-EMOD"

done

• Pass output of pdsdir to

cut and then to our script

 pdsdir sys1.proclib | cut \

 -d" " -f 1 | sh mem.sh

• Sample output

36

• Motivation

• Introduction to UNIX

• Interfacing with z/OS UNIX

• Shells and scripts

• Copying between files and datasets

• ISHELL

Copying data between files and datasets

• Beware z/OS UNIX files are byte oriented, no records / blocks

• just a stream of bytes

• in text files end of a line is specified by a "newline" char X'15'

• MVS datasets are record oriented, there is no newline, each

record (line) has its length. Depending on the record format

the length of each record may vary or be fixed.

• In fixed format datasets text is usually padded with blanks

• You have to know if you want to replace newlines with trailing

spaces or not (and vice versa) when copying back and forth

Copying data between files and datasets

• Beware z/OS UNIX files use IBM-1047 as default encoding

• MVS datasets use IBM-037 as default, these differ in ^ []

• When copying between files and datasets you have to know if

you want to convert the encoding or not (e.g. C source code)

Copying data between files and datasets

• From the shell use cp

• Copy a text file to a sequential dataset

• cp -T source_file "//'hlq.desti(nation)'"

• Copy a binary file to a sequential dataset

• cp –B source_file "//'hlq.desti(nation)'"

• Copy an executable binary (a program object) to a PDS/E

• cp –X source_pgm "//'hlq.desti(nation)'"

• For more details see usage notes and examples

http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.bpxa500/cp.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.bpxa500/cp.htm

Copying data between files and datasets

• There is a whole set of TSO commands

• OPUT - copy data set [member] into a file

• OGET – copy file into a data set [member]

• OPUTX - copy members from a PDS(/E) to a directory

• OGETX - copy files from a directory to an PDS(/E)

http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.bpxa500/tsooput.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.bpxa500/tsooget.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.bpxa500/tsooputx.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.bpxa500/tsoogetx.htm

Copying data between files and datasets
the 'batch' way

• OCOPY

• Copy and optionally convert between IBM-037 and IBM-1047

• A TSO command, copies between two allocated DD names

• Sample

//COPYSTEP EXEC PGM=IKJEFT01

//FILE DD PATH='/tmp/a'

//DTST DD DISP=SHR,DSN=GOTVI01.JCL(A)

//SYSTSPRT DD SYSOUT=*

//SYSTSIN DD *

OCOPY INDD(FILE) OUTDD(DTST) TEXT

/*

http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.bpxa500/tsoocopy.htm

Converting data between character sets

• To convert files from one encoding to another you can use
the iconv command

• Sample usage

 iconv -f IBM-037 -t IBM-1047 < infile > outfile

 this will covert file infile in code page 037 to code page

 1047 and save the output in file outifle

• remote access to

• UNIX file system
ascii

get /u/users/gotvi01/a.txt

• datasets
ascii

quote site ispfstats

quote site sbdataconn=

 (ibm-037, iso8859-1)

put ab.txt 'gotvi01.txt(ab)'

• JES
quote site filetype=jes

get JOB1234.1

• quote help site

44

FTP
Converting data between character sets

• Motivation

• Introduction to UNIX

• Interfacing with z/OS UNIX

• Shells and scripts

• Copying between files and datasets

• ISHELL

• Running z/OS UNIX tools in batch

ISHELL

• ISPF Shell (ISHELL)

• Not really a UNIX shell but rather a

• Set of ISPF panels to let you do what is traditionally done in a

shell but in the comfort of a panel interface

• Useful mainly for

• File system navigation and administration

• File browsing, editing

• Typically a "must have" for MVS veterans or anyone avoiding

the "geeky" command line

• Today many ISPF panels let you type in directly a path to a

file in place of a dataset name

• ISHELL from TSO or TSO ISHELL from ISPF

ISHELL

ISHELL - directory options

ISHELL - file options

ISHELL - executing commands from

• Motivation

• Introduction to UNIX

• Interfacing with z/OS UNIX

• Shells and scripts

• Copying between files and datasets

• ISHELL

Please do not forget to fill in
evaluation forms.

Thank you for your attention!

Resources: SHARE sessions

• Previous SHARE conferences

• Basic UNIX Shell Commands for the z/OS System

Programmer, Share in Seattle

• TSO OMVS and You: What to Make of UNIX System

Services, Share in Orlando

• z/OS UNIX File System Administration, Share in Anaheim

• z/OS Basics: z/OS UNIX Shared File, Share in Orlando

• Killing Zombies, Breaking Pipes, and other UNIX

Shenanigans, SHARE in Atlanta

• UNIX Systems Services in Today's Mainframe Software,

SHARE in Atlanta

Basic UNIX Shell Commands for the z/OS System Programmer
http://proceedings.share.org/client_files/SHARE_in__Seattle/S2285AR180529.pdf
http://proceedings.share.org/client_files/SHARE_in__Seattle/S2285AR180529.pdf
http://proceedings.share.org/client_files/Share_in_Orlando_2/Session_10065_handout_1904_0.pdf
http://proceedings.share.org/client_files/Share_in_Orlando_2/Session_10065_handout_1904_0.pdf
http://proceedings.share.org/client_files/SHARE_in_Anaheim_2/Session_9040_handout_949_0.pdf
http://proceedings.share.org/client_files/Share_in_Orlando_2/Session_9875_handout_1455_0.pdf
https://share.confex.com/share/118/webprogram/Session10980.html
https://share.confex.com/share/118/webprogram/Session10980.html
https://share.confex.com/share/118/webprogram/Session10980.html
https://share.confex.com/share/118/webprogram/Session10979.html
https://share.confex.com/share/118/webprogram/Session10979.html

Resources: IBM z/OS UNIX manuals

• z/OS V1R13.0 UNIX System Services

• GA22-7800-19 Planning

• SA22-7801-14 User's Guide

• SA22-7802-14 Command Reference

• SA22-7807-12 Messages and Codes

• … and more …

http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.i

bm.zos.r13.bpx/bpx.htm

http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.bpx/bpx.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.bpxb200/toc.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.bpxa400/toc.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.bpxa500/toc.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.bpxa800/toc.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.bpx/bpx.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.bpx/bpx.htm

Resources: Web references

• Community support – MVS-OE mailing list

http://vm.marist.edu/archives/mvs-oe.html

• UNIX Tutorial for Beginners

http://www.ee.surrey.ac.uk/Teaching/Unix/

• UNIX TOOLBOX – a pool of typical usage examples

http://cb.vu/unixtoolbox.xhtml

• Overview of the UNIX* Operating System

http://www.bell-labs.com/history/unix/tutorial.html

http://vm.marist.edu/archives/mvs-oe.html
http://vm.marist.edu/archives/mvs-oe.html
http://vm.marist.edu/archives/mvs-oe.html
http://www.ee.surrey.ac.uk/Teaching/Unix/
http://cb.vu/unixtoolbox.xhtml
http://www.bell-labs.com/history/unix/tutorial.html
http://www.bell-labs.com/history/unix/tutorial.html
http://www.bell-labs.com/history/unix/tutorial.html

Resources: Legacy UNIX books

• The UNIX Programming Environment, Brian W.

Kerninghan, Rob Pike, 1984

• UNIX Programmer‟s Manual, 7th Edition, Bell Telephone

Laboratories, Incorporated, 1979

http://www.amazon.com/Unix-Programming-Environment-Prentice-Hall-Software/dp/013937681X
http://cm.bell-labs.com/7thEdMan/index.html
http://cm.bell-labs.com/7thEdMan/index.html
http://cm.bell-labs.com/7thEdMan/index.html
http://cm.bell-labs.com/7thEdMan/index.html
http://cm.bell-labs.com/7thEdMan/index.html

• Motivation

• Introduction to UNIX

• Interfacing with z/OS UNIX

• Shells and scripts

• Copying between files and datasets

• ISHELL

• Running z/OS UNIX tools in batch

59

Running UNIX tools in batch

• IBM provides a utility which can be used to run UNIX

commands from batch

• The utility has two entry points

• BPXBATCH

• Does a “fork” that creates a new address space for the commands

to run, hence they lose access to datasets defined in the job step

• BPXBATSL

• Does a “local spawn”, runs the commands in its address space

• For documentation see

• z/OS UNIX System Services Command Reference

• Also see Dovetail‟s Co:Z Batch for more options

http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.bpxa500/bpxza5c016.htm
http://dovetail.com/solutions.html

Running in UNIX tools in batch, cont’d

• Sample step that waits for 10 seconds
 // SET WAIT='10'

 //SLEEP EXEC PGM=BPXBATCH,PARM='SH /bin/sleep &WAIT.'

• Sample step executing a Bash script
 //BASH EXEC PGM=BPXBATCH

 //STDIN DD DUMMY

 //STDOUT DD SYSOUT=*

 //STDERR DD SYSOUT=*

 //STDPARM DD *

 SH /u/gotvi01/script/diff.sh

 "//'SYS1.PROCLIB(HLASMCL)'"

 "//'SYS1.PROCLIB(HLASMCLG)'"

 /*

 60

61

Accessing datasets

• UNIX is implemented in C

• Opening files in C

• fopen() – part of ANSI C standard, IBM implementation allows

use of special file names to open datasets and ddnames
• //proclib – refers to DSN=tsopfx.PROCLIB

• //'sys1.maclib' – refers to DSN=SYS1.MACLIB

• //dd:sysout – refers to sysout DDNAME

• open() – a POSIX standard function, current implementation

does not allow dataset processing

• When passing dataset names from shell, you have to
enclose them in quotes like "//'sys1.maclib'" not to

lose the apostrophes in the dataset name

62

Accessing datasets

• Many UNIX commands use fopen() and are able to

read/write sequential datasets (members of PDSs in

particular)

• cat – print the content of its input to output

• cut - print only specified columns/fields from its input to

output

• cp – copy either sequential data or program objects

• diff – compare content of two sequential text files

• sed – stream editor

• pdsdir – utility for listing members of a PDS

• This is a REXX script, not a C program, the argument is just DSN

without any // or apostrophes (') or quotes (") around it

Running in batch II

• Program objects can be copied between z/OS UNIX file

system and PDSE libraries

• Multiple utilities allow this: cp, OCOPY, IEBCOPY, the binder

• The easiest way is to use cp -X /bin/diff //lod

• You might then be able to run the program from the new

location

• Remember that C compiler produces LE compliant prgrms!
 //DIFF EXEC PGM=DIFF,PARM='POSIX(ON) / -c dd:in1 dd:in2'

//STEPLIB DD DISP=SHR,DSN=GOTVI01.LOD

//IN1 DD DISP=SHR,DSN=CBC.SCCNPRC(CBCC)

//IN2 DD DISP=SHR,DSN=CBC.SCCNPRC(CBCCL)

 Language Environment options, separator, parameters passed to the program

63

64

Running in batch, tips

• When running BPXBATCH or BPXBATSL you sometimes

get a message like

BPXM047I BPXBATCH FAILED BECAUSE SPAWN (BPX1SPN) OF DIFF

FAILED WITH RETURN CODE 00000081 REASON CODE 053B006C

• To get a more detailed message, run bpxmtext UNIX

command and pass it the reason code from the message
 > bpxmtext 053B006C

 BPXFSSTA 11/16/07

 JRFileNotThere: The requested file does not exist

 Action: The service cannot be performed unless the named

file exists.

65

Running in batch, tips

• If you are on a SYSPLEX with shared JES make sure you

use the right /*JOBPARM S=system parameter to run on

the right LPAR (unless you have a shared file system).

• Make sure there are no record numbers in positions 73-80

of input files processed by UNIX utilities. Especially when

your commands come from an inline dataset! UNIX tools do

not ignore these positions. They interpret them like any

another parameter and then usually fail (e.g. file not found).

• Also watch out for data encoding. MVS uses IBM-037 while

z/OS UNIX uses IBM-1047. Most characters match, but ^ []
and some more do not. Use iconv or OCOPY to translate.

Caling programs residing in a dataset
from a shell

• STEPLIB Environment Variable
• Colon-separated list of dataset names,

e.g. STEPLIB=DSN1:DSN2:DSN3

• When you run a command and STEPLIB variable is not empty,

STEPLIB DD within the address space is allocated based on the

contents of the variable

• This allows you to link to MVS programs residing in the datasets

• External symbolic link

• Created via ln -e "//'dataset_name(module)'" link_name

http://publib.boulder.ibm.com/infocenter/zos/v1r12/topic/com.ibm.zos.r12.bpxa400/slib.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r12/topic/com.ibm.zos.r12.bpxa500/bpxza5b0808.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r12/topic/com.ibm.zos.r12.bpxa500/bpxza5b0808.htm

z/OS UNIX file system

• UNIX file system is a hierarchical directory sturcture

• Starts with a root "/"

• Every file or a directory contained in its "parent" directory ".."

• Parent directory of root is root

• Files are just streams of bytes

• No internal structure from the operating system perspective

• Application working with a file has to understand what the

internal structure looks like

/

etc var tmp lib usr bin dev u

lpp

Navigating the directory structure

• Described in every tutorial

• Concept of a “current working directory” or “.”

• Concept of a “home directory” or “~”

• “parent directory” or “..”

• Basic commands

• pwd print current working directory

• mkdir create directory

• cd change (current working) directory

• ls list files in (current working) directory

69

Filesystem security (access rights)

• Command ls -l displays many file attributes

• Command ls -l displays among others symbolic links

• There is session 9875: z/OS UNIX Shared FileSystem ...

Filesystem security (access rights)

http://share.confex.com/share/117/webprogram/Session9875.html

Filesystem security (access rights),
OBROWSE

Filesystem security

• Unlike on other UNIX platforms, in z/OS UNIX you have to

use an external security product

• OMVS segment

• Part of user security profile

• Has to be defined to a user in order to use z/OS UNIX

• A default can be provied for users who do not have their own

• Specifies your User ID (number), login shell, home directory

• Comparing UNIX, MVS, and z/OS UNIX security

• http://publib.boulder.ibm.com/infocenter/zos/v1r12/topic/com.i

bm.zos.r12.bpxb200/comp.htm, a short excerpt follows …

http://publib.boulder.ibm.com/infocenter/zos/v1r12/topic/com.ibm.zos.r12.bpxb200/comp.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r12/topic/com.ibm.zos.r12.bpxb200/comp.htm

Comparing UNIX, MVS, and z/OS UNIX
security

Category
Traditional
UNIX MVS z/OS UNIX

User identity Users are
assigned a
unique UID, a 4-
byte integer and
user name.

Users are
assigned a
unique user ID
of 1-to-8
characters.

Users are
assigned a
unique user ID
with an
associated UID.

Security identity UID User ID UID for
accessing
traditional UNIX
resources and
the user ID for
accessing
traditional z/OS
resources

Comparing UNIX, MVS, and z/OS UNIX
security

Category
Traditional
UNIX MVS z/OS UNIX

Login ID Name used to
locate a UID

Same as the
user ID

Same as the
user ID

Special user Multiple user
IDs can be
assigned a UID
of 0.

RACF®
administrator
assigns
necessary
authority to
users.

Multiple user
IDs can be
assigned a UID
of 0 or users
can be
permitted to
BPX.SUPERUSE
R.

Comparing UNIX, MVS, and z/OS UNIX
security

Category
Traditional
UNIX MVS z/OS UNIX

Identity change
from regular
user to
superuser

The su shell
command allows
change if user
provides
password for
the root.
Password
phrases are not
used in
traditional UNIX
security.

No provision for
unauthorized
user to change
identity.

The su shell
command allows
change if the
user is
permitted to
BPX.SUPERUSE
R or if the user
provides the
password or
password
phrase of a user
with a UID of 0.

Terminate user
processes

Superuser can
kill any process.

MVS operator
can cancel any
address space.

Superuser can
kill any process.

Copying data over network

• Over network

• FTP

• Open SSH (SFTP, FTPS,scp), part of Ported Tools

• cURL – great utility originally for downloading and uploading

data over HTTP, FTP, FILE and even more protocols, part of

Supplementary Toolkit for z/OS

http://www-03.ibm.com/systems/z/os/zos/features/unix/ported/suptlk/index.html

Compiling UNIX software packages

• C: The “Dark Side” of System z? by Brandon Tweed

• Hosted by z/NextGen at SHARE in Anaheim

• Introductory session to software development in C on z/OS

http://proceedings.share.org/client_files/SHARE_in_Anaheim_2/Session_9021_handout_950_0.pdf

79

Regular expressions

• Provide a powerful text matching mechanism

• Basic tokens (characters, numbers, white spaces, start/end

of line, word)

• Repetition specifiers (once, twice, at least once, any, …)

• Grouping mechanism - new tokens by combining the above

• Sample:

• '^ ' – match lines beginning with a blank

• '^[^]' - match lines starting with a non-space (e.g. a label)

• '\\ *$' – match lines ending with a back-slash (that may or

 may not be followed by blanks)

80

Regular expressions cont’d

• A mechanism for specifying text patterns by a logical

grouping rather than by column position

• Tools utilizing regular expressions (aka regexes)

• grep – process a text input and print lines matching a regex

• sed – process a text input substitute matching patterns with

specified replace strings/patterns

• vi(m) – text editor with support for regex match/substitute

• Many modern programming languages and editors provide

support for some dialect of regular expressions

(perl,python,java,C#,…)

81

GNU grep

• Provided as part of tools z/OS UNIX “Ported Tools”

• Supports catalog search through the –r option (//„hlq.mlq*‟)

• Following command searches SYS1.MACLIB for all lines

containing an SVC 34 instruction according to the logic HLASM

uses to process its source code

 /sys/s390util/bin/grep –ir \

'^\([.]\?[@#$a-z0-9]\+\)\? \+svc \+34' \

"//'sys1.maclib'"

http://www-03.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty1.html

GNU grep cont’d

82

UNIX tools and their MVS counter parts

UNIX MVS

cp IEBGENER,IEBCOPY

mv, rm IDCAMS

diff SuperC/SuperCE

grep Search-For/Search-ForE

pax TRSMAIN

shell scripts, commands REXX execs + ISPF services

find, locate Catalog Search Interface + LISTDS

83

• UNIX and MVS are build on completely different paradigms

 and comparing available tools is not straightforward

• The goal is to provide a starting point for those who know one

 of them and want to learn about the other

