
Killing Zombies, Breaking Pipes, and
Other UNIX Shenanigans

Brandon D Tweed

CA Technologies

brandon.tweed@ca.com

8/10/2012

Session Number: ?????

Jurassic Park (1993)

2

Some Background

• Jurassic Park appeared in theaters in 1993.

• That was 19 years ago.

• The girl in the picture is Ariana Richards.

• She will be 33 this year.

• Info from IMDB. (I’m not stalking Ariana Richards)

• Mark Zuckerberg, creator of facebook is 27.

3

Where Is This Going?

• Source: http://www.filmdetail.com/2011/05/13/from-jurassic-

park-to-the-social-network-joseph-mazzello-unix-facebook/

• Facebook runs on Linux (UNIX-like OS)

• Knowing UNIX helped a bit?

4

http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/
http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/

The Point

• UNIX awareness was increasing in 1993.

• A lot has happened since 1993

• Google’s Android OS (Linux-based)

• Apple’s iOS and OS-X, both derived from UNIX, are also

ubiquitous.

• Java appeared in 1995.

• A generation of developers have grown up with UNIX, Linux,

and Windows available.

• UNIX and Linux are not a fad.

• Unless you believe a 43-year-old OS counts as a fad

5

http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/

Today’s Presentation

• Cover some intermediate-level UNIX topics, become more

acquainted with UNIX.

• Topics:

• Process Management

• Zombie Processes

• Job Management

• Pipes

• Redirection

• Shenanigans

6

http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/

Intermediate Level, You’re Expected to
Know …

• Basic UNIX commands for listing directories and navigation

• UNIX file system and UNIX permissions

• How to access UNIX (via OMVS, preferably puTTY)

• References to keyboard shortcuts assume a puTTY-like

environment, not OMVS.

• The same things can be done from OMVS, but they require

some additional terminal set-up.

7

http://www.filmdetail.com/2011/05/13/from-jurassic-park-to-the-social-network-joseph-mazzello-unix-facebook/

puTTY Config Crash Course

8

1.Provide the hostname

2.Select the connection

type (typically Telnet or

SSH)

3.Ensure that the TCP/IP

Port value is correct

4.Click Open

5.Provide userid

6.Provide password

7.UNIX Prompt! Done.

Getting Started - Useful UNIX Commands

• more (less is nicer) – displays a text file page-by-page

• grep – search a text file line-by-line for matches to a regex

• wc – word count (can also be used for getting a line count)

• ps – display status information about processes

• find – search the file system for a file

• diff – compare two files line-by-line

• nohup – Run a program that won’t terminate if your terminal

is disconnected.

• who – see who’s logged on

• df – report free space for a file system

9

The man Command (Manual)

man – access the UNIX manual pages for any given

command

• Example: man ls

• Gives the manual pages for the ls command

• Yes, “man man” works.

• Note that “man woman” does not.

• Also available: IBM manuals, Google, Bing,

StackExchange, forums, and many other resources on the

web.

10

Guiding UNIX Design Principles

• Everything is a file

• More accurately, everything is usually a buffered byte-

oriented stream.

• In-depth look: http://ph7spot.com/musings/in-unix-everything-

is-a-file

• Modular, single-purpose commands

11

http://ph7spot.com/musings/in-unix-everything-is-a-file
http://ph7spot.com/musings/in-unix-everything-is-a-file
http://ph7spot.com/musings/in-unix-everything-is-a-file
http://ph7spot.com/musings/in-unix-everything-is-a-file
http://ph7spot.com/musings/in-unix-everything-is-a-file
http://ph7spot.com/musings/in-unix-everything-is-a-file
http://ph7spot.com/musings/in-unix-everything-is-a-file
http://ph7spot.com/musings/in-unix-everything-is-a-file
http://ph7spot.com/musings/in-unix-everything-is-a-file
http://ph7spot.com/musings/in-unix-everything-is-a-file
http://ph7spot.com/musings/in-unix-everything-is-a-file

Topic: Killing Zombies

12

UNIX Processes

• Each program running under UNIX is a process

• Every process has a process id (PID)

• Every process has a parent process id (PPID)

13

Your Processes

• You will have at least one process running under your

userid if you login to USS.

• The process is for your shell (/bin/sh)

• The list also shows the process for ps as it runs.

14

Terminating Processes

• The kill command can be used to end a running process.

• As always, kill with caution.

• Sends the signal SIGTERM to the process.

• This is the polite way of asking the process to end.

• Kill requires the PID of the process you want to terminate.

15

How to Kill

1) Use ps to get the PID of the process to

kill.

16

2) Assertively issue the ‘kill’ command.

Terminating with Extreme Prejudice

• In rare situations, a process might ignore the SIGTERM

signal.

• This is usually unintentional application behavior (a bug).

• Use the –K switch of the kill command to send a “superkill”

signal to the process.

• This should be used as a last resort.

• From the man pages, “The process is ended with a non-

retryable ABEND”

17

What’s a Zombie Process?

It all starts with forking …

18

Terminology – System Call

• A “system call” is typically a C function provided to invoke

some facility provided by the operating system.

• File I/O

• IPC (inter-process communication)

• Process Management

• More than you probably want to know at this point is

available here: http://www.di.uevora.pt/~lmr/syscalls.html

19

http://www.di.uevora.pt/~lmr/syscalls.html

Fork

• System call, provided as part of UNIX

• makes an identical copy of the current process (like an

amoeba!)

• the original process is called the parent

• the new process is called the child

• the child’s PPID is the PID of the parent

20

Terminology – Forking a Child

• This is not the proper way to discipline a child.

• Typical UNIX humor, try not to take offense.

• “Forking”, “Forking a Child”, or “Forking Children” all mean

the same thing.

• This is not the proper way to discipline a child.

21

How Zombies Are Made
(Forking Without Care)

• Zombies are created through poor programming, usually

during development.

• When a programmer issues a fork() in her program, they

must issue a wait().

• If no wait() is issued, the child process lingers when it

completes execution.

• The process remains in the process table but really isn’t

doing anything.

• Process is dead, but it continues to live!

22

Example Zombie Creation

• I’ve written a program that creates zombies.

• Written in C, compiled in UNIX.

• zombies.c provided as an example.

• Link to source:

• http://dl.dropbox.com/u/39171790/zombies.c

23

http://dl.dropbox.com/u/39171790/zombies.c

Process Table Infested With Zombies

24

Parent Process

The Big Reveal: You Can’t Kill Zombies

25

But Everything is Fine!

• Zombies can’t be killed?!

• UNIX zombies are defeated much like vampires (think

Dracula).

• The secret: KILL THE PARENT.

26

The init Process

• UNIX has a special process called init

• Built-in part of the OS, usually runs with PID=1 in a lot of

UNIX environments.

• Automatically inherits any orphaned processes (processes

whose parents are deceased)

• Inherits zombie processes when the parent dies

• Periodically issues the wait() system call, zombies are

cleaned up

27

Zombie Clean-Up Procedures

1. Use ps to get the list

of processes

2. Locate the zombie

and determine it’s

PPID

3. Issue kill to kill the

parent

4. Let the init process

take care of the rest

28

Prevention: Setting the User Process
Limit

• Typically done with ulimit command on some UNIX

variants

• For z/OS, this done via the OMVS segment in a user’s

security profile.

• PROCUSERMAX limits the max number of processes for

the UID.

• More info here:

http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/co

m.ibm.zos.r13.bpxb200/ussoel.htm#ussoel

29

http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.bpxb200/ussoel.htm
http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.bpxb200/ussoel.htm

Topic: UNIX Job Management

• In UNIX a job is a process associated with your

terminal session.

• Jobs can run in the foreground or background.

30

Foreground Processing

• Analogy: Interactive/Online Processing

• Good for commands/processes that run and

complete quickly

• “hold on” to your command prompt while they are

executing.

31

Background Processing

• Good for long-running tasks

• Otherwise you must wait for the command prompt

to appear once the command finishes.

• Similar to batch processing. You run the process

in the “background” and do other things while

you’re waiting for it to finish.

• Alternative: Have multiple sessions open

32

Running a Command in the Background

• Append an ampersand character (&) to the end of

the command. It will run in the background.

Example: find / -name profile -print &

33

Example Background Command

find / -name profile -print &

• searches for a file with the name “profile” in it

• starts at the root and prints the results to stdout if

a match is found.

• This will interrupt any interactive commands you

are running to display output.

• Background processes should usually have their

output (stdout and stderr) redirected to a file to

avoid this.

34

Displaying Jobs (Processes)

• The jobs command will give you a list of

processes associated with your session.

• Each process listed will have an associated “jobid”

• The jobid can be used with commands for

managing jobs (such as kill, fg, or bg).

35

Suspending a Foreground Process

• A long-running process in the foreground can be

“suspended” by pressing Ctrl+Z.

• This sends a signal to the process that will pause

it. The process can be resumed at a later time.

• The signal is SIGSTP

36

Foreground Process Suspension
Example

• Try this from a puTTY session, press Ctrl+Z while

the command is running.

• Issuing the “jobs” command will show that the

command is stopped.

37

Resuming a Background Job

• To bring a background job back to foreground

processing, you can issue the fg command.

• If you do not specify a job name, it will bring the

most recently suspended job to the foreground.

38

Running a Job In The Background
(Another Way)

• Use the bg command

• bg jobid

• If no jobid is specified, uses the most recently

stopped job.

• You could run it in the foreground, suspend it,

and then issue bg.

• But there’s already a better way.

39

And Now For Something Completely
Different….

“It is a mistake to think

you can solve any

major problems just

with potatoes.”

Douglas Adams,

“Life, the Universe,

and Everything”

40

Next Topic: Breaking Pipes

• If you experiment with UNIX long enough, you’ll encounter

this situation although you may not understand why.

41

Back To Basics: Everything Is A File

42

All UNIX processes typically open three files by default:

1. Standard Input (stdin) – Typically direct input from the

terminal, but can come from other places.

2. Standard Output (stdout) – Typically output written to the

terminal.

3. Standard Error (stderr) – Also typically written to the

terminal unless redirected elsewhere.

Related Topic - Redirection

• Earlier we mentioned that each process works

with stdout, stderr, and stdin.

• Each of these is a file that a process opens

automatically when the process begins

executing.

• The output and input of files can be “redirected”

so that it comes from or goes to another place.

43

Topic: Redirection

UNIX commands refer to stdin, stdout, and stderr

by file descriptor numbers:

• 0 – stdin

• 1 – stdout

• 2 – stderr

Note: File descriptors are sometimes loosely

referred to as “file handles”

44

Redirecting Standard Output

Save output from a program to a file

• Example: ls –l > listing.txt

• Saves the output to a text file, listing.txt.

• If this file exists, it will be overwritten

• If it does not exist, it will be created

• (as long as the permissions allow this)

45

Redirecting Standard Input

• Some commands read from standard input.

• You may want to provide a file as input instead

of typing data.

• Good example in UNIX Shenanigans.

46

Redirecting Standard Input (Example 1)

Example: cat < file.txt

• Feeds the file “file.txt” as input to the ‘cat’

command.

• Silly example, but it demonstrates the

mechanics of the command.

• Don’t feed text to your cats.

47

Redirecting Standard Input (Example 2)

Example: sh < script.sh

• create a new shell instance with the sh

command

• feed it script.sh as the input.

• runs a shell script in a non-conventional way

48

Remembering How to Redirect

• For simple redirection, pretty easy to remember

• The < or > points to where the data is going.

• who > file.txt

• cat < file.txt

49

Redirecting ALL The Output

Example: command > file.txt 2>&1

• Redirects stdout to file.txt

• Redirects stderr to stdout

• Result: Both stdout and stderr written to same

file.

• ‘command’ can be any UNIX command

50

Next: Topic Pipes

51

“A common mistake that people make when trying to design

something completely foolproof is to underestimate the

ingenuity of complete fools.”

- Douglas Adams, The Hitchiker’s Guide to the Galaxy

Pipes

52

• Transfer data between

UNIX processes.

• Output from one process

becomes input to another.

In a Pipe-less World

• First program opens a file or data set for output,

writes to the data set.

• Second program opens the same data set for

input and reads from it.

• Sometimes it’s not convenient, can be really

slow.

53

Using Pipes

54

String together commands using the ‘|’ character (X’4F’ or

0x4F).

Example:

who | grep userid

Output of the ‘who’ command is given as input to the grep

command. Grep will search it for a match for userid.

A Side Note On Grep

55

• Incredibly useful, makes life a lot easier.

• Knowing regular expressions makes it even more

powerful.

• Regular expressions aren’t the purpose of this session.

• There are many great books and online resources that

explain regular expressions very well.

• Regular expressions are also useful for other tools,

commands, and editors (sed, awk, vi, et cetera)

• Some simple examples of regex coming shortly

Looking Closer

56

Example:

who | grep userid

1. The who command writes its output to stdout (normally

goes directly to the terminal).

2. The pipe forces the output of the who command to

become the input of the next command, grep. (The

stdout of the ‘who’ command becomes the stdin of the

grep command.)

3. grep reads the input and uses it for its search

More Pipe Examples

57

ls -l | more

Display the output of a long listing page-by-page.

who | wc -l

Count the number of UNIX sessions.

who | sort

Sort the output of who (displays lines in alphabetical order)

More Pipe Examples (2)

58

ls -l | grep ‘^d’

Obtain a listing that includes only directories.

find . -name *.c | grep hello

Search recursively from the current directory downward for

files with names that end in “.c”. Then filter the list to include

only filenames with “hello” in them. (You can modify the

command to make it useful)

More Pipe Examples (3)

59

ps -a -o pid= | wc -l

Get the list of all processes (that you’re allowed to know

about) and give the count of the list produced. End result:

count of processes running that you’re allowed to see by

security.

env | grep ‘^a’

Search all UNIX environment variable definitions to find

names that begin with ‘A’ or ‘a’.

What is a Broken Pipe?

60

• One of the commands in a string of piped commands has

its input (stdio) or output (stdout) closed or EOF

• Example scenario:

• a command pipes its output (stdout) into another command

• the receiving command closes stdin before all the input is

received

• the pipe is “broken”, the sender has nowhere to write the

data

Example C Program

61

#include<stdio.h>

int main(void) {

fclose(stdin);

return 0;

}

• The program closes standard input (stdin) immediately

and then ends with an RC = 0.

• A program feeding the right amount of input to this

through a pipe will result in SIGPIPE (broken pipe)

Example Run

62

• The compiled program (a.out) immediately closes stdin

when it starts.

• The ls command tries writing to stdout, which has been

closed. It receives the SIGPIPE signal and terminates

processing.

Are Broken Pipes A Problem?

• Yes, if you’re developing a program that doesn’t

handle stdin/stdout/stderr correctly.

• When working with standard UNIX commands,

not really a big issue.

• Correct the command, try again, and move on

with life.

• Now you know more about what SIGPIPE

means!

63

Other UNIX Shenanigans

64

UNIX Shenanigans

• Experimenting with UNIX commands is often the

best way to learn about them.

• This can yield some unexpected results.

• I don’t endorse doing things that are malicious or

harmful to your system.

• However, I do take great pleasure from causing

harmless mischief.

• Don’t try this at home unless you claim full

personal responsibility for it.

65

UNIX Shenanigans - wall

66

wall - Send a broadcast message to all logged-in UNIX

users.

• Requires superuser or permission to write to the

terminals of others. (A terminal is a file!)

• Takes input from stdin. Use a pipe to feed whatever file

you like to the wall command.

• Maybe try sending War and Peace to all the users?

UNIX Shenanigans – logger

logger - send a message to the console log

67

UNIX Shenanigans - logger

Send an entire file to the console.

68

UNIX Shenanigans – kill

Not fond of someone? Kick them off the

system! (requires superuser and it’s

traceable)

1. Use ps to find the PID of their shell (grep

the output if you have to)

2. Issue the kill command with the PID of the

shell

Example: kill -HUP 33554862

 69

UNIX Shenanigans – talk

talk userid

• Establishes a two-way chat session.

• Requires acceptance from whoever you’re

trying to chat with.

• Disruptive to work and agitating if done

repeatedly.

70

UNIX Shenanigans – write

write userid terminal

• More assertive than talk

• Supply input via stdin

• Written to receiver’s terminal without asking

• Very disruptive!

Example:

cat file.txt | write twebr01 ttyp0020

71

Other Mean Tricks

Add ‘umask 777’ to another user’s .profile.

• Sets the permissions for newly created files or

directories to 000.

• Won’t be able to read, write, or execute files or

directories created.

• Directories created this way can’t be listed by the

user .

• Setting won’t be noticed unless user checks his/her

profile.

• Really mean trick - add this to /etc/.profile

72

Other Mean Tricks

Make a user think all her files are gone.

1) Create an empty zfs (size doesn’t matter),

use ISHELL for conveniece

2) Mount it on top of their home directory, use

ISHELL if you’re not sure how to use the

mount command

3) User’s home directory will appear to be

empty. Files are still there but inaccessible

until the zfs is unmounted.

73

Other Mean Tricks

Prevent a user from logging in – add “exit”

statement to their .profile.

• Requires write access to .profile or

superuser

• When the session starts, it will immediately

end.

• Use ISPF option 3.17 to open the file and

remove the exit statement if you try this with

your own .profile.

74

Why Would You Do This??

• At some point, someone will knowingly or

accidentally do something to cause trouble

in UNIX.

• Real Example:

• Statement added to /etc/.profile that causes an

error (unintentional)

• Error prevents user’s .profile loading for all users

• Broke a number of UNIX build processes.

75

Fighting Back

76

• Knowing mean tricks usually helps figure out

how to undo these tricks.

• Practice diagnosing and fixing problems.

• Gives you an idea what to expect from a

malicious UNIX user.

• Truly malicious users can do much, much

worse.

Conclusion

• Common UNIX

commands

• puTTY set-up

• Processes

• Zombies

• Pipes

• Job Management

• I/O Redirection

• Causing Trouble

77

Mischief Managed (Q&A)

78

