Using NetView for z/OS for Enterprise-Wide Event Management and Automation

Session 11905
August 9, 2012

Mike Bonett (bonett@us.ibm.com)
IBM Advanced Technical Skills

© 2012 IBM Corporation
Trademarks

The following are trademarks of the International Business Machines Corporation in the United States, other countries, or both.

Not all common law marks used by IBM are listed on this page. Failure of a mark to appear does not mean that IBM does not use the mark nor does it mean that the product is not actively marketed or is not significant within its relevant market.

Those trademarks followed by ® are registered trademarks of IBM in the United States; all others are trademarks or common law marks of IBM in the United States.

For a complete list of IBM Trademarks, see www.ibm.com/legal/copytrade.shtml:

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both, and is used under license therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark of The Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:
Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply. All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information about the products or services available in your area.

All statements regarding IBM's future direction and intent are subject to change without notice, and represent goals and objectives only. Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Complete your sessions evaluation online at SHARE.org/AnaheimEval
ABSTRACT

IBM Tivoli NetView for z/OS is more just than an SNA or TCP/IP network management tool. It integrates with a variety of event sources and event managers to support event consolidation and automation across the System z and distributed environment. This session will show how NetView on z/OS can exchange information, automate, and correlate events and information from sources such as:

- DB2 and other relational databases
- Event managers such as Netcool/OMNIbus
- J2EE applications
- SNMP traps
- Web services

Examples of integrating NetView with these sources, as well as general considerations for enterprise event management integration, will also be provided.
Agenda

• Tivoli NetView for z/OS Automation Overview
• Integration Interfaces
• Integration Examples
 • Native
 • Product
• General Event Management Integration Considerations

“Explore the Possibilities”
Why Does Event Integration/Automation Matter?

• Events indicate changes in the environment that might impact service delivery

• Technologies are creating events from more sources
 • From a “nice to have” to a “critical requirement”
 • From both infrastructure and business event sources

• Modern applications span technologies
 • No single resource can give a true picture of overall application status
 • Events must be gathered (and sometimes correlated) across multiple technologies

• Automation is necessary to support efficient management
 • Process efficiency
 • IT Service Management Visualization, Control, and Automation
NetView Perception vs. NetView Reality

“It is only a SNA Network Management product”

- It is that and much more
- Provides extensive system automation and TCP/IP management functions

“It takes a lot of overhead”

- Anything takes overhead… if it is not tuned
- Filter out events and turn off interfaces not needed
- Spread the functions across multiple address spaces
- Prioritize tasks within NetView manually or using WLM
- Use the NetView Tuning Guide – it contains a wealth of information

“It does not integrate with with other technologies”

- Direct integration with TCP/IP applications
- Provides web and web services access
- Programmable in various languages
- Access to DB2, Unix System Services, TSO, and cross-platform environments
NetView Integration Interfaces

- Messages
- Commands
- Exits
- Sysplex

Operating System

TCP/IP

- SNMP
- Sockets
- FTP
- Mail
- Remote Commands
- Web
- SOAP

NetView Functions

SNA (VTAM)

- Events
- Alerts
- Commands
- Applications

APPLICATIONS

- SNA
- Unix System Services
- DB2
- Netcool OMNIbus
- Tivoli Enterprise Console
- Tivoli Event Pump
- Systems Manager
- OMEGAMON
- IBM Tivoli Monitoring
- Info/Management
- Remote NetViews
- Remote Commands

Complete your sessions evaluation online at SHARE.org/AleheimEval
NetView Automation

Automation actions can be triggered by:

- Message contents
- SNA Message Service Unit (MSU) Contents
- SNMP Traps
- UNIX syslog protocol (RFC 5424)
- Event Integration Facility (EIF) events
- Time (specific or interval)
- Additional data obtained from

Additional data obtained from:

- Event contents
- NetView Global Variables

Actions invoked include:

- Commands (NetView, VTAM, z/OS, custom)
- CLIST and REXX procedures
- Correlation
- Activating/deactivating automation
SNA Automation Interface

- SNA Management Service Units (MSUs) captured from VTAM
- Alerts are the most common ones captured
- Automation can be driven based on MSU content
- Programmatic access to 3270 screen applications

```plaintext
* AUTOMATION TABLE STATEMENTS FOR GENERIC ALERTS
************
IF MSUSEG(0000) => ' ' THEN
BEGIN;
* REACT TO ALERT WITH 'CSAJOB' AT TOP OF HIERARCHY
* IF HIER(2) = 'CSAJOB' &
  MSUSEG(0000.31.30 3) = AMSG
  THEN EXEC(CMD('MSU2WTO ' AMSG) ROUTE(ONE AUTO2)) CONTINUE(Y);
* REACT TO ALERT FROM NETFINITY
* IF MSUSEG(0000.10) = '5642010'
  THEN EXEC(CMD('NETFIN01 ') ROUTE(ONE AUTO2)) CONTINUE(Y);
* SEND ALERT WITH 'BONETT' TO ALERT-TO-TRAP ADAPTER
* IF MSUSEG(0000.10) = '5699001'
  THEN EXEC(CMD('TECROUTE PIPE SAFE * | PPI (TRAPROUT) NYC4TEC'
  ROUTE(ONE AUTO1)) CONTINUE(Y);
```
Operating System Automation Interface

- Connection into z/OS to capture events and issue commands and messages
- NetView V6R1 – CANZLOG consolidates Subsystem interface (SSI), Multiple Console Support (MCS) and JES2 joblog messages for automation
- Message Processing Facility (MPF) command exit for commands
- Detects console and joblog messages from all OS components and subsystems
- Message Revision Table (MRT) and Command Revision table (CRT) for actions before message automation and issuing commands
- Invokes automated actions
SNMP Trap Interface

- Task that receives SNMP traps and converts to an SNMP CP-MSU for automation
- Supports SNMP v1, v2, v2c, and v3
- Supports TCP and UDP across IPV4 and IPV6
- Multiple tasks can run concurrently
- Defined via CNMSTYLE COMMON.CNMTRAP and TASK statements

```plaintext
z/OS
NetView
SNMP Trap
```

```
SNMP Trap Interface

• Task that receives SNMP traps and converts to an SNMP CP-MSU for automation
• Supports SNMP v1, v2, v2c, and v3
• Supports TCP and UDP across IPV4 and IPV6
• Multiple tasks can run concurrently
• Defined via CNMSTYLE COMMON.CNMTRAP and TASK statements
```
UNIX syslog Message Interface

- DSIIPLOG task receives syslog (RFC 5424) messages and converts to a message for automation
 - BNH703I (multiline) if host is registered
 - BNH710I if host is not registered
- REGIP command maintains host registration list
- Coexists with z/OS Comm Server syslog

```
TASK.DSIIPLOG.INIT=Y
IPLOG.TCPANAME = &CNMTCPN.
IPLOG.PORT = 514
IPLOG.SOCKETS = 100
```

```
linux117:~ # logger -p local4.info "important message regarding application running on Linux"
/etc/syslog.conf: local4,local5.* @hasl125
```

```
BNH703I SYSLOGD MESSAGE RECEIVED. FACILITY= LOCAL4. PRIORITY= INFO. ORIGIN= 10.1.1.117 root: important message regarding application running on Linux*
```

NetView can also send syslog messages using the PIPE IPLOG stage
Program-to-Program Interface (PPI)

- Application Programming Interface (API) to integrate with applications running on same operating system image
 - Programmable in Assembler, PL/I, C, REXX
 - Applications register to be PPI receivers for exchanging information
 - Between NetView and other applications
 - Between 2 applications using NetView as the data transport
PPI - REXX Coding Example

• DSIPHONE is a REXX external subroutine that enables you to send and receive data across the NetView PPI.
• This function enables any application (capable of running TSO REXX) to open, close, send data to, or receive data from a PPI receiver

```rexx
/ *** START UP PPI RECEIVER *** /
x1 = dsiphone('OPENRECV','MYPPI')
say "DSIPHONE OPEN CALL RC:" x1

/* SEND DATA TO REXX TSO COMMAND SERVER PPI (DSICMDSV) */
/* RQUEST CONTAINS DATA TO SEND */
x2 = dsiphone('SEND', 'DSICMDSV', 'RQUEST', 'MYPPI')
say "SEND CALL RC:" x2

/* WAIT FOR RESULT TO BE RETURNED */
/* KEEP RECEIVING DATA UNTIL A X'37' IS RETURNED */
result. = ''
i = 0
i_save = 0
do while result.i <> '37'X
    x3 = dsiphone('RECEIVE', 'MYPPI', 'RESULT.', 'SENT_BY', 30)
end

/ *** CLOSE THE PPI RECEIVER *** /
x4 = dsiphone('CLOSE', 'MYPPI')
say "DSIPHONE CLOSE CALL RC:" x4
```
RMTCMD and RUNCMD

- **RMTCMD** sends a command to another NetView
 - Uses either SNA or IP transport
 - Recommended method of communication
 - Foundation for NetView Sysplex Management control
- **RUNCMD** sends a commands to another platform via SNA
 - Service Point application required to receive and execute command
 - Both methods capture the command response
 - Can drive automated actions
TCP/IP Services

- Socket applications
 - SOCKET command as client or server
- SNMP
 - Native SNMP commands
 - MIBs accessible via SNMP manager, 3270, or Web Interface
 - Generate SNMP traps
 - Act as a SNMP manager
- TCP/IP commands
 - Native
 - Indirect (via z/OS or USS)
 - Packet traces
TCP/IP Services - Socket Server Example

2:56:21 * TESTSKSV 9999 1
2:56:21 - BNH623I SOCKET INTERFACE HAS ALREADY BEEN INITIALIZED ON TCP/IP TCPI
2:56:21 C INIT: 8
2:56:21 C SOCKET: 0 BNH606I SOCKET REQUEST COMPLETED SUCCESSFULLY. SOCKET 3 H
2:56:21 C SOCKET ID 3
2:56:21 C BIND: 0 3 9.82.56.125 9999
2:56:21 - BNH614I BIND REQUEST ON SOCKET 3 COMPLETED SUCCESSFULLY
2:56:26 C LISTEN: 0
2:56:37 C ACCEPT RC: 0 LINES: 1
2:56:37 C j* BNH612I SOCKET 3 ACCEPTED CONNECTION FROM 9.54.139.58 PORT 1423.
2:56:37 C ==>INCOMING! 4 9.54.139.58 1423
2:56:37 C INSTRING: èÇÑË*Ï/Ë*ËÁ>È*ÃÊ?_*/*ÏÑ>À?ÏÉ*Ê?Ä,ÁÈ*Ä%ÑÁ>È
2:56:37 C EBSTRING 1: This was sent from a windows socket client
2:56:37 C SHUTDOWN CLIENT: 0
2:56:37 C CLOSE CLIENT: 0
2:57:04 C ACCEPT RC: 0 LINES: 1
2:57:04 C j* BNH612I SOCKET 3 ACCEPTED CONNECTION FROM 9.54.139.58 PORT 1424.
2:57:04 C ==>INCOMING! 4 9.54.139.58 1424
2:57:04 C INSTRING: ëçíèà|ï+
2:57:04 C EBSTRING 1: SHUTDOWN
2:57:04 C SHUTDOWN CLIENT: 0
2:57:04 C CLOSE CLIENT: 0
2:57:04 C ALL DONE!
2:57:04 C SHUTDOWN SERVER: 0
2:57:04 C CLOSE SERVER: 0
Unix System Services

- Exchange information between USS based applications and NetView
 - NetView can issue USS commands via the PIPE UNIX function
 - Responses can be captured for automation purposes
 - USS applications can issue NetView commands using the REXX DSIPHONE interface and the CMDSERV PPI command server

```
HCN53  PIPE UNIX df -k | wait 20 | separate | loc /WebSphere/ | console
```

/zOSV1R9/shared/WebSphere610 (IBM.WAS610.SBBOHFS) 113764/1684800 4294945687 Available
/zOSV1R9/shared/WebSphere510 (IBM.WAS510.SBBOHFS) 27188/504000 4294961409 Available
/zOSV1R9/shared/WebSphere (WAS35.WAS.SEJSHFS2.@010227) 10100/48000 4294965560 Available
/WebSphere390/V610/config (IBM.WAS610.CONFIG.HFS) 193612/300000 4294931936 Available
/WebSphere390/V510/config1 (WAS510.WAS.CONFIG1.HFS) 209280/468000 4294947865 Available
General Database Access via Java Database Connectivity (JDBC)

1. Using PPI and USS Interface
2. Using SOCKET command as a socket client to a server
DB2 for z/OS Interface

- NetView can directly access DB2 subsystems running on the same zO/S image
 - Built on the NetView PIPE function
 - Run DB2 BIND command using supplied packages for access
- NetView can indirectly access DB2 systems running on other systems
 - via Unix System Services
 - Invoking a Java JDBC program
 - via RMTCMD
 - Invoke a command on another NetView running on DB2 z/OS image
- Via SOCKET command
 - Connect to a server with access to the DB2 subsystem
DB2 coding example

`SQSELECT` is a supplied REXX procedure that calls PIPE SQL and formats the retrieved data for display.

<table>
<thead>
<tr>
<th>Time</th>
<th>Job</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>* SQSELECT * FROM BONETT.ETETABL1 WHERE DEPT <> 'DS5'</td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td></td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>" TASH CHARLES 11111</td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>" BRIDGES NASH 22222</td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>" FUDD ELMER 33333</td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>" TANNER DAN 44444</td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>" GUNN PETER 55555</td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>" LONGSTREET JAMES 66666</td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>" WISE STEVEN 39208</td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>" GONZALES LEO 93406</td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>" BROWN JAMES 08836</td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>" CLARK JAMES 94611</td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>" SMITH SARAH 10021</td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>" WILSON PATRICIA 92663</td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>" GARCIA JASON 11509</td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>" YOUNG MARIA 20854</td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>" GARCIA JAMES 90210</td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>" YOUNG MARIA 20854</td>
</tr>
<tr>
<td>12:21:04</td>
<td>HCBN4</td>
<td>" MILLER SHARON 06903</td>
</tr>
</tbody>
</table>
Event/Automation Service (EAS)

• Integrates with Netcool/OMNibus, IBM Tivoli Monitoring, Tivoli Enterprise Console (TEC) and SNMP managers
 • Receives Event Integration Facility (EIF) events directly from the event source
 • Tivoli products (IBM Tivoli Monitoring, OMNibus, TEC…)
 • Third party products that generate EIF events
• Send messages or alerts to an EIF Receiver
• Receive SNMP traps and convert to alerts
• Send messages or alerts as SNMP traps
Event/Automation Service Details

Event Sources
- IBM Tivoli Monitoring
- Event Adapters
- EIF senders
- EIF postmsg/postzmsg

SNMP Agent
SNMP Manager
Event Receiver

z/OS
NetView on z/OS
Hardware Monitor (NPDA)
Alert Receiver
TRAPROUTE Filter
TECROUTE Filter
TECROUTE PPI
Automation Table
z/OS Messages

Event/Automation Service
Event Receiver
Trap-to-Alert Adapter
Alert-to-Trap Adapter
Alert Adapter
Message Adapter

NetView Alert
NetView Alert
z/OS Messages
NetView Alert
NetView Alert
NetView Alert
z/OS Messages
Send Event Results

EVENT: AppEvent; source="EIF Application"; prob=1; msg="Sample Event Message"; probevalue=100; sub_origin="J2EE Application"; hostname=test.com; origin="WebSphere"; probearg="testarg1"; sub_source="EIF servlet"; severity=HARMLESS; END

sendEvent worked! rc = 225

**

Event Receiver

Complete your sessions evaluation online at SHARE.org/AnaheimEval
EAS – ITM Situation to NetView z/OS Alert

Tivoli Enterprise Monitoring Server (TEMS)

Event Receiver
EAS – z/OS Message to Netcool/OMNIbus

HCB$ " IEF450I CICS31B CICS31B - ABEND=S222 U0000 REASON=00000000 TIME=18.17.46
HCB$ C MESSAGE IEF450I CICS31B CICS31B - ABEND=S222 U0000 REASON=00000000 WI
HCB$ C PPI2EAS3: MESSAGE IS IEF450I CICS31B CICS31B - ABEND=S222 U0000 REASON=00000000
HCB$ C message sent: IEF450I CICS31B CICS31B - ABEND=S222 U0000 REASON=00000000

IF MSGID = 'IEF450I' & (TOKEN(2 1 4) = 'CICS') & (TEXT = MESSAGE)
THEN EXEC(CMD('PPI2EAS3 NVC5TEC ' MESSAGE)
ROUTE(ONE AUTO1 AUTO2))
CONTINUE(Y);

WHEN (word(msg,1)='IEF450I') & (left(word(msg,2),4)='CICS')
THEN do
 bsm_identity=word(msg,2)||':HCB$:CICSRegion'
 bsm_subsource='CICS'
 bsm_severity='CRITICAL'
 bsm_status='OPEN'
end

msg1 = msg 'BSM_ID='||bsm_identity 'BSM_SV='||bsm_severity
msg1 = msg1 'BSM_ST='||bsm_status 'BSM_SS='||bsm_subsource
msg1 = msg1 'BSM_HN='||bsm_hostname

SAY "PPI2EAS3: MESSAGE IS" msg1
"PIPE VAR MSG1 | PPI TECROUTE" ppiname
say "message sent:" msg1
exit
EAS – z/OS Message to OMNIBUS...

FORMAT EAS2TBSM41 FOLLOWS NV390MSG_Event
%s* BSM_ID=%s* BSM_SV=%s* BSM_ST=%s* BSM_SS=%s BSM_HN=%s*

[Event Processor] ClassName: EAS2TBSM41
[Event Processor] source: NVEAS
[Event Processor] jobname: ''
[Event Processor] msg: 'IEF450I CICS31B CICS31B - ABEND=S222 U0000 REASON=00000000'
[Event Processor] date: 'SEP 27 18:17:46'
[Event Processor] msg_id: IEF450I
[Event Processor] status: OPEN

Netcool/OMNibus Event List: Filter="All Events", View="Default"
EAS - NetView z/OS Alert to SNMP trap

Alert-to-Trap Adapter
EAS - SNMP trap to NetView z/OS Alert

Trap to Alert Adapter
NetView Tivoli Enterprise Management Agent

- Integrates NetView with the Tivoli Enterprise Portal Environment
 - DVIPA information
 - Hipersockets
 - OSA
 - Packet Trace
 - TCP/IP Stack and connections
 - SNA Sessions
 - NetView health and log information
- NetView commands can be issued from the TEP desktop
- Transfer in context to OMEGAMON XE for Mainframe Networks
- Replaces old NetView TEP Agent (V5R2)
NetView TEMA – Portal View

TCP/IP Connection Data Summary

<table>
<thead>
<tr>
<th>Collection Time</th>
<th>TCP/IP Job Name</th>
<th>Local IP Address</th>
<th>Remote IP Address</th>
<th>Remote Port</th>
<th>Connection Start Time</th>
<th>Last Activity Time Stamp</th>
<th>Resource Name</th>
<th>Connection ID</th>
<th>Total Bytes Received</th>
<th>Total Bytes Sent</th>
<th>Total Bytes Recvd</th>
<th>Total Bytes Sent</th>
<th>Bytes Sent</th>
<th>Bytes Received</th>
<th>Byte Rate</th>
<th>Total Segments Flown</th>
<th>Bytes Flown</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/28/12 13:24:49</td>
<td>TCPIP</td>
<td>982.55.125</td>
<td>7573.91</td>
<td>982.38.23</td>
<td>07/28/12 13:24:47</td>
<td>07/28/12 13:24:47</td>
<td>CYTIPROC</td>
<td>0000143427</td>
<td>403080190</td>
<td>340930190</td>
<td>0</td>
<td>13637501900</td>
<td>5</td>
<td>403080190</td>
<td>340930190</td>
<td>190000000</td>
<td>0</td>
</tr>
</tbody>
</table>

Complete your sessions evaluation online at SHARE.org/AnaheimEval
IBM Tivoli Monitoring Custom Integration

- NetView can send data to the ITM Environment either the IBM Tivoli Universal Agent or the Agent Builder Socket Data Source
 - NetView uses SOCKET functions as a socket client to send data
 - Universal Agent and Agent Builder agents can receive data via TCP/IP sockets
 - Any information NetView can detect or create can be sent
 - ITM functions can be applied to data (detecting threshold/content exceptions, situation and policy automation, etc.)
- Commands can be issued to NetView using Situations and Take Action Commands
NetView Socket Client to Universal Agent

```plaintext
IF MSGID = 'MWB777I' & TEXT=MESSAGE THEN
EXEC(CMD('TESTSKC2 ' MESSAGE) ROUTE(ONE AUTO1))
CONTINUE(Y) NETLOG(Y);
```

<table>
<thead>
<tr>
<th>Report</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JOBNAME</td>
<td>MSGID</td>
</tr>
<tr>
<td>NETVIEW</td>
<td>MWB777I</td>
</tr>
<tr>
<td>NETVIEW</td>
<td>MWB777I</td>
</tr>
<tr>
<td>NETVIEW</td>
<td>MWB777I</td>
</tr>
</tbody>
</table>

MSGTEXT D 256

Complete your sessions evaluation online at SHARE.org/AnaheimEval

© 2012 IBM
Take Action Command to NetView

Take Action

- **Name:** alerttest
- **Command:** NVCB TESTALR2 OMXE_ALERT OMXEMFN,FTP1

Destination System(s):
- HIAVSYSL:HCB$:MVSSYS
- HIAVSYSL:HFD$:MVSSYS
Take Action Command to NetView...

```
/* Test generating generic alert */
parse arg text hier ;
"GENALERT G TYPE=PERM, ALID=3722641, DESC=2000, PSID=5699001 PC=1001",
"TEXT='"||text||"': HIER='"||hier||"' ACTS=1012"
say "GENALERT command successfully executed"
exit
```

```
NETVIEW SESSION DOMAIN: HCEN5 BONETT 06/27/06 10:17:36
NPDA-30A

DOMAIN RESNAME TYPE TIME ALERT DESCRIPTION: PROBABLE CAUSE
HCEN5 OMXEMFN FTP1 10:17 SW PROGRAM ABNORM TERM: APPLICATION PROGRAM
```

```
NETVIEW SESSION DOMAIN: HCEN5 BONETT 06/27/06 10:19:00
NPDA-43S

HCEN5 OMXEMFN

DOMAIN FTP1

DATE/TIME: RECORDED - 06/27 10:17
EVENT TYPE: PERMANENT
DESCRIPTION: SOFTWARE PROGRAM ABNORMALLY TERMINATED
PROBABLE CAUSES: APPLICATION PROGRAM
APPLICATION PROGRAM TEXT: OMXE_ALERT
```

Complete your sessions evaluation online at SHARE.org/AnaheimEval
Web Services: NetView SOAP Server

- Web Services Gateway to issue commands to NetView via SOAP over HTTP or HTTPS and receive response
- Provides Web Services Descriptor Language (WSDL) files
- Client requests can be made via
 - SOAP envelope and socket/http/https programming
 - WSDL generated proxy client
 - SOAP with Attachments API for Java (SAAJ)
 - Dynamic Invocation Interface (DII) API

```xml
<SOAP-ENV:Envelope ...>
 <SOAP-ENV:Header ...>
  <h:BasicAuth ...>
   <Name>myid</Name>
   <Password>mypassword</Password>
  </h:BasicAuth>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
  <NVCMD><cmd>Usage</cmd></NVCMD>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

```xml
<SOAP-ENV:Envelope ...>
 <SOAP-ENV:Body ...>
  <resp>
   <dl>resource</dl>
   <dl>DSI386I NETVIEW RESOURCE UTILIZATION 12:36:38</dl>
   <dl>TOTAL CPU % = 3.85</dl>
   <dl>NVCDAP61 CPU % = 0.00</dl>
   <dl>NVCDAP61 CPU TIME USED = 263.31 SEC.</dl>
   <dl>REAL STORAGE IN USE = 40092K</dl>
   <dl>PRIVATE ALLOCATED < 16M = 1120K</dl>
   <dl>PRIVATE ALLOCATED > 16M = 131588K</dl>
   <dl>PRIVATE REGION < 16M = 10216K</dl>
   <dl>PRIVATE REGION > 16M = 164000K</dl>
   <dl>END OF DISPLAY</dl>
  </resp>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```
Web Services Integration: SOAP Client

- Use NetView SOCKET functions to create client for connecting to services via Simple Object Access Protocol
 - REXX programming required but is easily reusable
 - Build HTTP Header
 - Import or create SOAP XML envelope request
 - Send complete request to services port
 - Enables use of web services data within events and automation
- Example white paper on IBM Techdocs website
Common Event Infrastructure (CEI)

- IBM implementation of the WSDM Common Base Event standard
- Imbedded in many products as a key event integration technology (e.g. WebSphere, DB2), particularly for business events
- NetView creates events and passes them to the CEI and can receive from the CEI Infrastructure for automation purposes
Product Integration Examples

- **AF/Operator**
 - PPI and Command Interface for cross-product command execution and AF/Operator access to Alerts

- **Event Pump for z/OS**
 - Command Interface via Event Pump External Data Interface (EDI) to send events which can be escalated to Netcool/OMNibus and Tivoli Business Service Manager (TBSM)
 - EIF events can be sent directly to Netcool/OMNibus and mapped to TBSM events

- **Tivoli Application Dependency Discovery Manager (TADDAM)**
 - NetView Discovery Library Adapter (DLA) sends Resource Object Data Manager (RODM) data to TADDAM for inclusion in application relationship and dependency views and actions
Event Management Considerations

• What is the Event Management scope?
 • Technology (events from particular components)
 • Application (events from components supporting an application or business system)
• Where and how are the events produced?
 • Directly by the component
 • Indirectly for the component by a component management product
• Which event and event relationships are important?
 • Typically many more events are produced than are used
 • For every exception event, a clearing event must exist (or be created)
Event Management Considerations...

- What are the event sources?
 - Directly usable by NetView
 - z/OS Messages
 - SNA Alerts
 - EIF and Common Base Events
 - SNMP traps
 - Usable by invoking NetView monitoring/automation
 - Require integration with NetView
- What is the integration customization effort?
 - Product definitions and parameters
 - “Script level” code
 - Programming code
- What level of “event capacity” (events to process in an interval) can be supported?
Summary

- There are many ways to integrate with NetView
 - By directly using a NetView interface
 - By indirectly routing through another interface
- Use the power of NetView Automation
 - Standalone on System z
 - In conjunction with other mainframe/distributed automation
- It can be a powerful Enterprise Management Integration product
 - Extremely customizable
 - Platform for integration with other management products (System Automation for z/OS, TBSM, ITM, OMEGAMON, OMNIbus…)
- It can make monitoring for and reacting to situations more efficient – and adds to the efficiency of IT Service Management
For Further Information

 - Installation: Configuring Additional Components
 - Customization Guide
 - Customization: Using REXX and the NetView CLIST Language
 - Customization: Using PIPES
 - Application Programming Guide
 - Automation GUidE

- Redbooks (available at www.ibm.com/redbooks):
 - An Introduction to Tivoli NetView for OS/390 V1R2 (SG24-5224) – an oldie but goodie
For Further Information…

- White papers with integration examples (all available on www.ibm.com/support/techdocs, use “NetView” as search word):
 - Integrating IBM Tivoli NetView for z/OS with IBM Tivoli Monitoring
 - Options for Sending z/OS Events to Netcool/OMNibus and TBSM
 - Using Tivoli NetView for z/OS as a TCP/IP Socket Server
 - An IBM Tivoli NetView for z/OS SOAP Client
 - Sending Tivoli Enterprise Console/Event Integration Facility Events to the NetView for z/OS Event Receiver
 - IBM Tivoli NetView for z/OS and IBM Tivoli AF/Operator for z/OS Integration (Parts 1 & 2)
 - Accessing Databases from Tivoli NetView for z/OS using JDBC
 - How to Power Up Distributed Servers Using Tivoli NetView for z/OS and Wake-On-LAN
 - Integrating WebSphere Applications with Event Integration Facility Products
Tivoli System z Session at SHARE

Monday
- **11:00** 11207: Automating your IMSplex with System Automation for z/OS Platinum 7
- **1:30** 11832: What’s New with Tivoli System Automation for z/OS Elite 1
- **3:00** 11886: Improve Service Levels with Enhanced Data Analysis Elite 1

Tuesday
- **9:30** 11792: What’s New with System z Monitoring with OMEGAMON Elite 1
- **11:00** 11791: Tuning Tips To Lower Costs with OMEGAMON Monitoring Platinum 8
- **1:30** 11900: Understanding Impact of Network on z/OS Performance Grand Salon A

Wednesday
- **9:30** 11835: Automated Shutdowns using either SA for z/OS or GDPS Elite 1
- **1:30** 11479: Predictive Analytics and IT Service Management Grand Salon E/F
- **1:30** 11899: Top 10 Tips for Network Perf. Monitoring w/ OMEGAMON Platinum 9
- **4:30** 11836: Save z/OS Software License Costs with TADz Elite 1

Thursday
- **9:30** 11905: Using NetView for z/OS for Enterprise-Wide Mgmt and Auto Grand Salon A
- **11:00** 11909: Get up and running with NetView IP Management Grand Salon A
- **11:00** 11887: Learn How To Implement Cloud on System z Grand Salon E/F

Friday
- **9:30** 11630: Getting Started with URM APIs for Monitoring & Discovery Elite 1
System z Social Media

- System z official Twitter handle:
 - @ibm_system_z

- Top Facebook pages related to System z:
 - Systemz Mainframe
 - IBM System z on Campus
 - IBM Mainframe Professionals
 - Millennial Mainframer

- Top LinkedIn Groups related to System z:
 - Mainframe Experts Network
 - Mainframe
 - IBM Mainframe
 - System z Advocates
 - Cloud Mainframe Computing

- YouTube
 - IBM System z

- Leading Blogs related to System z:
 - Evangelizing Mainframe (Destination z blog)
 - Mainframe Performance Topics
 - Common Sense
 - Enterprise Class Innovation: System z perspectives
 - Mainframe
 - MainframeZone
 - Smarter Computing Blog
 - Millennial Mainframer