
Running Java on Linux on System z

Joran Siu
Java for System z Development, IBM Corporation

joransiu@ca.ibm.com

Session 11823
August 9, 2012: 08:00 AM - 09:00 AM

2

2

IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without
notice at IBM’s sole discretion. Information regarding potential future products is intended to outline our
general product direction and it should not be relied on in making a purchasing decision. The information
mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver
any material, code or functionality. Information about potential future products may not be incorporated into
any contract. The development, release, and timing of any future features or functionality described for our
products remains at our sole discretion.

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other
companies. A current list of other IBM trademarks is available on the web at "Copyright and trademark information" at
http://www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY.
WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION
CONTAINED IN THIS PRESENTATION, IT IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT PRODUCT PLANS AND STRATEGY,
WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY
DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER
DOCUMENTATION. NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE
EFFECT OF, CREATING ANY WARRANTIES OR REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR
LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE
USE OF IBM PRODUCTS OR SOFTWARE.

© Copyright International Business Machines Corporation 2012. All rights reserved.

Trademarks, Copyrights, Disclaimers

3

Content

• IBM Java on Z
• History, overview and roadmap

• IBM J9 Virtual Machine and IBM Testarossa JIT
• IBM Monitoring and Diagnostic Tools for Java

• J9 R26 for Java 6.0.1 and Java 7
• z196 exploitation and performance

4

IBM and Java

• Java is critically important to IBM
• Fundamental infrastructure for IBM’s software portfolio

• WebSphere, Lotus, Tivoli, Rational, Information Management (IM)

• IBM is investing strategically for Java in Virtual Machines
• As of Java 5.0, single JVM support

• JME, JSE, JEE

• New technology base (J9/TR Compiler) on which to deliver improved
performance, reliability, serviceability

• IBM also invests in, and supports public innovation in Java
• OpenJDK, Eclipse, Apache (XML, Aries, Derby, Geronimo, Harmony, Tuscany, Hadoop …)

• Broad participation in relevant open standards (JCP, OSGi)

5

IBM’s Approach to Java Technology

Reference
Java

Technology
(openJDK,

others)

IBM

Java

IBM Java
Technology

Centre

��Listen to and act upon market Listen to and act upon market
requirementsrequirements

��World class service and World class service and
supportsupport

��Available on more platforms Available on more platforms
than any other Java than any other Java
implementationimplementation

��Highly optimizedHighly optimized
��Embedded in IBMEmbedded in IBM’’s s

middleware portfolio and middleware portfolio and
available to ISV partnersavailable to ISV partners

Quality Engineering
Performance

Security
Reliability

Serviceability

Production Requirements
IBM Software Group

IBM eServer
ISVs

IBM Clients

6

JVM Architectural Overview

Debugger Profilers Java Application Code

JVMTI JSE5
Classes

JSE6
Classes

Harmony
Classes

User
Natives

GC / JIT / Class Lib. Natives Java Native Interface (JNI)

Core VM (Interpreter, Verifier, Stack Walker)

Trace & Dump Engines

Port Library (Files, Sockets, Memory)

Thread Library

AIX Linux Windows z/OS

PPC-32
PPC-64

x86-32
x86-64

PPC-32
PPC-64

zArch-31
zArch-64

x86-32
x86-64

zArch-31
zArch-64

Operating
Systems

Java Runtime
Environment
e.g. J9 R26

Java API
e.g. Java6/Java7

User Code

= User Code

= Java Platform API

= VM-aware

= Core VM

Java 6.0.1:

• Fully compatible/compliant Java6 (JSE6)

• Only available with the WAS8 runtime

• Includes new J9 R26 JRE
• Transparent z196 and new optimization exploitation + New balanced GC policy

7

Key Differences between Oracle and IBM Java

• IBM and Oracle use the same reference implementation
of Java Class Libraries (e.g. OpenJDK)
• Key differences to be aware of:

1. Security: Standards do not impose strong separation of interest
2. ORB: OMG CORBA standard rules
3. XML: Xerces/Xalan used by both vendors as of Java5, although

different levels may be used.

• IBM uses the J9/TR runtime, Oracle uses Hotspot
• Different JIT/GC/VM tuning and controls
• Tooling is distinct (e.g. IBM’s Health Center)

8

Java on System z – 15 Years of Innovation

1999

2009

2001

2003

2005

2007

Java 1.4
GA 4Q2002
31-bit z/OS and 31-bit and 64-bit Linux on z

31-bit and 64-bit Java 5
J9/TR Technology
GA 4Q2005
z/OS and Linux on z

31-bit Java 1.1.8
GA 1999

31-bit and 64-bit Java 6
1. J9/Testarossa Technology
2. GA 4Q2007
3. z/OS and Linux on z

31-bit Java 1.3.1
z/OS and Linux on z
GA 3Q2000

z/OS 64-bit Java 1.4.2
J9/TR Technology (1 st product use)
GA 4Q2004

31-bit Java 1.1.1, then 1.1.4 and 1.1.6
First z/OS Java product – GA 1997

2011

1998

2000

2004

WAS6.0
JEE1.4

WAS6.1
JEE1.4

WAS7.0
JEE5

IBM continues to invest
aggressively in Java for System z,
demonstrating a rich history of
innovation and performance
improvements.

Timelines and deliveries are subject to change.

Testimonials: http://www-01.ibm.com/software/os/systemz/testimonials/
http://www.centerline.net/review/#/3332_B

31-bit and 64-bit
Java6.0.1/7.0

1. J9/TR Technology
2. GA 1Q2011/4Q2011
3. z/OS & zLinux (7.0 only)

WAS8.0
JEE6

WAS8.5
JEE6

2012

9

Java Road Map
Oracle Java Runtimes

Java 5.0
• New Language features:

• Autoboxing
• Enumerated types
• Generics
• Metadata

Java 6.0
• Performance Improvements
• Client WebServices Support

• Support for dynamic languages
• Improve ease of use for SWING
• New IO APIs (NIO2)
• Java persistence API
• JMX 2.x and WS connection for JMX

agents
• Language Changes

Java 7.0

IBM Java Runtimes
IBM Java 5.0 (J9R23)
• Improved performance

• Generational Garbage Collector
• Shared classes support
• New J9 Virtual Machine
• New Testarossa JIT technology

• First Failure Data Capture
• Full Speed Debug
• Hot Code Replace
• Common runtime technology

• ME, SE, EE

IBM Java 6.0 (J9R24)
• Improvements in

• Performance
• Serviceability tooling
• Class Sharing

• XML parser improvements
• z10™ Exploitation

• DFP exploitation for BigDecimal
• Large Pages
• New ISA features

5.0 6.0

2005 2009

S
E

 5
.0

18
 p

la
tfo

rm
s

S
E

 6
.0

20
 p

la
tfo

rm
s

7.x

EE 5

WAS
6.1 WAS

7.0

2006 2008

WAS
6.0

2007

S
E

 7
.x

>=
 2

0
pl

at
fo

rm
s

04

EE 6.x

WRT V2

sMash

Timelines and deliveries are subject to change.

2010 2011

SE
 6

.0
z/

O
S

(o
nl

y)

IBM Java 6.0.1/Java7.0 (J9R26)
• Improvements in

• Performance
• GC Technology

• z196™ Exploitation
• OOO Pipeline
• 70+ New Instructions

WAS
8.0

2012

WAS
8.5

10

New I/O
• Meets the increasingly I/O intensive demands of data mining and analytics

workloads
• Significant performance and footprint gains from async I/O

Concurrency Libraries
• Exploit larger multi-core systems, such as next generation Power and System z, by

providing better scalability, higher throughput and lower total cost of ownership from
server consolidations

Dynamic language support
• Leverage the advantages of a single runtime for dynamic language applications

written in PHP, Groovy, jRuby and jython

Language improvements
• Improved efficiency through simplified day-to-day programming tasks
• Protect developer commitment to, and customer/ISV investment in, the Java

ecosystem.

Java 7.0 – What to look for

11

IBM Java Runtime Environment

• IBM’s implementation of Java 5, Java 6 and Java 7 are built with IBM
J9 Virtual Machine and IBM Testarossa JIT Compiler technology

• Independent clean-room JVM runtime & JIT compiler

• Combines best-of breed from embedded, development and server
environments… from a cell-phone to a mainframe!

• Lightweight flexible/scalable technology

• World class garbage collection – gencon, balanced GC policies

• Startup & Footprint - Shared classes, Ahead-of-time (AOT) compilation

• 64-bit performance - Compressed references & Large Pages

• Deep System z exploitation – z196/z10/z9/z990 exploitation

• Millions of instances of J9/TR compiler

12

IBM Testarossa JIT Compiler – Introduction

• IBM Testarossa JIT is IBM’s Production
JIT on all Platforms since SDK5

• Developed at the IBM Toronto Lab
• The Toronto Lab has 30+ years of

expertise in compilation and optimization
technologies

• Close relationships with:
• Research: productizing innovative ideas and experimental technologies.

(Tokyo/Watson Research Lab)

• Hardware: best possible performance with the underlying system and
processor.

(Poughkeepsie, Austin, xSeries)

• IBM Middleware: work with DB2® , WAS to provide strong performance
(SVL, Toronto, Raleigh)

13

IBM Testarossa JIT –
Dynamic, adaptive, optimizing compiler

• Dynamic
• Triggered at runtime based on projected profitability of compilation
• Compiled methods can be freely intermixed with interpreted callers/callees
• May have multiple versions of methods built with different levels of

optimization

• Adaptive
• Sensitive to need for program to have CPU (e.g. throttled during startup, runs

on asynchronous thread)
• Able to profile program to retrieve common control paths or data values
• Profile information used in subsequent re-optimizing compilation step

• Optimizing
• Comprehensive collection of conventional optimizations

• control flow simplification, data flow analysis, etc

• Speculative and Java-specific optimizations
• de-virtualization, partial inlining, lock coarsening, etc

• Deep exploitation of System z micro-architecture

14

IBM Testarossa JIT – Compilation Strategy

Goals
• Focus compilation CPU time where it matters

• Stager investment over time to amortize cost

• Methods start as interpreted
• Interpreter does first level profiling

• After N invocations methods get compiled at ‘warm’ level
• Sampling thread used to identify hot methods
• Methods may get recompiled at ‘hot’ or ‘scorching’ levels
• Transition to ‘scorching’ goes through a temporary

profiling step
• Global optimizations are directed using profiling data
• Hot paths through methods are identified

• register allocation, branch straightening, etc

• Values/types are profiled, hot paths are
specialized/versioned

• Virtual calls are profiled, hot targets are in-lined

cold

hot

scorching

profiling

Interpreter/AOT

warm

15

IBM Testarossa JIT – System z Support

• Idioms are recognized in Java source/bytecodes
• Bytecodes converted to CISC instructions**

• CISC Instructions:
• TROT, TRTO, TRTT, TROO (TR = Translate, O = One Byte, T = Two bytes)
• SRST (search string)
• MVC (move character)
• XC (exclusive-or)
• CLC (compare-logical)

• Example:

while (i < end) {

value = table[arrB[i+offsetB]];

if (value == termChar) break;

arrA[i+offsetA] = value;

++i;

}

LB: DS 0H

TRxx // xx depends on arrA/B types

BRC LB // re-drive long xlate

** M. Kawahito, et al., A new idiom recognition framework for exploiting hardware-assist instructions,
ASPLOS-XII: Proceedings of the 12th international conference on Architectural support for programming languages and operating systems, 2006

16

IBM J9 Garbage Collector

• IBM J9 VM garbage collector family

• Why have many policies? Why not just “the best”?
– Cannot always dynamically determine what tradeoffs the user/application are

willing to make

– Pause time vs. Throughput
• Trade off frequency and length of pauses vs. throughput

– Footprint vs. Frequency
• Trade off smaller footprint vs. frequency of GC pauses/events

Policy Recommended usage Notes

optThroughput optimized for throughput default in Java5 and Java6

optAveragePause optimized to reduce pause times

gencon optimized for transactional workloads default in Java601/Java7

subPools optimized for large MP systems deprecated in Java601/Java7

balanced optimized for large heaps added in Java601/Java7

17

Time

Thread 1

Thread 2

Thread 3

Thread n

GC

Application

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

The default policy in Java5 and Java6.

Used for applications where raw throughput is more important than short GC pauses.
The application is stopped each time that garbage is collected.

IBM J9 Garbage Collector: -Xgcpolicy:optthruput

18

IBM J9 Garbage Collector: -Xgcpolicy:optavgpause

Time

GC

Application

Concurrent Tracing

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

Thread 1

Thread 2

Thread 3

Thread n

Trades high throughput for shorter GC pauses by performing some of the garbage
collection concurrently. The application is paused for shorter periods.

19

• Best of both worlds
• Throughput + Small Pause Times

• Shown most value with customers

• Two types of collection:
• Generational nursery (local) collection

• Partially concurrent nursery & tenured (global) collection

• Why a generational + concurrent solution?
• For most workloads objects die young

• Generational allows a better return on investment (less effort, better reward)
• Performance can be close or even better than standard configuration

• Reduce large pause times
• Partially concurrent with application thread (application thread is ‘taxed’)

• Mitigates cost of object movement, and cache misses

IBM J9 Garbage Collector: -Xgcpolicy:gencon

20

IBM J9 Garbage Collector: -Xgcpolicy:gencon

Time

Global GC

Application

Concurrent Tracing

Scavenge GC

Picture is only illustrative and doesn’t reflect any particular real-life application. The purpose is
to show theoretical differences in pause times between GC policies.

Thread 1

Thread 2

Thread 3

Thread n

Default policy in Java6.0.1/Java7

Handles short-lived objects differently than objects that are long-lived. Applications
that have many short-lived objects can see shorter pause times with this policy
while still producing good throughput.

21

IBM J9 Garbage Collector: A closer look into gencon

• Heap is split into two areas:
– Objects created in the nursery (a small but frequently collected area)
– Objects that survive a number of collections are promoted to tenured area (less

frequently collected)

• Nursery is further split into two spaces: ‘allocate’ and ‘survivor’
• A collection in the nursery (scavenge) copies objects from the ‘allocate’

space to the ‘survivor’ space
– Reduces fragmentation, improves data locality, speeds up future allocations

• If an object survive X number of scavenges it gets promoted to the ‘tenure’
space

The division between allocate and survivor space is dynamic.

It will be adjusted depending on the survival rate.

Nursery

Allocate
Space

Survivor
Space Tenure Space

22

IBM J9 2.6 Technology Enhancements:
Garbage Collection: Balanced Policy

Improved responsiveness in application behavior
• Reduced maximum pause times to achieve more consistent behavior

• Incremental result-based heap collection targets best ROI areas of the heap

• Native memory aware approach reduces non-object heap consumption

Next generation technology expands platform exploit ation possibilities
• Virtualization – Group heap data by frequency of access, direct OS paging decisions
• Dynamic reorganization of data structures to improve memory hierarchy utilization

(performance)

Recommended deployment scenarios
• Large (>4GB) heaps
• Frequent global garbage collections
• Excessive time spent in global compaction
• Relatively frequent allocation of large (>1MB) arrays

Input welcome: Help set directions by telling us yo ur needs

23

IBM J9 Garbage Collector: Tuning

• GC Tuning documentation
• http://www.ibm.com/developerworks/views/java/libraryview.jsp?search_by=java+technology+ibm+style:

• http://www-01.ibm.com/support/docview.wss?uid=swg27013824&aid=1
• http://proceedings.share.org/client_files/SHARE_in_San_Jose/S1448KI161816.pdf
• http://www.redbooks.ibm.com/redpapers/pdfs/redp3950.pdf

• GC and Memory Visualizer – Views on verbose GC

• Typical configuration
• Pick a policy based on desired

application behaviour
• Tune heap sizes (use tooling)
• Helper threads (-Xgcthreads)
• Avoid finalizers
• Don’t use System.gc()
• Lots of other tuning knobs,

suggest try hard to ignore, to
avoid over-tuning

• Memory leaks are possible even
with a garbage collector

24

What is IBM Support Assistant?

• IBM Support Assistant
• A free application that simplifies

and automates software support
• Helps customers analyze and

resolve questions and problems
with IBM software products.

• Includes rich features and
serviceability tools for quick
resolution to problems

• Meant for diagnostics and
problem determination
• Not a monitoring tool

25

IBM Monitoring and Diagnostic Tools for Java -
Health Center

What problem am I solving
•What is my JVM doing? Is everything ok?
•Why is my application running slowly?
•Why is it not scaling?
•Am I using the right options?

Overview
•Lightweight live monitoring tool with very low overhead
•Understand how your application is behaving, diagnose potential problems with recommendations.
•Visualize garbage collection, method profiling, class loading, lock analysis, file I/O and native
memory usage
•Suitable for all Java applications running on IBM’s JVM

26

IBM Monitoring and Diagnostic Tools for Java -
GCMV

What problem am I solving
•How is the Garbage Collector (GC) behaving? Can I do better?
•How much time is GC taking?
•How much free memory does my JVM have?

Overview
•Analyse Java verbose GC logs, providing insight into application behaviour
•Visualize a wide range of garbage collection data and Java heap statistics over time
•Provides the ability to detect memory leaks and optimized garbage collection
•Recommendations use heuristics to guide you towards GC performance tuning

27

IBM Monitoring and Diagnostic Tools for Java -
Memory Analyzer

What problem am I solving
•Why did I run out of Java memory?
•What’s in my Java heap? How can I explore it and get new insights?

Overview
•Tool for analyzing heap dumps and identifying memory leaks from JVMs
•Works with IBM system dumps, heapdumps and Sun HPROF binary dumps
•Provides memory leak detection, footprint analysis and insight into wasted space
•Objects by Class, Dominator Tree Analysis, Path to GC Roots, Dominator Tree by Class Loader
•Provides SQL like object query language (OQL)

28

Java6R26/Java7 on zLinux Executive Summary

J9 R2.6 Virtual Machine
• Significant enhancements to JIT optimization technology
• z196 exploitation of instructions and new pipeline
• New Balanced GC policy to reduce max pause times
• Default GC policy changed to gencon

z196 and Java6R26/Java7: Engineered Together
• Up-to 2.7x improvement to Java throughput
• Reduced footprint
• Improved responsiveness in application behavior

Performance
• 2.1x improvement to multi-threaded workload
• 1.93x improvement to CPU-intensive

workload

29

IBM J9 2.6 Technology Enhancements:
System zEnterprise 196 and Java6.0.1/Java7

70+ new instructions used by Java
• Register high-word facility

• Facilitates use of upper 32-bits of registers

• Interlock facility update
• Better Java concurrency

• Non-destructive operands
• Reduce path-length

• Conditional-load/store
• Remove expensive branches

• Instruction scheduler for Out-of-Order pipeline

Hardware for Java
• New Out-Of-Order pipeline design
• New larger cache structure
• Higher clock speed (~5.2GHz)

30

IBM J9 2.6 Technology Enhancements:
Optimization technology

Reducing pressure on the instruction cache
• Enables better exploitation of new OOO compute bandwidth

• Partial and general inlining improvements
• Implicit NULL checks and more aggressive trap exploitation
• Reduced path length for object allocation
• Out-of-line instruction selection
• Loop alignment

Reducing pressure on the data cache
• Mitigates effects of cache latencies on new leveraging core speed

• Java object header reduction
• Better escape analysis
• Pre-fetch exploitation
• Better exploitation of extended immediate forms
• Improved interface-dispatch

Scalability and concurrency
• Improved 3-tier lock strategy
• java.util.concurrent optimizations

General optimizer and codegen improvements

31

Linux on z Java7:
64 Bit Multi-threaded 12-Way Benchmark

(Controlled measurement environment, results may vary)

2.7x Aggregate
Software
improvement

• 42% Java 7 (LP,CR) vs
Java6 SR8 (LP, CR)

• 42% Java 6 SR8
(LP,CR) vs Java6 GM

• 35% Java 6 GM versus
Java 5 SR5

CR = Compressed References

LP = Large Pages

Linux on z-multithreaded 64 Bit Java workload
12-Way System z196

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

1 2 4 6 8 10 12 14 16 18 20 22 24

Threads

T
hr

ou
gh

pu
t

z196 SDK 7
J9 2.6 LP CR

z196 SDK 6 SR8
J9 2.4 LP CR

z196 Java 6 GM
J9 2.4

z196 SDK 5 SR5
J9 2.3

J9R26

J9R24

J9R24

J9R23

32

z/OS Java SDK 7: 16 -Way Performance
Aggregate HW and SDK Improvement z9 Java 5 SR5 to z 196 Java 6.0.1 and Java 7

~7x Improvement from
z9, Java5 SR5 to z196
Java 6.0.1 and Java 7

Note: Java 7 and Java
6.0.1 have almost
identical performance
for this workload

CR = Compressed References

LP = Large Pages

(Controlled measurement environment, results may vary)

z/OS Multi-Threaded 64 Bit Java Workload

0

10

20

30

40

50

60

70

80

90

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Threads

T
hr

ou
gh

pu
t

z196 SDK 6.0.1
J9 2.6 LP CR

z10 SDK 6 SR4
J9 2.4 LP CR

z10 SDK 6 GM
J9 2.4

z9 Java 5 SR5
J9 2.3

J9R26

J9R24

J9R23

33

W A S on z L inu x Ve rs io n 8 on z 1 9 6 Ha rdwa re
D a yT ra d e r 2 .0

100%

137%

160%

0%

25%

50%

75%

100%

125%

150%

175%

200%

V ers ion 7 on z 10 V ers ion 7 on z 196 Veris on 8 on z 196

R
e

la
ti

v
e

 T
h

ro
u

g
h

p
u

t

R em ote l Data Bas e

Linux on z - WAS8.0 and Java6 R26

(Controlled measurement environment, results may vary)

� Upgrading from z10 to z196 improved throughput by 37% using our DayTrader 2.0 EJB benchmark.

� Additionally, upgrading to WAS V8.0 improved performance by another 17%. This increase is a result of
improvements to the following areas:

� JVM and JIT optimizations

� OpenJPA code paths

� The combine hardware and software improvement is 60%.

J9R24J9R24 J9R26

34

W A S o n z L in u x V e rs io n 8 o n z 1 9 6 H a rd w a re
W e b S e rv ic e s

1 0 0 %

1 1 5 %

1 3 9 %

10 0 %

1 3 5 %

1 6 9 %

0 %

2 0 %

4 0 %

6 0 %

8 0 %

1 0 0 %

1 2 0 %

1 4 0 %

1 6 0 %

1 8 0 %

V e rs io n 7 o n z 1 0 V e rs io n 7 o n z 1 9 6 V e ris o n 8 o n z 1 9 6

R
e

la
ti

ve
 T

h
ro

u
g

h
p

u
t

3 k / 3 k P a y lo a d

1 0 k / 1 0 k P a y lo a d

Linux on z - WAS8.0 and Java6 R26

(Controlled measurement environment, results may vary)

� Upgrading from z10 to z196 improved throughput by as much as 35% using our SOABench webservices
benchmark (15% for the 3k/3k payload and 35% for the 10k/10k payload).

� Additionally, upgrading to WAS V8.0 improved performance by another 21% for the 3k/3k payload and 25%
for the 10k/10k payload. This increase is a result of improvements to the following areas:

� JVM and JIT optimizations

� JAXB fastpath optimizations

� The combine hardware and software improvement is 39% for the 3k/3k case and 69% in the 10k/10k case.

J9R24J9R24 J9R26

35

1.77x Aggregate
software/
hardware
improvement

• 19% Java6R26 vs
Java6R24
improvement on z10

• 26% Java6R26 vs
Java6R24
improvement on z196

• 51% improvement z10
to z196

Linux on z – Java Persistency API and Java6 R26

• JPAB benchmarks running OpenJPA and HSQLDB
(http://www.jpab.org/OpenJPA/HSQLDB/embedded.html)

(Controlled measurement environment, results may vary)

36

Sneak Peek

• Virtualization and multi-tenancy
• Continued Deep Hardware/Software Synergy

• zNext
• Continued focus on data/inter-language

communication
• Continued focus on improved consumability +

performance

Data
Multi-
tenancy

Virtualization
Client Client

ClientClient

Tenant

Application

TenantTenant

Tenant

Timelines and deliveries are subject to change.

37

Joran Siu
joransiu@ca.ibm.com

38

© Copyright IBM Corporation 2012. All rights reserv ed. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any kind,
express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor shall have
the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use of IBM
software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or capabilities
referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product or feature
availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the Telelogic logo, and other IBM products and services are trademarks of the International Business Machines
Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

39

Summary of Links

• Documentation
• http://www.ibm.com/developerworks/java/jdk/docs.html

• zOS SDK
• http://www.ibm.com/servers/eserver/zseries/software/java

• System z Linux SDK
• http://www.ibm.com/developerworks/java/jdk/linux/download.html

• GC Tuning documentation
• http://www.ibm.com/developerworks/views/java/libraryview.jsp?search

_by=java+technology+ibm+style
• IBM Support Assistant

• http://www.ibm.com/software/support/isa/

