

Reading Object Code

A Visible/Z Lesson

The Idea:

 When programming in a high-level language, we rarely have to think about the

specific code that is generated for each instruction by a compiler. But as an assembly

programmer, it is critical that we be able to read the machine code that is produced for

each instruction. Otherwise, there will be programs that are extremely difficult to

understand and debug. VisibleZ was built to help you visualize each instruction as it

appears in object code and watch it execute.

 When the assembler processes an instruction, it converts the instruction from its

mnemonic form to a standard machine-language (binary) format called an “instruction

format”. In the process of conversion, the assembler must determine the type of

instruction, convert symbolic labels and explicit notation to a base/displacement format,

determine lengths of certain operands, and parse any literals and constants. Consider

the following “Move Character” instruction,

 MVC COSTOUT,COSTIN

The assembler must determine the operation code (x’D2’) for MVC, determine the
length of COSTOUT, and compute base/displacement addresses for both operands.
After assembly, the result which is called “object code”, might look something like the
following in hexadecimal,

 D207C008C020

The assembler generated 6 bytes (12 hex digits) of object code in a Storage to Storage
(SS) type one format. In order to understand the object code which an assembler will

generate, we need some familiarity with 5 basic instruction formats (there are other
instruction types covering privileged, non-privileged, and semiprivileged instructions
which are beyond the scope of this discussion).

 First we consider the Storage to Storage type one (SS1) format listed below. This is
the instruction format for the MVC instruction above.

 Byte 1 - machine operation code

 Byte 2 - length -1 in bytes associated with operand 1

 Byte 3 and 4 - the base/displacement address associated with operand 1

 Byte 5 and 6 - the base/displacement address associated with operand 2

 Each box represents one byte or 8 bits and each letter represents a single
hexadecimal digit or 4 bits. The subscripts indicate the number of the operand used in
determining the contents of the byte. For example, the instruction format indicates that
operand 1 is used to compute L1L1 , the length associated with the instruction. If we
reconsider the assembled form of the MVC instruction above we see that the op-code is
x‘D2’, and the length, derived from COSTOUT, is listed as x’07’. Since the assembler
always decrements the length by 1 when converting to machine code, we determine
that COSTOUT is 8 bytes long - 8 bytes will be moved by this instruction. Additionally
we see that the base register for COSTOUT is x’C’ (register 12) and the displacement is
x’008’. The base/displacement address for COSTIN is x’C020’.

 Why was register 12 chosen as the base register? How were the displacements
computed? These parts of the object code could not be determined by the information
given in the example above. In order to determine base/displacement addresses we
must examine the “USING” and “DROP” directives that are coded in the program.
These directives are discussed in the topic called BASE DISPLACEMENT
ADDRESSING on the website.

 Being able to read object code is a necessary skill for an assembler programmer as
knowledge of an instruction’s format gives several important clues about semantics of
the instruction. For example, knowing that MVC is a storage to storage type one
instruction, informs us that both operands are fields in memory and that the first
operand will determine the number of bytes that will be moved. Since the length (L1L1)
occupies one byte or 8 bits, the maximum length we can create is 28 - 1 = 255 . Recall
that the assembler decrements the length when assembling, so the instruction is
capable of moving a maximum of 256 bytes. The 256 byte limitation is shared by all
storage to storage type one instructions.

 Storage to Storage type two (SS2) is a variation on SS1 .

 Byte 1 - machine operation code

 Byte 2 - L1 - the length associated with operand 1 (4 bits)

 L2 - the length associated with operand 2 (4 bits)

 Byte 3 and 4 - the base/displacement address associated with operand 1

 Byte 5 and 6 - the base/displacement address associated with operand 2

 The only difference between SS1 and SS2 is the length byte. Notice that both
operands contribute a length in the second byte. Since each length is 4 bits, the
maximum value that could be represented is 24 - 1 = 15. Again, since the assembler
decrements the length by 1, the instruction can process operands that are large as 16
bytes. There are many arithmetic instructions that require the machine to use the length
of both operands. Consider the example below,

 Object Code Source Code

 AFIELD DS PL4

 BFIELD DS PL2

 ...

 FA31C300C304 AP AFIELD,BFIELD

 AP (Add Packed) is an instruction whose format is SS2. Looking at the object code
that was generated, we see that x’FA’ is the op-code and that the length of the first
operand is x’3’ which was computed by subtracting 1 from the length of AFIELD.
Similarly, the length of BFIELD was used to generate the second length of x’1’. In
executing this instruction, the machine makes use of the size of both fields. In this
case, a 2 byte field is added to a 4 byte field.

 A second type of instruction format is Register to Register (RR).

 Byte 1 - machine operation code

 Byte 2 - R1 - the register which is operand 1

 R2 - the register which is operand 2

 Instructions of this type have two operands, both of which are registers. An example
of an instruction of this type is LR (Load Register). The effect of the instruction is to
copy the contents of the register specified by operand 2 into the register specified by
operand 1. The following LR (Load Register) instruction,

 LR R3,R12

would cause register 12 to be copied into register 3. The assembler would produce the
object code listed below as a result of the LR instruction.

 183C

Examining the object code we see that the op-code is x’18’ , operand 1 is register 3,
and operand 2 is register 12. You should note that 4 bits are enough to represent any
of the registers which are numbered 0 through 15.

 A third type of instruction format is Register to Indexed Storage (RX).

 Byte 1 - machine operation code

 Byte 2 - R1 - the register which is operand 1

 X2 - the index register associated with operand 2

 Byte 3 and 4 - the base/displacement address associated with operand 2

For instructions of this type, the first operand is a register and the second operand is a
storage location. The storage location is designated by a base/displacement address
as well as an index register. The subject of index registers is discussed in the topic
BASE DISPLACEMENT ADDRESSING. L (Load) is an example of an instruction of
type RX. Consider the example below.

 L R5,TABLE(R7)

The Load instruction copies a fullword from memory into a register. The above
instruction might assemble as follows,

 5857C008

The op-code is x’58’, operand 1 is specified as x’5’, the index register is denoted x’7’
and Operand 2 generates the base/displacement address x’C008’. Again, from the
information given in the example above, there is no way to determine how the
base/displacement address was computed.

 Related to the RX type is a similar instruction format called Register to Storage (RS).
In this type the index register is replaced by a register reference or a 4-bit mask
(pattern).

 One instruction which has a Register to Storage format is STM (Store Multiple). An
example of how STM can be coded is as follows,

 STM R14,R12,12(R13)

The previous instruction would generate the following object code,

 90ECD00C

where x’90’ is the op-code, x’E’ = 14 is operand 1, x’C’ = 12, is treated as R3, and
x’D00C’ is generated from an explicit base/displacement address (12(R13)).

 The fifth and final instruction format that we will consider is called Storage Immediate
(SI). In this format, the second operand, called the immediate constant, resides in the
second byte of the instruction. This constant is usually specified as a self-defining term.

The format for SI instructions is listed below.

 Byte 1 - machine operation code

 Byte 2 - I2I2 - the immediate constant denoted in operand 2

 Byte 3 and 4 - the base/displacement address associated with operand 1

 An example of a storage immediate instruction is Compare Logical Immediate (CLI).
This instruction will compare one byte in storage to the immediate byte which resides in
the instruction itself. We see from the instruction format that operand 2 is the immediate
constant. For example, consider the instruction below.

 CLI CUSTTYPE,C’A’

When assembled, the object code might look like the following,

 95C1C100

The op-code is x’95’, the self-defining term C’A’ is converted to the EBCDIC
representation x’C1’, and the variable CUSTTYPE would generate the
base/displacement address x’C100’. Again, there is not enough information provided to
determine the exact base/displacement address for CUSTTYPE. The x’C100’ address
is merely an example of what might be generated.

Trying It Out in VisibleZ:

1) Load the program readingObjectCode.obj from the \Codes directory and single step through

each instruction. Identify the type and parts of each instruction below. The code doesn’t “do”

anything but is representative of the different instruction formats you will encounter.

90 ec d0 0c Instruction Type = ____

 90 = ____

 e = ____

 c = ____

 d = ____

 00c = ____

0d c0 Instruction Type = ____

 0d = ____

 c = ____

 0 = ____

41 20 c0 0e Instruction Type = ____

 41 = ____

 2 = ____

 0 = ____

 c = ____

 00e = ____

d2 03 c0 16 c0 1a Instruction Type = ____

 d2 = ____

 03 = ____

 c = ____

 016 = ____

 c = ____

 01a = ____

92 c1 c0 26 Instruction Type = ____

 92 = ____

 c1 = ____

 c = ____

 026 = ____

fa 42 c0 1e c0 23 Instruction Type = ____

 fa = ____

 4 = ____

 2 = ____

 c = ____

 01e = ____

 c = ____

 023 = ____

07 fc Instruction Type = ____

 07 = ____

 f = ____

 c = ____

