
Base Displacement Addressing

A Visible/Z Lesson

The Idea:

 Internal memory on an IBM mainframe is organized as a sequential collection of
bytes. The bytes are numbered starting with 0 as pictured below,

The IBM System/z architecture supports several addressing modes. The mode we
focus on for beginning assembly language allows each address to be expressed as a
collection of 31 consecutive bits. The smallest address would be represented by 31
consecutive 0’s which denotes address 0. The largest address would be represented
by 31 consecutive 1’s whose value is 231 - 1 = 2,147,483,647. If we work with
addresses in this form (let’s call these direct addresses), each address occupies a
fullword, or four bytes.

 Why do we need an address in the first place? Consider the following instruction,

 MVC COSTOUT,COSTIN

In order for the machine to move the contents of COSTIN to COSTOUT, it must know
the locations of these two fields. The computer identifies a field by the address of the
first byte in the field. When an instruction is assembled, the assembler converts any
symbols like “COSTOUT” to their corresponding addresses. The assembler does not,
however, generate direct addresses, but produces an address in base / displacement
format. Addresses in this form consist of 4 hexadecimal digits or two bytes, BDDD,
where B represents a base register and DDD represents a displacement. The smallest
displacement is x’000’ = 0 and the largest displacement is x’FFF’ = 4095. Ultimately,
the base / displacement address must be converted to a direct address. So how does
this occur? The diagram below indicates how this process occurs starting with the
base/displacement address x’8003’.

Notice that the effective address, which is the direct address equivalent to the
base/displacement address, is computed by adding the contents of the base register
x’1002’ and the specified displacement of x’003’. This produces an effective address of
x’1005’.

 Effective address = Contents(Base Register) + Displacement

 There are two advantages of using base/displacement addresses instead of direct
addresses in the object code that the assembler produces:

 1) Every address is shorter. Instead of being 4 bytes long, the addresses are only 2
bytes, so all our programs are shorter.

 2) The base/displacement addresses are correct no matter where the program is
loaded in memory. Each symbol is represented by a displacement from a fixed point
inside the program. If the program is relocated in memory, the displacement to a given
variable does not change. The base register remains fixed as well. The main thing that
changes when we relocate a program is the contents of the base register. This can be
handled when the program runs. As a result, the base/displacement address is correct.
On the other hand, if we had used direct addresses, every symbol would have a new
address if the program were relocated.

Trying It Out:

1) Load the program basedisplacement.obj from the \Codes directory and single step through
each instruction. Here is the original object code program with the object code listed on the
left and the equivalent assembler instruction on the right:

0d c0 BASR R12,R0

 USING *,R12

d2 03 c0 08 c0 0c MVC X,Y

07 f0 BCR 15,R12

00 00 00 00 X DS F

ff ff ff ff Y DS F

 The BASR loads the address of the following instruction in register 12. What is the address that

it loads. This address is the base address for the rest of the program. Our intent to use register

12 as a base register is described in the USING instruction with * denoting the base address.

(Remember that * refers to the current value of the location counter in the assembler.)

 The MVC will move four bytes (x’03’ + 1). The target address is x’c008’ – an eight byte

displacement off the contents of register 12. The source address is x’c00c’ – a twelve byte

displacement off the contents of register 12. Currently the target contains x’0000’ and the

source contains x’ffffffff’.

 The BCR branches on condition 15 = x’1111’. In this case we branch under all conditions (equal,

low, high, overflow) to the address in register 12. This returns execution to BASR.

2) Modify the program so that it swaps the contents of X and Y. This will require another
fullword and some more MVCs. Write the object code that implements the swap. Step
through it in VisibleZ. Check each MVC to make sure the target address is red and the source
address is green.

3) Load and run basedisplacement1.obj. Notice that the program executes the same MVC
instruction (d2 03 c0 10 c0 14) two times. How is it possible that the same instruction moves
different fields during these executions?

