
zFS Diagnosis I:
Performance Monitoring and Tuning Guidelines

SHARE: Session 11788

Scott Marcotte – zFS Development

zFS Diagnosis I: Performance Monitoring
and Tuning Guidelines

Scott Marcotte (smarcott@us.ibm.com)

IBM

© 2009 IBM Corporation

IBM

August 8, 2012 3:00 PM

Session Number 11788

Topics

Title Slides

Fundamentals 3-5

Storage 6-8

User File Cache 9-12

Metadata/Backing Cache 13-16

DASD IO 17-19

Lock Contention 20-21

2

Lock Contention 20-21

Additional Items 22

Sysplex Sharing 23-24

Object Caching 25-27

Sysplex Statistics 28-31

Going Forward 32

z/OS 11/12 Summary 33

Fundamentals I: Overview (Most of this presentation is for z/OS 13):

�zFS cache defaults are small

–Larger users of zFS should perform tuning for best

performance

�zFS has F ZFS,QUERY commands which can be used to

gauge performance

–Also has F ZFS,RESET to reset statistics

–Individual stats only 4 byte words – can wrap quickly

3

–Individual stats only 4 byte words – can wrap quickly

• Useful mainly for analysis of peak usage, not long-

term usage

�Cache sizes can be dynamically altered via zfsadm config

�F ZFS,QUERY,STORAGE – Shows how much memory zFS

is using - IMPORTANT

�Ensure that zFS is not paging

Fundamentals II: Tuning zFS For All Environments

� Tune zFS by specifying the following zFS startup parameters:
–User_cache_size – Amount of memory used to cache the
contents of user files.

–Meta_cache_size/metaback_cache_size – Amount of memory
used to cache disk blocks that contain metadata.

• Metadata is anything on disk that is not user file data such as
directories, access control lists (ACLs), structures that track free file
system space etcB

–Vnode_cache_size – Number of objects that are cached in

4

–Vnode_cache_size – Number of objects that are cached in
memory.

• A file, directory or symbolic link, currently or recently of interest to
applications is represented in memory by a vnode (also called
evnode) and that will anchor additional structures required to
process requests for the object.

• zFS caches the most recently accessed objects by applications.
• This parameter is more important to the sysplex environment.

� Can also dynamically alter cache sizes via zfsadm config

Fundamentals III: F ZFS,QUERY,KNPFS – zFS summary

PFS Calls on Owner

Operation Count XCF req. Avg Time

--------- ---------- ---------- ----------

zfs_opens 2414314 0 0.004

zfs_closes 2413205 0 0.003

zfs_reads 1809051 0 0.083

zfs_writes 732783 0 0.017

zfs_ioctls 1453868 0 0.001

zfs_getattrs 3041548 0 0.002

zfs_setattrs 10613 0 0.092

zfs_accesses 38730578 0 0.002

BBB

zfs_readlinks 34178 0 0.086

zfs_fsyncs 250 0 2.560

zfs_truncs 3931 0 0.012

zfs_lockctls 0 0 0.000

zfs_audits 4970 0 0.046

zfs_inactives 2032174 0 0.001

zfs_recoveries 0 0 0.000

� This report shows all of the calls made to zFS
since last statistics reset or since start of zFS

�Boldface are write operations

5

zfs_accesses 38730578 0 0.002

zfs_lookups 5926262 0 0.041

zfs_creates 9763 0 0.426

zfs_removes 10604 0 1.532

zfs_links 0 0 0.000

zfs_renames 3710 0 0.489

zfs_mkdirs 333 0 1.247

zfs_rmdirs 529 0 0.275

zfs_readdirs 784790 0 0.550

zfs_symlinks 380 0 0.380

zfs_recoveries 0 0 0.000

zfs_vgets 3854 0 0.009

zfs_pfsctls 68 0 0.088

zfs_statfss 42700 0 0.008

zfs_mounts 120 0 91.581

zfs_unmounts 2 0 215.575

zfs_vinacts 0 0 0.000

--------- ---------- ---------- ----------

TOTALS 59464578 0 0.017

� The *TOTALS* line shows total calls to zFS and the average zFS response time in milliseconds

� Knowing the last reset time, or zFS startup time (from system log), can determine zFS call rates

� Read operation response time desired to be < 1 msec, hopefully significantly less.

Storage I: zFS System Storage Layout (z/OS 13)

Storage common to all
address spaces

User cache data spaces

Log files write-
behind cache

log_cache_size (16M)

1.2 - 1.6 GB

zFS Primary Address Space

6

user_cache_size (256M)

Metadata backing
cache dataspace

metaback_cache_size (0M)
Metadata cache buffer

meta_cache_size (64M)

Vnode (objects) cache

vnode_cache_size (32768)

zFS heap structures and other
storage

Storage II: Monitoring Primary Storage (F ZFS,QUERY,STORAGE)

� Sample Output (example here shows that zFS storage dangerously high):

IOEZ00438I Starting Query Command STORAGE. 778

zFS Primary Address Space Storage Usage

Total Storage Available to zFS: 1738539008 (1697792K) (1658M)Total Storage Available to zFS: 1738539008 (1697792K) (1658M)Total Storage Available to zFS: 1738539008 (1697792K) (1658M)Total Storage Available to zFS: 1738539008 (1697792K) (1658M)
Non-critical Storage Limit: 1717567488 (1677312K) (1638M)
USS/External Storage Access Limit: 1675624448 (1636352K) (1598M)USS/External Storage Access Limit: 1675624448 (1636352K) (1598M)USS/External Storage Access Limit: 1675624448 (1636352K) (1598M)USS/External Storage Access Limit: 1675624448 (1636352K) (1598M)
Total Bytes Allocated (Stack+Heap+OS): 1669189632 (1630068K) (1591M)Total Bytes Allocated (Stack+Heap+OS): 1669189632 (1630068K) (1591M)Total Bytes Allocated (Stack+Heap+OS): 1669189632 (1630068K) (1591M)Total Bytes Allocated (Stack+Heap+OS): 1669189632 (1630068K) (1591M)
Heap Bytes Allocated: 1587033610 (1549837K) (1513M)

7

Heap Bytes Allocated: 1587033610 (1549837K) (1513M)
Heap Pieces Allocated: 11445446
Heap Allocation Requests: 4
Heap Free Requests: 3

� Total storage available is amount zFS can use, after factoring common storage

�USS/External Storage Access Limit – Do not define caches so big that this is exceeded:

�If exceeded, application requests to access un-cached objects fail with ENOMEM

�Total Bytes Allocated shows how much storage zFS is using:

�Includes zFS heap storage and zFS runtime stacks for application calls

�And any operating system storage allocated on behalf of zFS

�Try not to define caches so large that: Bytes Allocated + X MB > USS/External limit

Storage III: Monitoring zFS Storage continuedB

Heap Usage By Component

Storage Usage By Component

Bytes No. of No. of

Allocated Pieces Allocs Frees Component

---------- ------ ------ ------ ---------

B.

49176 84 0 0 Aggregate Management

� F ZFS,QUERY,STORAGE also
shows usage by zFS sub-
component

Aggregate/Fileset management
are mounted file system
structures

8

49176 84 0 0 Aggregate Management

108092 16 0 0 Filesystem Management

194574144 800172 0 0 Vnode Management

196775488 401617 0 0 Anode Management

351680 3082 0 0 Log File Management

150692144 287625 0 0 Metadata Cache

B..

493877648 7964319 0 0 Cache Services

138924280 655378 0 0 User File CacheCacheCacheCache

…..

Vnode/Anode Management is storage
related to vnode cache.

Metadata cache storage is for
metadata and backing cache

User File Cache is storage related to
user file cache.

Cache Services is storage related to
all the caches

User File Cache I: Background

� Cache is comprised of one or more data spaces - simply an array of 4K pages.

� Smallest addressable unit is 4K page - nicely matches VSAM dataset control

interval size

� Files need not have all of their pages in the cache

� Files further broken down into 64K segments,

– A file will have zero or more segments cached at one time.

– Each segment itself is sparse – not all the pages in a segment need to be in

memory

9

memory

– The structure that represents a segment is in zFS primary storage

• Thus the user file cache primary address space storage is mainly segment

storage and the anchors to the segments for each file.

� Locking is done at the segment level

� Parallel reading and writing to the same file is allowed

– Contention would occur at segment level

– Writing is partially serialized when extending file

� Full read-ahead and write-behind supported

– Metadata updates performed on background tasks

User File Cache II: Recommendations
� Utimate goal: 100% hit ratio

– A hit means an attempt to find a portion of a user file finds the data is in the cache.

� Cache hit ratios very workload dependent:

– A bunch of processes running shell scripts in OMVS accessing small files will likely

achieve a near 100% hit ratio

– A Domino server workload could at best achieve a 70% hit ratio

– In practice, hit ratios will rarely or never be 100%

� F ZFS,QUERY,VM – shows user file cache performance (next slide)

� Some Guidelines:

10

� Some Guidelines:

– If hit ratio is below 90% or the user cache request rate is very high:

• Adjust cache size upward

• Factor in zFS memory usage to make sure zFS not driven too low in primary

storage – use f zfs,query,storage report to estimate primary space growth

• Monitor performance again, if it helped then repeat these steps

• If the increase did not help performance, then your workload might not benefit

from a larger cache, might as well go back to prior size.

– Use zfsadm config –user_cache_size to dynamically change cache size

• Should be done off-peak - its expensive if it’s a large delta from current size

– Update zFS startup parameters (user_cache_size) so it starts with desired size in

future

User File Cache III: F ZFS,QUERY,VM --- Cache Statistics
IOEZ00438I Starting Query Command VM. 367

User File (VM) Caching System Statistics

--

External Requests:

Reads 943879 Fsyncs 73 Schedules 4109

Writes 428723 Setattrs 3303 Unmaps 2436

Asy Reads 747874 Getattrs 1641816 Flushes 0

File System Reads:

Reads and Writes are file read
and write requests made to
user file cache since the last
time statistics were reset

Reads/Writes Faulted shows
miss count and ratio:

11

Reads Faulted 10088 (Fault Ratio 1.069%)

Writes Faulted 10 (Fault Ratio 0.002%)

Read Waits 8171 (Wait Ratio 0.866%)

Total Reads 18791

File System Writes:

Scheduled Writes 23868 Sync Waits 328

Error Writes 0 Error Waits 0

Scheduled deletes 1330

Page Reclaim Writes 0 Reclaim Waits 0

Write Waits 102 (Wait Ratio 0.024%)

miss count and ratio:

hit ratio = 100 – fault ratio

(hit ratio @ 99% in this example)

High page reclaim write and
wait rates, relative to request
rate, show a cache that is too
small for amount of data
being written

User File Cache IV: F ZFS,QUERY,VM continuedB

Page Management (Segment Size = 64K)) (Page Size = 4K)

--

Total Pages 65536 Free 65451

Segments 16384

Steal Invocations 2405 Waits for Reclaim 0

Number of dataspaces used: 4 Pages per dataspace: 16384

Dataspace Allocated Free

•Waits for Reclaim indicate
tasks waiting to reclaim oldest
pages for a miss

•A high value (relative to request
rate) suggests a possible need
to increase user file cache.

Shows cache size and how many
pages free (unused) and data
space breakdown

12

Name Segments Pages

-------- ---------- ----------

ZFSUCD00 2 16352

ZFSUCD01 0 16384

ZFSUCD02 3 16363

ZFSUCD03 2 16352

� In the simple example shown here, taken late at night on a small production system, the default
user cache size of 256M is fine and does not need tuning.

Metadata/Backing Cache I: Background

Log Cache
Component

Metadata Cache

zFS Primary Address Space

1

2

45

1. Every zFS file system has a circular
log file managed by log cache
component that contains
transactional updates to metadata

2. When the log file becomes full, the
log component tells the metadata
cache to write out dirty data so the
log can be over-written

3. The metadata cache writes out dirty
data so that the log can be over-
written with new transaction data

4. Any time the metadata cache needs

13

zFS File System

Circular log

Backing Cache Data
Space

1

3
45 4. Any time the metadata cache needs

to make room for new data, it casts
oldest buffers out to backing cache (if
it exists)

• Will check the backing cache to
see if a block exists in that
cache to avoid disk reads

5. If during a read a block is not in
backing cache and not in meta
cache:

• Will have to read from disk
(this is what users have some
control over)

A zFS file system is
conceptually an array of
8K blocks

Metadata/Backing Cache II: Recommendations

� Goal is to achieve very high hit ratio of metadata cache
– Should be > 90% hit ratio, Preferably closer to 100%

� Use of backing cache can help certain workloads that access large amounts of metadata (directory
searches for example)

– Backing cache hit ratios, because it’s a 2nd level cache are much lower than metadata cache, but:
• Any hit is an eliminated disk IO and
• Some locks are held over metadata cache accesses for control structures in a file system, so

it can also reduce lock contention if IO is avoided

� F ZFS,QUERY,LFS – shows metadata and backing cache statistics (with other information)

� Some Guidelines for metadata cache:
– If hit ratio is below 98%:

• Adjust cache size upward – note that meta cache comes directly from zFS primary

14

• Adjust cache size upward – note that meta cache comes directly from zFS primary
• Factor in zFS memory usage to make sure zFS not driven too low in primary storage – use f
zfs,query,storage report to estimate primary space growth

• Metadata and backing cache control structure storage is = Cache size / 64.

� Some Guidelines for backing cache:
– Attempt to define or increase backing cache
– Is the hit ratio significant enough to make a difference? If so then repeat the procedure until an

optimal size reached.
• Alternatively could work your way down from the maximum you could assign to it (2GB).

� Use zfsadm config –meta_cache_size/-metaback_cache_size to dynamically change cache size
– NOTE: Its not allowed to create a backing cache if it did not exist at zFS startup (z/OS 13)

� Update zFS startup parameters (meta_cache_size & metaback_cache_size) so it starts with
desired sizes in the future

Metadata/Backing Cache III: F ZFS,QUERY,LFS

Metadata Caching Statistics

Buffers (K bytes) Requests Hits Ratio Updates

---------- --------- ---------- ---------- ----- ----------

12800 102400 103268428 101985745 98.7% 24902311

Metadata Backing Caching Statistics

Buffers (K bytes) Requests Hits Ratio Discards

Report shows sizes, request rate and
hit ratios for both caches, and also zFS
IO requests by type.

Good performance for both caches, near
99% for metadata and 77% for backing
cache.

15

Buffers (K bytes) Requests Hits Ratio Discards

---------- --------- ---------- ---------- ----- ----------

262016 2096128 1063370 821113 77.2% 0

I/O Summary By Type

Count Waits Cancels Merges Type
---------- ---------- ---------- ---------- ----------

266415 259768 0 2311 File System Metadata
582931 10666 0 150777 Log File

0 0 0 0 User File Data

IO requests are broken down into
type, this workload was a pure
directory workload (no user file IO)

FYI: zFS uses IO queues, and merges
adjacent IOs to reduce number of
DFSMS IO requests

Also shows number of times a
task had to wait for an IO to
complete

�Summary:

�Backing cache eliminates
almost half of request to zFS
IO sub-system – GOOD!

Metadata/Backing Cache IV: F ZFS,QUERY,LFS B continued from prior slide

I/O Summary By Circumstance

Count Waits Cancels Merges Circumstance

---------- ---------- ---------- ---------- ------------

180 0 0 0 Metadata cache read

0 0 0 0 User file cache direct read

0 0 0 0 Log file read

BBBBB..

0 0 0 0 Metadata cache file async write

2569 636 0 0 Metadata cache sync daemon write

Metadata
cache reads
near 0, GOOD

High frequency
of buffer
allocation writes
indicates cache

16

2569 636 0 0 Metadata cache sync daemon write

0 0 0 0 Metadata cache aggregate detach write

0 0 0 0 Metadata cache buffer block reclaim write

256028 256020 0 2311 Metadata cache buffer allocation write

0 0 0 0 Metadata cache file system quiesce write

7637 3111 0 0 Metadata cache log file full write

582952 10666 0 150777 Log file write

indicates cache
smaller than
amount of data
being updated

���� If possible,
try raising
metadata cache
size to see if
these IOs can
be reducedLog file writes dominate IO, which is

expected for a heavy directory workload

Ideal Situation: Near zero disk reads, almost all writes are log file writes and log file full writes.
If this occurs, the caches are tuned as optimally as possible.

DASD IO I: Looking For Bottlenecks

� The first step to good zFS performance is a properly sized user file and metadata/backing

caches

– These reduce disk IO rates making less stress on the channels, control units and DASD

� Another source of response time degradation:

– High-frequency file systems are all located on the same channel, control unit and/or

DASD,

• AND

– The rate of IO is causing too much contention on those devices.

� RMF provides reports which can be used to check for DASD, control unit and channel

17

� RMF provides reports which can be used to check for DASD, control unit and channel

contention and guidelines for resolving DASD issues:

– Chapter 4 of z/OS RMF Performance Management Guide describes how to diagnose

DASD contention issues in detail

– RMF is preferred over the zFS queries for analyzing DASD performance but:

– zFS queries can help, by identifying the file systems that are causing the most IO such

as:

• F ZFS,QUERY,IOBYDASD - Shows zFS rates and average IO wait time per DASD

volume

• F ZFS,QUERY,LFS - Shows DASD IO rates per file system and overall average IO

wait time for zFS tasks

• RMF has this zFS information in its reports too, so you could exclusively use RMF

DASD IO II: F ZFS,QUERY,IOBYDASD
zFS I/O by Currently Attached DASD/VOLs

DASD PAV

VOLSER IOs Reads K bytes Writes K bytes Waits Average Wait

------ --- ---------- ---------- ---------- ---------- ---------- ------------

INFON7 2 0 0 86101 1094272 34269 11.675

INFON5 2 0 0 88480 1167848 34398 7.619

INFON3 2 0 0 82965 1066328 32128 11.436

INFON1 2 0 0 92100 1160816 37986 11.130

INFO01 2 0 0 54 480 17 3.130

INFON8 2 0 0 82161 1046104 31950 7.649

18

INFON8 2 0 0 82161 1046104 31950 7.649

INFON6 2 0 0 85081 1089512 33985 7.087

INFON4 2 0 0 92351 1144528 36431 8.025

INFON2 2 0 0 86966 1150952 29270 14.761

Total number of waits for I/O: 270434

Average wait time per I/O: 9.844

� zFS Average Wait is total wall clock time a task wait for an IO in zFS.

�It is not the same as DASD response time, though it is influenced by it.

�The IO could be in-progress by the time a zFS task decides to wait, making the ZFS time
shorter than DASD response time.

�This is wall clock time, so it includes all processing by z/OS, any queues, the channels, DASD,
the time to dispatch the waiting task, so it can also be longer than DASD response time.

DASD IO III: F ZFS,QUERY,LFS – IO by aggregate
zFS I/O by Currently Attached Aggregate

DASD PAV

VOLSER IOs Mode Reads K bytes Writes K bytes Dataset Name

------ --- ---- ---------- ---------- ---------- ---------- ------------

INFO01 2 R/W 0 0 54 480 OMVS.ZFS.ROOT

INFON1 2 R/W 0 0 92100 1160816 NOTEBNCH.MAIL.INFON1

INFON2 2 R/W 0 0 86966 1150952 NOTEBNCH.MAIL.INFON2

INFON3 2 R/W 0 0 82962 1066184 NOTEBNCH.MAIL.INFON3

INFON4 2 R/W 0 0 92332 1144272 NOTEBNCH.MAIL.INFON4

INFON5 2 R/W 0 0 88480 1167848 NOTEBNCH.MAIL.INFON5

19

INFON5 2 R/W 0 0 88480 1167848 NOTEBNCH.MAIL.INFON5

INFON6 2 R/W 0 0 85081 1089512 NOTEBNCH.MAIL.INFON6

INFON7 2 R/W 0 0 86091 1094144 NOTEBNCH.MAIL.INFON7

INFON8 2 R/W 0 0 82146 1045976 NOTEBNCH.MAIL.INFON8

------ ---------- ---------- ---------- ----------

9 0 0 696212 8920184 *TOTALS*

� This report shows the DASD IO rate by aggregate, and also lists the first DASD volume the file system is
contained on.

� This can be used along with the RMF, DFSMS and F ZFS,QUERY,IOBYDASD to locate the high usage file
systems on the hardware with high contention

Lock Contention I: Overview

� Like any parallel product, ZFS has locks to protect common resources

� zFS allows tasks in parallel to write to same file in certain cases

� zFS locks a directory in write mode for a directory update, read mode for reads

� zFS file systems have common structures which have locks, which could cause

contention

� Administrators have little control over contention:

– Cannot control what an installed application might do

20

– Cannot control what an installed application might do

– Or where it wants its files and directories located

– But might be able to help in some cases:

• When possible, try to have high-usage applications use separate

directories to place files in (to avoid directory lock contention)

• Even better, use different file systems to avoid lock contention altogether

since file systems have common structures like log files that could have

contention on them.

� F ZFS,QUERY,LOCK – shows lock contention

Lock Contention II: F ZFS,QUERY,LOCK
Untimed sleeps: 5947 Timed Sleeps: 0 Wakeups: 2381

Total waits for locks: 3009481

Average lock wait time: 1.462 (msecs)

Total monitored sleeps: 5930

Average monitored sleep time: 1.584 (msecs)

Total starved waiters: 132

Total task priority boosts: 0

Top 15 Most Highly Contended Locks

Thread Async Spin

Wait Disp. Resol. Pct. Description

Shows task lock waits and
waits for events to occur
and average wait time in
milliseconds

Most highly contended
locks - used by zFS
level-2

21

Wait Disp. Resol. Pct. Description

---------- ---------- ---------- ----- --------------

2922763 0 1633 89.962% Vnode lock

69421 0 15503 2.612% Log system map lock

5378 1515 61692 2.110% Transaction-cache main lock

5109 0 56429 1.893% Transaction-cache complete list lock

2711 31041 6120 1.227% Vnode-cache main lock

11946 9598 7440 0.892% Metadata-cache main lock

B.

Top 15 Most Common Thread Sleeps

Thread Wait Pct. Description

----------- ----- -----------

5925 99.916% Transaction GC wait

5 0.84% OSI cache item cleanup wait

0 0.0% CTKC user file pending IO wait

level-2

Sleeps are like lock waits, the
task is waiting for something
to occur (in this case, waiting
to begin a transaction to
update disk)

Additional Items

� Large Directory Performance Non-optimal

– zFS uses linear search to find names in a directory

– zFS has sub-optimal directory performance in general:

• >50,000 names in a directory (@4MB in size) – must use HFS

• >20,000 names in a directory (@2MB in size) – might want to use HFS

• zFS greatly outperforms HFS for file IO, so need to factor in the file IO rates vs. directory IO

rates for a file system that has larger directories in it and make a choice

• Largedir.pl tool available to find directories not suitable for zFS at http://www-

03.ibm.com/systems/z/os/zos/features/unix/bpxa1ty2.html

- Takes a long time to run for a whole system, may want to focus it on suspect file systems

– IBM is working on a solution for directory scale-ability

22

– IBM is working on a solution for directory scale-ability

– In the meantime – keep those metadata and backing caches big to avoid disk IO

� z/OS Unix Sysplex Sharing

– Tuning zFS in this environment is the same as single system tuning

• Follow the guidelines presented in the prior slides of this presentation

– z/OS UNIX System Services Planning Guide contains information on z/OS Unix Sysplex

Sharing Tuning:

• Try to ensure ownership of file system matched to the system that does the most requests to

that file system

• Use UNMOUNT for system specific file systems in case of a crash to avoid movement to a

system that will never access that file system.

• Use AUTOMOVE for non-system specific file systems so they are moved if a crash occurs.

• Refer to the appropriate z/OS documentation for more information.

zFS Sysplex Sharing I: RWSHARE Mounted File System (z/OS 13)

z/OS Unix z/OS Unix

SY1: Client
(non-owner)

SY2:
Owner

Application requests flow through
z/OS Unix into zFS on all systems.

Token
Manager

All systems have a token
manager used to handle
serialization of file system
objects for file systems they
own

XCF used to
obtain
tokens from
owner, and
tell owner to
update
metadata

zFS zFS

23

XCF

zFS
File
System

Metadata Cache

User Cache Data
Spaces

Metadata Cache

User Cache Data
Spaces

All plex members can directly
read/write file data into/out of
user cache dataspaces

All systems can read metadata
into the cache from disk. Only
owners can write metadata to
disk.

Not shown: YES – all systems
can use the backing cache to
cache more metadata.

zFS Sysplex Sharing II: RWSHARE Summary (z/OS 13)

� Performance Compared to z/OS Unix Sysplex Sharing (NORWSHARE)
– Large File (database) Random Update Workload:

• This workload randomly updates a large file, similar to a database access.
• 9X faster on non-owners with R13 RWSHARE as opposed to R12 NORWSHARE.

– Sequential File Creation Workload:
• This workload creates many sequentially written files (common write pattern in the field)
• 16X faster on non-owners with R13 RWSHARE as opposed to R12 NORWSHARE.

– Directory Update Workload:
• This workload has many processes repeatedly adding, removing, renaming and searching for

files in a directory, not a typical customer environment.
• 25% faster on non-owners with R13 RWSHARE as opposed to R12 NORWSHARE.

– Cached Directory Read Workloads:

24

– Cached Directory Read Workloads:
• 15X-20X faster on non-owners with R13 RWSHARE as opposed to R13 NORWSHARE.

� Some environments cannot use RWSHARE:
– z/OS SMB Server – cannot export file systems that are RWSHARE.
– Fast Response Cache Accelerator support of the IBM HTTP Server for z/OS V5.3

� If using file systems created before z/OS 9:
– Recommend IBM APAR OA39716 to improve sysplex client performance

� Areas of Improvements for z/OS RWSHARE Support:
– Number of objects that can be cached due to primary address space

• � This can cause clients to call server more to re-obtain lost tokens
– Cold startup of servers on non-owners not as fast as desired

• � If they access lots of objects not already cached at client, need to obtain a token for each new
object accessed.

Object Caching I: Vnode and Token Caches Overview

VN

VN

SYS

SYS

TF

TF

TF

Token Manager
For certain workloads: z/OS Unix
and applications can drive zFS
vnode counts higher than
vnode_cache_size

RWSHARE file
systems have the
SYS serialization
structure and
tokens and token
manager structures
to represent
objects

token_cache_size is limit on

25

EXT EXT EXT EXT

BVN VN VN VN

VN SYS

SYS

LRU queue of vnode_cache_size extended vnodes

Only extended
vnodes have tokens
from token manager
and the extensions

zFS will NEVER have more
than vnode_cache_size
extended vnodes

token_cache_size is limit on
tokens inside token manager,
default is 2 X vnode_cache_size

BLUE and TAN structures only exist for RWSHARE objects

Object Caching II: Vnode Cache/Token Cache Recommendations

� NORWSHARE File Systems and file systems mounted R/O:

– vnode_cache_size not as important to tune because if a vnode does have an extension,

or needs to be newly created, we can steal from the oldest in the LRU queue, and we can

quickly instantiate the vnode from the metadata cache.

• If the status information for the object is not in the metadata cache it will require a disk

read. � So invest in metadata/backing cache storage.

– A vnode cache miss often just uses a bit more CPU.

– Tune vnode_cache_size last – Ensure user file and metadata caches optimally tuned.

� RWSHARE File Systems:

– vnode_cache_size is much more important, especially for sysplex clients.

26

– vnode_cache_size is much more important, especially for sysplex clients.

• If a vnode does not have an extension or does not exist in the cache for the

desired object, it does not have a token, which means one will have to be obtained

from the token manager. For clients it means an XCF communication.

• Due to storage constraints, its likely dangerous to push the vnode_cache_size much

past 100,000 in size. The default is 32,768.

• Best to selectively choose the best candidate file systems for RWSHARE usage

(highest usage file systems accessed by more than one plex member at a time)

• � ftp://public.dhe.ibm.com/s390/zos/tools/wjsfsmon/wjsfsmon.pdf - this tool will show

which R/W mounted file systems are accessed by more than one plex member

– token_cache_size – The default of double the vnode_cache_size is likely sufficient in

many cases.

• If your plex has a large number of members, increase it to reduce garbage collection.

Object Caching III: F ZFS,QUERY,LFS – Vnode Cache Statistics

zFS Vnode Cache Statistics

Vnodes Requests Hits Ratio Allocates Deletes

---------- ---------- ---------- ----- ---------- ----------

43119 11868292 8616915 72.605% 0 46880

zFS Vnode structure size: 224 bytes

zFS extended vnodes: 32768, extension size 724 bytes (minimum)

Held zFS vnodes: 220 (high 43051) Open zFS vnodes:

15 (high 8080) Reusable: 38940

This is vnode_cache_size, they
are using default of 32K vnodes

z/OS Unix pushed zFS past its
limit, 43,119 base vnodes exist,
only 32K have extensions

Number of vnodes held by z/OS
Unix (currently) and high-water
mark, including number of open
files and high water mark for

27

LRU queue items: 32768

Total osi_getvnode Calls: 3421429 (high resp 0) Avg. Call Time: 0.005
(msecs)

Total SAF Calls: 116543153 (high resp 0) Avg. Call Time: 0.001
(msecs)

files and high water mark for
open files

This monitors the security
product performance, important
for response time to be just a few
microseconds.

Larger response times likely due
to excess auditing or an issue
with the security product.

Hit ratio in this report not so important to monitor, it will vary
greatly in cases where many new objects are accessed. Other
reports will show information related to object caching shown
later.

Sysplex Statistics I: F ZFS,QUERY,KNPFS - Sysplex Client Summary

PFS Calls on Client

Operation Count XCF req. Avg Time

--------- ---------- ---------- ----------

zfs_opens 885098 0 0.020

zfs_closes 885110 0 0.010

zfs_reads 12079 0 0.157

zfs_writes 0 0 0.000

zfs_ioctls 0 0 0.000

zfs_getattrs 2450523 8 0.009

zfs_readlinks 68 58 0.871
zfs_fsyncs 0 0 0.000
zfs_truncs 0 0 0.000
zfs_lockctls 0 0 0.000
zfs_audits 33 0 0.015
zfs_inactives 2698174 0 0.020
zfs_recoveries 0 0 0.000
zfs_vgets 0 0 0.000
zfs_pfsctls 0 0 0.000
zfs_statfss 0 0 0.000
zfs_mounts 0 0 0.000
zfs_unmounts 0 0 0.000
zfs_vinacts 0 0 0.000
--------- ---------- ---------- ----------
TOTALS 23931664 4094708 0.602

28

zfs_setattrs 313031 656 0.020

zfs_accesses 11495 0 0.018

zfs_lookups 13764811 1190897 0.287

zfs_creates 876507 876556 5.625

zfs_removes 1240556 1240621 2.117

zfs_links 157216 157216 2.567

zfs_renames 155164 155165 1.890

zfs_mkdirs 157971 157971 6.031

zfs_rmdirs 155108 155109 2.164

zfs_readdirs 11322 3053 11.345

zfs_symlinks 157398 157398 4.295

� Lookup requests have over 1 million XCF calls,
likely to get token for a vnode not found in cache.
Could make vnode_cache_size larger if memory
permits to try and reduce these.

� But due to client caching, over 12 million lookup
requests satisfied by client metadata/vnode cache.

Directory operations are sent synchronously to
server.

Sysplex Statistics II: F ZFS,QUERY,STKM – Token manager statistics

Server Token Manager (STKM) Statistics

Maximum tokens: 200000 Allocated tokens: 61440

Tokens In Use: 60060 File structures: 41259

Token obtains: 336674 Token returns: 271510

Token revokes: 125176 Async Grants: 64

Garbage Collects: 0 TKM Establishes: 0

Thrashing Files: 4 Thrash Resolutions: 131

Usage Per System:

System Tokens Obtains Returns Revokes Async Grt Establish

Shows token limit, number of
allocated tokens, number of
allocated file structures and
number of tokens allocated to
systems in plex

Number of times tokens had to
collected from plex members
due to tokens reaching limit – if
high then might want to update
token_cache_size

29

System Tokens Obtains Returns Revokes Async Grt Establish

-------- --------- ---------- ---------- --------- --------- ---------

DCEIMGHR 18813 161121 134907 70275 0 0

ZEROLINK 0 66055 66054 5 64 0

LOCALUSR 41247 109499 70549 54974 0 0

Thrashing files indicates objects
using a z/OS Unix-style
forwarding protocol to reduce
callbacks to clients – check
application usage

� Shows tokens held per-system and number of token obtains and returns since
statistics last reset.

�ZEROLINK – pseudo-sysplex client used for file unlink when the file still open –
used to know when file fully closed sysplex-wide to meet POSIX requirement that
a file’s contents are not deleted, even if its been unlinked, if processes still have
file open.

Sysplex Statistics III: F ZFS,QUERY,CTKC

SVI Calls to System PS1

SVI Call Count Avg. Time

-------------------- ---------- ----------

GetToken 1286368 1.375

GetMultTokens 0 0.000

ReturnTokens 26 0.050

ReturnFileTokens 0 0.000

FetchData 0 0.000

StoreData 540 1.566

Setattr 0 0.000

FetchDir 7140 6.291

Lookup 0 0.000

Shows requests a plex member sends to other
plex members for objects in file systems
owned by other members and average
response time in milliseconds. Includes XCF
transmission time.

Might be able to reduce GetToken calls by
raising vnode_cache_size (if zFS primary
storage allows it)

30

Lookup 0 0.000

GetTokensDirSearch 0 0.000

Create 1320406 3.736

Remove 1499704 1.595

Rename 166498 1.448

Link 169176 1.549

ReadLink 0 0.000

SetACL 0 0.000

B..

FileDebug 0 0.000

-------------------- ---------- ----------

TOTALS 4449858 2.167

Sysplex Statistics IV: F ZFS,QUERY,SVI

SVI Calls from System PS2

SVI Call Count Qwait XCF Req. Avg. Time

-------------------- ---------- -------- -------- ----------

GetToken 1286013 0 0 0.259

GetMultTokens 0 0 0 0.000

ReturnTokens 26 0 0 0.050

ReturnFileTokens 0 0 0 0.000

FetchData 0 0 0 0.000

StoreData 540 0 0 0.081

Setattr 0 0 0 0.000

FetchDir 7140 0 0 4.997

Shows calls received by indicated
plex member:

• Qwait non-zero when all server
tasks are busy

•XCF Req. means server had to
reclaim tokens from other plex
members to process request.

•Avg. Time in milliseconds shown
for server to process request.

31

Lookup 0 0 0 0.000

GetTokensDirSearch 0 0 0 0.000

Create 1321096 0 0 2.371

Remove 1499689 0 177 0.645

Rename 166500 0 0 0.509

Link 169608 0 0 0.538

ReadLink 0 0 0 0.000

SetACL 0 0 0 0.000

B.

LkupInvalidate 0 0 0 0.000

FileDebug 0 0 0 0.000

-------------------- ---------- -------- -------- ----------

TOTALS 4450612 0 177 1.044

Going Forward.

� A valuable monitoring process:

– If possible at your site, issue:

• F ZFS,QUERY,ALL

• F ZFS,RESET,ALL

– Every 30 minutes or so

• � Now zFS job output and system log have a running history of zFS performance,

good to look back at a reported performance problem, very useful for IBM level-2 if a

performance problem exists.

� IBM working on solutions to:

32

– Fix directory scale-ability problems with zFS

– Make more intelligent cache defaults for zFS, based on system memory

– Improve queries,

• Example: showing thrashing objects in a sysplex

– Improve scale-ability by:

• Reducing amount of storage required to track and cache objects and tokens for

RWSHARE

• Run zFS in 64 bit mode to eliminate primary address space storage constraints

which prevent customers from running with really big caches, particularly vnode

caches for RWSHARE.

z/OS 11 and 12 vs. z/OS 13 zFS

z/OS 11 and 12 RWSHARE specific support:

� Reduced caching capacity – sysplex clients cannot store directory contents in backing

cache

� Do not support write-behind or direct disk IO for sysplex clients

– As a result have reduced performance

– Stress owners more

� Store user file data in a separate set of data spaces than user cache:

– Called client_cache_size

33

• � Must tune both user_cache_size and client_cache_size and estimating amount of

memory to assign to locally owned access and sysplex client access

� Do not handle thrashing directories quite as well as z/OS 13

z/OS 11 and 12:

� Partition directory data from metadata on owner systems, single systems and for

NORWSHARE systems, placing in a cache called the directory cache:

– Tune via dir_cache_size

– There is no dynamic tuning for directory cache, requires zFS restart

– Should define this to be larger and metadata cache to be smaller to make directory

operations more efficient for these releases and avoid data copying.

Publications of Interest

� z/OS UNIX System Services Planning (GA22-7800)

General Administration of z/OS UNIX file systems

� z/OS Distributed File Service zSeries File System Administration (SC24-5989)

zFS Concepts and zfsadm command for zFS

� z/OS Distributed File Services Messages and Codes (SC24-5917)

IOEZxxxt messages and X’EFxxrrrr’ reason codes for zFS

� z/OS RMF Performance Management Guide (SC33-7992)

34

� z/OS RMF Performance Management Guide (SC33-7992)

Describes how to monitor DASD performance

 QR Code

