
1

© 2009 IBM Corporation

zFS Diagnosis II:
Problem Determination and File System Monitoring

SHARE: Session 11790

Scott Marcotte – zFS Development

zFS Diagnosis II: Problem Determination
and File System Monitoring

Scott Marcotte (smarcott@us.ibm.com)

August 8, 2012 4:30PM

Session Number 11790

2

2

Topics

Title Slides

File System Monitoring 3-4

Auditing 5

Disk Space Monitoring 6-9

File System Backup/Quiesce 10-12

File System Copy 13

Cancel/Force 14

System Outages 15-17

Disk I/O Errors 18

XCF Errors 19-20

Enabling Debugs 21

zFS Software Errors 22-25

System Hangs 26-28

Storage Usage 29-30

3

3

Basic File System Information I: Mode, Owner, Sharing Mode:
� zfsadm lsaggr – shows mounted file systems, zFS owner and mount mode

OMVS.ZFS.REL19.DR16 DCEDFBLD R/O
OMVS.ZFS.PROJ.DFS DCEDFBLD R/W

zFS Owner

Mount mode

� zfsadm aggrinfo –long - shows sysplex sharing mode, and mount mode

OMVS.ZFS.PROJ.DFS (R/W COMP): 34447 K free out of total 36000
version 1.4
auditfid 00000000 00000000 0000

4284 free 8k blocks; 175 free 1K fragments
360 K log file; 32 K filesystem table

8 K bitmap file

ZFSAGGR.BIGZFS.FS1 (R/W COMP): 1737527 K free out of total 2000160
version 1.4
auditfid 00000000 00000000 0000
sysplex-aware

217190 free 8k blocks; 7 free 1K fragments
32800 K log file; 56 K filesystem table

288 K bitmap file

zFS Sysplex Sharing State

(blank means not using
zFS sysplex sharing, hence
NORWSHARE)

Says sysplex-aware which
means it can use sysplex
sharing, hence RWSHARE

Not using unique auditfid
(see slide 4)

NOTE: This presentation assumes zFS compatibility mode file systems used exclusively,
clones (.bak) file systems also not presented since they are discontinued after z/OS 13,

� This means the terms file system and aggregate are synonymous.

In a sysplex, its often important to know if a file system is using zFS sysplex sharing
or not. The commands shown on this slide can be used to quickly obtain a list of
zFS mounted file systems, their mount mode and current zFS owner. Note that
z/OS Unix also has an owner and who that owner is very relevant, particularly for
file systems that are not using zFS sysplex support (also called NORWSHARE).
For zFS file systems that are mounted RWSHARE, also known as sysplex-aware,
knowing the zFS owner is important. Regardless of the sysplex sharing mode, the
owner is the system that updates the file system metadata (metadata is any on-disk
data that is not the contents of a user file, an example would be the contents of a
directory or an ACL). The zfsadm aggrinfo command can also be used to show
whether the file system is mounted RWSHARE or not.

4

4

Basic File System Information II: System Sysplex Sharing Status
� One might need to determine if a particular R/W mounted file system is using zFS

sysplex sharing or z/OS Unix Sharing on a specific plex member.

� F ZFS,QUERY,FILESETS,ALL – shows file systems locally mounted on that system
– Need to issue on each plex member to see if it’s a zFS sysplex client or not for a given

file system. � If a file system not listed, zFS does not have it mounted on that system.

15.29.40 DCEIMGHR STC00043 IOEZ00438I Starting Query Command FILESETS
File System Name Aggr # Flg Operations
--- ------ --- ----------
ZFSAGGR.BIGZFS.FS1 1 AMS 2

S – means file
system is using
zFS sysplex
sharing

� D OMVS,F,T=ZFS – shows file system information from z/OS Unix view

15.42.01 DCEIMGHR d omvs,f,t=zfs
15.42.01 DCEIMGHR BPXO045I 15.42.01 DISPLAY OMVS 430
OMVS 000F ACTIVE OMVS=(P0,HR)
TYPENAME DEVICE ----------STATUS----------- MODE MOUNTED LATCHES
ZFS 28 ACTIVE RDWR 05/30/2012 L=39
NAME=ZFSAGGR.BIGZFS.FS1 14.58.37 Q=39
PATH=/home/suimghq/lfsmounts/PLEX.ZFS.FILESYS
OWNER=DCEIMGHQ AUTOMOVE=Y CLIENT=N

CLIENT=N

.. Means zFS
sysplex sharing
being used or
system is z/OS
Unix owner

Since owner is HQ and
command issued from HR,
this is RWSHARE and zFS
handling request for this
system

�These commands should be issued from each system

�In rare cases, there could be a file system mounted RWSHARE but on
some plex member z/OS Unix function shipping is being used

� check system log for messages to see why mount failed

� Try an unmount-remount without mode switch to clear this condition

At mount time a R/W mounted file system will be mounted as RWSHARE or NORWSHARE in a
sysplex. If the file system is mounted NORWSHARE then z/OS Unix sharing is used and z/OS Unix
function ships requests from non-owner systems to owner systems. In this case the CLIENT=Y will
be specified for each member that is not the owner, and CLIENT=N will be displayed on the system
that is the owner of the file system.

If a file system is RWSHARE then zFS on each sysplex member will receive a mount of the file
system. The first system receiving the mount will become the zFS owner and all other systems will
become zFS clients for that file system. In this case the D OMVS,F would show all plex members as
CLIENT=N for that file system.

With the F ZFS,QUERY,FILESETS command, any plex member that has successfully processed its
mount will result in a listing in this command’s output. But if for some reason a plex member failed
the mount of the file system, then that file system would not show up in the query,filesets command
issued on that member and the D OMVS,F command would show CLIENT=Y for that plex member.
In this case we have an RWSHARE file system but on a plex member z/OS Unix is function shipping
rather than calling ZFS to do its caching. This leads to extra system overhead and meant that the
mount failed. The system log should be examined for messages that could explain why the mount
failed, such as IO errors or unavailable DASD or a zFS specific error. An unmount-remount without
switching modes might be able to clear the condition to see if the new mounts succeed on this plex
member or at least re-do the mount to see why it fails on this plex member.

5

5

Auditing

� SMF type-80 records and RACF message ICH408I use a 16 byte identifier to identify an
object that had some sort of authorization failure or state change of interest to the operator

� zFS audit identifiers take one of two formats:

inode unique 0 0 volser CCHH inode Un

Standard version Unique version

� The standard (default) version is not acceptable for truly identifying the object.

�� The unique version uses the volume serial and CCHH of the first extent of the file
system, plus the inode and the low order part of the uniquifier to identify the object

� www.ibm.com/servers/eserver/zseries/zos/unix/bpxa1ty2.html - auditid tool available on z/OS
Unix Tools website to display the object’s pathname but needs the unique audit id version.

�To ensure the unique version is used you can do the following:

� zfsadm format –newauditfid – This option will store the proper unique audit id inside the
new file system and it will be used in auditing records and messages.

� zfsadm setauditfid – This command will store the proper unique audit id inside an
existing file system.

� convert_auditfid=on – zFS startup parameter will auto-convert any mounted file system
not using the unique method to begin using it (also: zfsadm config –convert_auditfid).

� zfsadm aggrinfo –long – will show the audit fid of the file system (the first 10 bytes of audit id)

Auditing is used for a number of purposes including important state changes, such
as the deletion of an object or an authorization failure on an attempt to access an
object by a z/OS Unix process. Audit identifiers are 16 byte objects and in older
releases of zFS only the first 8 bytes are used, which show the inode and uniquifier
(8 byte fid that identifies an object inside a file system) of the file system object, but
does not properly show which file system contains the object. Later releases of zFS
change the audit id so that the first 10 bytes show the file system by saving the
volume serial and CCHH of the first extent of the file system and also contains the
inode and the low order portion of the uniquifier. This allows someone to find out
the file system and name of the object of the audit record. There is an auditid tool
available in the listed website that will take the auditid and show the full pathname of
the file.

To ensure that the better version of the audit id is used, one can specify the –
newauditfid option on the zfsadm format and/or IOEAFGFMT command for new file
systems. Old file systems can be specifically updated to use the new version via
the zfsadm setauditfid or the administrator can enable automatic conversion via
convert_auditfid=on zfs startup parameter. Also, the zfsadm config –
convert_auditfid command can be used to dyamically enable it without the need for
a zFS restart.

The audit fid being used for the file system is shown in the zfsadm aggrinfo –long
command.

6

6

Disk Space Monitoring I: Disk Layout

� zFS file system space monitoring more complicated due to way files stored on disk:

zFS File System –

Array of 8K pages

zFS logically
partitions 8K
pages into eight
1K fragments to
pack small
objects

� File system objects stored 3 ways:

� Inline – Object never grew bigger than 52 bytes, stored
inside the object’s inode on disk.

� Fragmented –Object never grew bigger than 7K, can be put
into fragments in a page and stored with other small objects:

� R13 zFS only uses fragmented method for ACLs and
symbolic links, aggressively packing them in the same
pages. Prior releases stored small files and directories in
same page but was not efficient at it.

� Blocked – Any object that grew bigger than 7K (or for R13
any files bigger than 52 bytes and all new directories) is simply
a sparse array of pages. Must have empty pages to extend.

� df - command not always good to determine space usage, might
indicate space free (free fragments) but might not show the fact that
there are no free 8K pages.

� Because of R13 allocation methods and aggressive packing
of small objects, df will be more accurate and usable if the file
system was created and used with R13 or later.

zFS considers an aggregate an array of 8K pages, each page is actually two 4K VSAM control
intervals. Every object on disk has a structure called an anode that contains attributes about the
object (like size, mtime, atime, permissions, link count etc…) and points to where the object’s data
resides in the file system. Objects are stored in three ways. Inline is used only for small objects that
never grew bigger than 52 bytes in size, the object’s data is stored inside the anode and takes no
extra space on disk. For larger objects, z/OS 13 zFS will pack ACLs (that are less than 7K in size,
which is the typical case) and symbolic links into the same disk blocks to conserve space. Prior
releases will store small directories and files into fragments but they did not attempt to place them in
the same block which could still reduce the number of free 8K blocks for larger objects. Any object
larger in size than 7K will be stored into 8K blocks, fragments are not used and to extend larger files
requires whole 8K blocks to be free, any partially empty 8K blocks are not usable.

This makes the df command less useful because you can run into situations where there are free
fragments but no whole 8K blocks free, which are required when storing larger objects. If an
aggregate was created using z/OS 13 format and populated and used only on z/OS 13 or later, this
situation is greatly reduced since all files are either stored inline, which uses no extra space, or
blocked, and all directories are stored blocked. ACLs and symbolic links are tightly packed into the
same blocks which typically leaves the free fragment count very low and the df command more
useful.

7

7

Disk Space Monitoring II: Querying Space and Low Space Messages
� zfsadm aggrinfo –long – shows more detailed space usage:

ZFSAGGR.BIGZFS.FS1 (R/W COMP): 1737527 K free out of total 2000160
version 1.4
auditfid 00000000 00000000 0000
sysplex-aware

217190 free 8k blocks; 7 free 1K fragments
32800 K log file; 56 K filesystem table

288 K bitmap file

Shows number of
unallocated whole 8K pages

Shows number of free
fragments inside 8K pages

� Can monitor low-space via system log messages

� aggrfull(threshold, increment) –Indicates a threshold percentage of file system space
usage before zFS issues messages to log to warn of high space usage on file system and
an increment of when zFS should repeat the message as more and more space is used.

� zFS startup parameter is default for MOUNTs that do not specify this parameter

� Can be over-ridden on MOUNT command via the PARM option.

� Sample Low-space Messages (units=8K blocks, example from aggrfull(80,5)):

� IOEZ00078I zFS aggregate ZFSAGGR.BIGZFS.FS2 exceeds 85% full (17083725/20098500)

� IOEZ00079I zFS aggregate ZFSAGGR.BIGZFS.FS2 is now below 80% full (16078800/20098500)

� If a file system completely runs out of space zFS will issue this message to the log:

� IOEZ00551I Aggregate ZFSAGGR.BIGZFS.FS2 ran out of space.

� Will repeat message every 10 minutes until aggregate no longer out of space.

The zfsadm aggrinfo –long is the most informative command to use to determine
how much free space there is in a zFS file system. It shows the number of whole
8K pages that are unallocated on the disk. As long as this number is not 0 any
object can be grown in size, as soon as its 0 then any larger object cannot be grown
in size. The command also shows the amount of space used for file system control
objects.

The user can monitor the cases where a zFS file system is low on space via the
aggrfull IOEFSPRM option and they can override the default on the MOUNT
command. There are two parameters required: threshold is the percentage of use
of the file system space that will cause the message to be displayed, and increment,
which is the percentage increment when the message will be repeated. zFS has
mechanisms in place to prevent a flood of messages but a file system that is
monitored that is low on space could result in many messages to the system log
that indicate its low on space.

If a file system has no space to handle an update to the object it will issue message
IOEZ00551I to indicate that it ran out of space. If dynamic growth is enabled for
that file system (discussed on next slide) then it will be attempted for that file system
and additional messages will be issued to show the status of the grow operation. If
dynamic growth is not enabled then that means an application saw an error.

8

8

Disk Space Monitoring III: Dynamic Growth Process
� Dynamic growth requirements:

– aggrgrow enabled – either via IOEFSPRM default or specified on MOUNT
– File system has secondary allocations defined and free space on candidate volume
– No prior dynamic grow failures for this file system since it was last mounted

� If requirements met, zFS will:
– Issue message such as:

• IOEZ00312I Dynamic growth of aggregate ZFSAGGR.ZFS.FS2 in progress (by user SUIMGHQ).

– Grow aggregate by 25MB
• Will extend aggregate by secondary extents if necessary, issuing message:

- IOEZ00329I Attempting to grow ZFSAGGR.ZFS.FS2 by a secondary extent.
• If the extension fails, will issue message:

- IOEZ00445E – shows DFSMS return codes for extension attempt explained in text for
message IEC161I

• Issue a format-write for at most 25MB
- IOEZ00326E – shows DFSMS Media Manager return code if the format-write fails.

– Issue a final message showing success or failure:
• IOEZ00309I Aggregate ZFSAGGR.ZFS.FS2 successfully dynamically grown (by user

SUIMGHQ)
• IOEZ00308E Aggregate ZFSAGGR.ZFS.FS2 failed dynamic grow (by user SUIMGHQ)

– File system reading still allowed if read is not to a file/directory that is waiting for the grow
to complete.

– Writes generally made to wait unless they are only updating existing blocks of a file.

Dynamic growth is on by default in z/OS 13 zFS, and off by default for prior releases. Specifying
aggrgrow in the zFS kernel startup parameters (IOEFSPRM) or by specifying it on the MOUNT
statement (or if z/OS 13, taking the default) will enable dynamic aggregate growth for the file system.
A file system must have a secondary allocation defined to allow zFS to extend the dataset and zFS
will remember if dynamic growth for a file system has failed, and will not attempt further growth until
the file system is un-mounted and re-mounted.

zFS will issue several messages during the dynamic growth progress to show success or failure of
the operation. zFS will grow by no more than 25MB at a time. It will extend the dataset if necessary
and format at most 25MB of it, it will loop extending if necessary if the seocndary extent is small. So
if the secondary allocation was only 1MB, it would have to loop extending and formatting 25 times. If
the secondary allocation was 100MB, the first growth attempt would extend the dataset by 100MB
and it would format 25MB of it. If the file system ran out of space again, since the extent already
exists with 75MB of unused space, the next 25MB would simply be formatted. This ensures a grow
does not hang up users for long.

Generally speaking, if the growth fails, it will likely be because zFS could not allocate another extent
and DFSMS returned an error to zFS on the extend attempt. In this case zFS will issue message
IOEZ00445E to show the DFSMS return codes and system message IEC161I will likely precede it
and the message documentation for that message should explain why the extension failed.

zFS allows all file system read attempts while the growth is in progress unless those reads are to a
file/directory that is waiting on the dynamic growth. File system writes that require new blocks added
to a file or directory are made to wait until the dynamic growth is finished.

9

9

Disk Space Monitoring IV : Wrap-up

� zfsadm grow – Can explicitly grow a file system.
– Same as dynamic grow except user controls how much to grow file system.

� Low space performance effects:
– zFS uses a distributed space reservation scheme

• Each plex member gets a pool of blocks to use to allocate to files for
RWSHARE file systems

• Owner uses same logic as sysplex clients, has pool for local users that
need to add blocks to a file.

• The more space left in file system, the bigger the pool the owner can hand
out to clients

• If less than 1MB in space, clients do not get pools
Must synchronously request blocks as needed if file writes

require space
… which has a non-trivial performance effect

• Dynamic growth is not cheap
• Try to minimize these low-space write conditions and minimize dynamic

growth in peak usage times when possible.

The administrator can also explicitly grow a file system and they can determine how big to make it
and grow it by a large amount if desired. This works very similar to dynamic grow, file reads are
allowed and file writes that are not waiting on the grow are allowed. If the file system was not out of
space then a file write would not be waiting, so typically file operations run fully in parallel with the
user-initiated grow operation.

zFS uses a distributed reservation scheme in z/OS 13 and later to allow sysplex clients (and owners
have a similar pool) to assign file system blocks to files without communication with the owner. The
more free space on disk the bigger the pool. If the total amount of unallocated space on disk is less
than one megabyte, the clients do not receive any pool and every single write request that requires
space must synchronously obtain it from the owner; this would go on until more space becomes
available either by file system growth or by removal of files/directories that free up space. Thus
performance will be better if this situation is minimized during peak usage. Of course when a file
system is being newly populated a common trick is to start with a small file system and dynamically
grow it to save space; this is fine since its usually a one-time occurrence for the file system. But the
user should keep in mind that zFS, like many other file systems, cannot make as many performance
optimizations to a file system that is low on space than one that has a reasonable amount of space.
Prior releases of zFS also have reduced performance for file systems that are low on space, they
generally have reduced file write performance compared with z/OS 13 zFS, on both the owner and
especially on non-owners.

10

10

File System Backup I: Quiesce/Unquiesce Overview

� A R/W mounted file system should be quiesced before backup.

� A quiesce will do:
– Stop all write activity sysplex-wide to the file system
– Sync all dirty data and the zFS log file to disk

• This makes it look like the file system was cleanly shutdown to zFS

� After a quiesce is complete a backup would be performed.

� Once the backup is complete, an unquiesce should be performed
– This will allow application write requests to proceed.

� R/O mounted file systems do not require a quiesce prior to backup
– But no harm in doing it.
– No user activity is stopped, so should have no negative system affect.

� A quiesced file system can also be un-mounted if desired.

� If the file system owner, or the system initiating the quiesce terminates, the file
system will be un-quiesced by zFS.

� Mounting a restored R/W mounted file system that was not properly quiesced before
backup will require log file recovery since it will look like an unclean shutdown to
zFS, which delays mount time (worst case @ 1 minute, typical case a few seconds)

zFS is a logging file system and performs asynchronous write-behind. If a user
would like to backup a zFS file system, then its heavily recommended that the file
system be quiesced before the backup program is started, if the backup program is
one that copies whole datasets (hence whole file systems). A quiesce of the file
system will sync any dirty data to disk and sync the zFS transaction log file to disk.
This will make the dataset that is backed up look like it was cleanly un-mounted by
zFS and ensure that the restored dataset will mount without the need for log file
recovery (which makes the mount operation faster) and also ensures that no
uncommitted updates were lost. R/O mounted file systems generally do not require
a quiesce but there is no harm in doing one, and it is a good way of noting that a
backup is in progress in case someone tries to un-mount it (possibly to later mount
it R/W).

zFS has logic to ensure that a quiesced file system will be unquiesced if either the
owner system or the system that initiated the quiesce goes down in a sysplex
environment.

11

11

File System Backup II: ADRDSSU

� Full volume dumps require file systems to be un-mounted before dumping.

� If not using an ADRDSSU logical dump for a R/W mounted file system you must
do:

– IOEZADM quiesce to stop user activity and sync data to disk
– Perform backup using your backup program
– IOEZADM unquiesce to resume user activity

� ADRDSSU automatically performs a quiesce & unquiesce during a logical backup
– Can often use flash-copy to keep users quiesced for a short time

� If the backup takes a long time, or there is a problem where the file system did not
get unquiesced you will get the following message on operator’s console:

– IOEZ00581E There are quiesced aggregates.
• zFS will check every 30 seconds for quiesced file systems and either issue

or delete the message as appropriate.
– If you see this message persistently on the screen, you may need to intervene.

• If backup program abended or is stopped, you can issue:
� F ZFS,UNQUIESCE,FSNAME

Or � zfsadm unquiesce FSNAME

There are many methods that can backup a file system or its contents. There are
incremental backup programs that dump files that have changed since last backup
and full-DASD backups. In z/OS a typical backup program called ADRDSSU can
backup an entire dataset, often using flash-copy which uses copy-on-write
techniques to keep activity to the dataset suspended for a very short amount of
time, depending on the hardware/software installed at the site. If you are using a
backup program that dumps an entire dataset that is not ADRDSSU, or you are
performing a physical dump of the dataset using ADDRDSU, you should update
your job so that it will call the IOEZADM quiesce/unquiesce functionality to ensure
user activity is stopped and that any dirty data is synced to disk and the log file on
disk is closed. This yields a consistent file system that does not require log file
recovery when the file system is later restored. ADRDSSU will automatically call
zFS to quiesce before the backup and then unquiesce after the backup if the file
system is mounted. Note that backing up a R/W mounted file system without a
proper quiesce will look to zFS to be an unclean shutdown of the file system and
zFS will perform log file recovery to ensure the file system is consistent which
delays mount time; it also means that some recent updates made around the time
of the original backup may have been lost since the transactions could have been
rolled back during log file recovery.

12

12

File System Backup III: Finding Quiesced File Systems

� The following commands can be used to find which file systems are currently quiesced:
– F ZFS,QUERY,FILESETS,ALL

– zfsadm lsaggr

– zfsadm aggrinfo

10.43.12 DCEIMGHQ STC00044 IOEZ00438I Starting Query Command FILESETS
File System Name Aggr # Flg Operations
--- ------ --- ----------
ZFSAGGR.BIGZFS.FS1 1 AMQSL 43

IOEZ00106I A total of 1 aggregates are attached
ZFSAGGR.BIGZFS.FS1 DCEIMGHQ R/W QUIESCE

IOEZ00369I A total of 1 aggregates are attached to the sysplex.
ZFSAGGR.BIGZFS.FS1 (R/W COMP QUIESCED): 1737527 K free out of total 2000160

� F ZFS,QUERY,FILESETS often the best
– Operator command, always available
– zfsadm may be inaccessible because the file system containing it is quiesced
– Issue it on the system that shows the message IOEZ00581E

� If repeated issuances of the query show the same file system is always quiesced AND the
message IOEZ00581E is not going away (it is refreshed or deleted every 30 seconds) then:

– Check to see if backup still running and if not:
• Issue zfsadm unquiesce or F ZFS,UNQUIESCE to unquiesce the file system

Its important to note that the IOEZ00581E is only displayed if a locally mounted file
system is quiesced for a long time, so its important to look at the various system
consoles on each plex member and issue the F ZFS,QUERY,FILESETS on the plex
members that display the message. Zfsadm commands may be easier since they
can be issued on any system and show a sysplex-wide view, but if the file system
they are mount in, or a file system in the path to the zfsadm binary is quiesced, then
you will be hung waiting to find and load the zfsadm binary. The modify command
is immune to which file systems are quiesced. Thus if the zfsadm command hangs,
use the modify command instead.

13

13

File System Copying and Multi-System R/W Access

� zFS uses a scheme to detect multiple R/W access to a file system from
multiple systems not in the same sysplex.

–zFS periodically writes information to first block of file system showing
system usage:

• Includes system name and plex name and timestamp.
–At un-mount time and system shutdown time, zFS will clear this

information to show the file system was cleanly un-mounted and not
currently mounted R/W on a system.

–At mount time, zFS will examine this information to see if another system
might have access.

• If it sees the first block is non-zero
- Will delay mount for 65 seconds to determine if another system is
updating this block.
- Will issue message IOEZ00807I to indicate its waiting

� As a result, you can cause zFS to wait during mount unnecessarily and you
can experience z/OS UNIX latch contention if you fail to unmount (detach) a
zFS aggregate before copying it or moving it to another system not in the
same sysplex.

14

14

Canceling and Forcing Users Running in zFS

� Application calls into zFS run on the application tasks and there is a unit of work associated
with that call.

� When an asynchronous abend, such as a cancel, is delivered to zFS it will dispatch the
recovery onto a zFS task which frees up the application task and allows the application to
end quickly.

� The unit of work must either be rolled back or pushed forward, it rarely can be ignored.
– A shared file system such as zFS has common file system objects, an application task

can touch global file system structures and other objects that are not its own
– Pushing forward is common, especially if transactions are started, just as much work to

push forward as to roll back

�� Canceling user tasks does NOT break a hang inside zFS if the hanCanceling user tasks does NOT break a hang inside zFS if the hang is the fault of zFS.g is the fault of zFS.

z/OS Unix

Unit of
work

zFS

Application Task
Cancel
application

z/OS Unix

Unit of
work

zFS

Application Task
1

2

3

4 1. Application calls for the file system
run on the application task

2. User decides to cancel application

3. zFS recovery is notified and switches
work to zFS task

4. Application task immediately freed
which allows rest of cancel
processing to occur more quickly

� Unit of work has to be pushed
forward or rolled back

Any time an application makes a file call into zFS, there is a unit of work associated with that call that
exists inside zFS. Because zFS is a shared file system, one user can often be updating or
manipulating other user’s data. For example, if an application wants to read a file but its not in the
user file cache, it might have to reclaim space from the oldest data in the cache. If that oldest data is
dirty and not written to disk then it has to write it. Thus an application task is affecting other users
files. Another example are the shared structures that exist in every file system, such as the allocation
map that tracks free space in the file system. An application task might need to extend a file and
obtain free space from this map and update the map; if its partially updated the map and then gets
cancelled, that map structure has to be completely left consistent and intact for other users. Thus the
processing performed by the application call has to be rolled back or pushed forward. Generally
speaking, if the application call has started a transaction that might update the disk, it will have to be
pushed forward.

With z/OS 13 zFS, in order to allow the cancel or the abend of the task to complete quickly, zFS
dispatches a zFS task to handle recovery of the unit of work that represents the application call. This
immediately allows the application task to continue with recovery in other components like z/OS Unix
since z/OS Unix is always a participant in any call to zFS.

If there is hang inside zFS, and that hang is somehow due to a zFS software error, canceling the
applications that have called into zFS will very likely have no effect on the hang and may even lose
some of the documentation needed to diagnose the problem. This is because the unit of work cannot
be ignored and whether its rolled back or pushed forward if it encounters the source of the hang it
would block. There are much more effective ways of breaking a hang inside zFS and at the same
time guaranteeing first-failure-data-capture (FFDC) and a true resolution of the problem.

15

15

System Outages I: zFS Recovery Fundamentals

� zFS considers a system down when XCF notifies the group exit for the other
members in the sysplex.

� When zFS is told by XCF that another system is down, zFS knows there are no stray
IOs in progress to the disks because:

– If whole system down, the fencing support in the sysplex software/hardware
guarantees no IO in progress from the down member.

– If only zFS took an outage:
• If zFS aborts, it will ensure no IOs in progress to disk before leaving its XCF

group.
• If zFS was cancelled, XCF and address space recovery ensures no IO is in

progress before it tells other members that zFS went down.

� Because of IO fencing:
– zFS on other plex members can assume ownership of RWSHARE file systems

owned by the down member (z/OS Unix moves ownership for NORWSHARE file
systems)

• zFS members will race for ownership takeover, using GRS serialization to
determine who wins race for a specific file system

• The winner of the race assumes ownership of the file system, confidently
performing log file recovery to put the file system in a consistent state

16

16

System Outages II: zFS Recovery Processing

� When a system goes down:
– A zFS member implicitly releases any tokens held by the down system for file systems it

owns.
– zFS members implicitly un-quiesces a quiesced file system if the file system was owned

or the quiesce was initiated by the down member.
– Will make local calls to file systems owned by the down member wait until someone

assumes ownership of the file system.
– Will race for ownership, and if a system wins the race for a specific file system:

• Will perform log file recovery putting the file system in a consistent state.
• Allow other plex members to re-obtain tokens for any open files they have.
• Tell other members to allow their stopped application tasks to resume processing

� Application point of view:
– Applications running on other members are stopped by zFS until ownership of their

target file system is assumed by one of the members
– Applications that had open files:

• May see IO errors reported if zFS on that system thinks data may have been lost in
the file; otherwise if zFS is confident of no errors, they will see no errors.

– Due to transaction rollback during log file recovery, newly created objects might not
exist, in this case an application could see IO errors reported due to lost object during
the crash.

– If no system could assume ownership (should be very rare), stopped applications will be
resumed but they will get errors for all calls until some zFS can successfully take
ownership of the file system (each zFS member will re-try periodically).

17

17

System Outages III: zFS Messages Issued During a System Outage

IOEZ00387E System DCEIMGHQ has left group IOEZFS, aggregate recovery in
progress.
IOEZ00388I Aggregate takeover being attempted for aggregate ZFSAGGR.BIGZ
FS.FS4
IOEZ00388I Aggregate takeover being attempted for aggregate ZFSAGGR.BIGZFS.FS3
IOEZ00388I Aggregate takeover being attempted for aggregate ZFSAGGR.BIGZ
FS.FS1
IOEZ00397I Recovery statistics for ZFSAGGR.BIGZFS.FS4:

elapsed time 2910 ms 72 log pages
7033 log records, 177 data blocks modified
6140 redo-data, 6 redo-fill records
1 undo records, 0 unwritten blocks

IOEZ00044I Aggregate ZFSAGGR.BIGZFS.FS4 attached successfully.
IOEZ00388I Aggregate takeover being attempted for aggregate ZFSAGGR.BIGZ
FS.FS2
IOEZ00397I Recovery statistics for ZFSAGGR.BIGZFS.FS1:

elapsed time 3735 ms 114 log pages
10969 log records, 248 data blocks modified
9640 redo-data, 9 redo-fill records
3 undo records, 0 unwritten blocks

IOEZ00044I Aggregate ZFSAGGR.BIGZFS.FS1 attached successfully.
IOEZ00397I Recovery statistics for ZFSAGGR.BIGZFS.FS3:

elapsed time 4555 ms 138 log pages
12837 log records, 345 data blocks modified
11342 redo-data, 9 redo-fill records
20 undo records, 0 unwritten blocks

IOEZ00044I Aggregate ZFSAGGR.BIGZFS.FS3 attached successfully.
IOEZ00397I Recovery statistics for ZFSAGGR.BIGZFS.FS2:

elapsed time 5840 ms 308 log pages
17154 log records, 418 data blocks modified
15158 redo-data, 9 redo-fill records
0 undo records, 0 unwritten blocks

IOEZ00044I Aggregate ZFSAGGR.BIGZFS.FS2 attached successfully.

Each zFS member issues
message to show when it was
told member went down

Any time a zFS member wins
race to assume ownership of an
RWSHARE file system, it will tell
you.

And also tell you when its
successfully assumed
ownership

Log file recovery often required
for file systems that were being
updated when owner went
down – undo records means
transactions rolled back.

Not shown:

• IOEZ00589E – system could not
open file system to become owner.

• IOEZ00389E – Unexpected error
prevented system from assuming
ownership.

Shown on this slide are the messages specifically related to down-system recovery
processing. While other errors could occur during recovery processing (such as an
unexpected disk IO error for example), these messages show the general flow of
ownership assumption and whether the system successfully assumed ownership or
not.

18

18

Disk I/O Errors
� If an IO error occurs when zFS is performing a disk read or write operation it will issue:

– IOEZ00001E zFS I/O Error XXX occurred for aggregate aggrname.
• XXX is the VSAM error code.

– IOEZ00002E MMRE error id=AA cis=BB if=CC of=DD buf=YY CI=ZZ
• This second message describes actual disk blocks affected, intended for IBM level-2.

– zFS has built in limits to avoid a flood of messages to the system log.

� To avoid system hangs for lost channel paths for zFS file systems:
– Specify in IECIOSxx parmlib member:

• MIH IOTIMING=00:30,DEV=(XXXX-YYYY)
� Sets IO timeout to 30 seconds, for devices XXXX-YYYY

� If IO error occurred reading or writing user file contents
– Simply issues the above messages, file contents un-cached from memory.

� If IO error occurred reading or writing metadata
– Will disable access to the file system after issuing message:

• IOEZ00422E Aggregate aggrname disabled.

� If the file system is disabled:
– Try and correct disk hardware issue
– Might require a zFS salvage-repair if the hardware error caused corruptions or a restore

from backup
– Can also try un-mount-remount without mode switch but if corrupted, will become

disabled again

zFS will always issue messages IOEZ00001E and IOEZ00002E for disk IO errors that occur to a file
system; zFS has limits to keep the number of messages shown per-file system to a reasonable
amount. IOEZ00002E is intended for IBM service personnel.

If all channel paths are lost to a device, zFS will hang waiting for DFSMS to tell it that an IO is
complete (the IO will remain in the system queues) unless IO timeout is specified. This is
accomplished by updating the IECIOSxx parmlib member to specify an IO timeout for the device
ranges of devices that contain zFS file systems. This will ensure that timed-out IOs for lost channel
paths are handled like any other IO error.

If the IO error occurs when reading or writing the contents of a user fie, there will be no additional
action taken, though zFS will remove the cached contents of that file from memory. If the IO error
occurs with any file system metadata structures (such as the contents of a directory) it will disable the
aggregate for all access. In this latter case message IOEZ00422E will be issued.

Once the hardware error is resolved the administrator could attempt an un-mount re-mount without
mode switch which would un-disable the file system and allow user activity to resume. This will work
only if the hardware error did not cause permanent damage to zFS. If the hardware error is
something that will take a long time to resolve, it might be best to simply un-mount the file system
and then possibly restore from a backup, if possible. Once the hardware comes back online the
administrator could run the stand-alone salvage program (with no options specified which means
both verification and repair of the file system should be performed) to search for and repair errors.
The current salvage program available with z/OS 13 requires re-runs until it says the file system is
clean.

19

19

XCF Errors I: Overview
� XCF error types:

– Communication error transmitting or replying to another member
• This has been extremely rare during the life of zFS sysplex support.

– More likely is that a system went down/going down just prior to message transmit OR
– A hang or slowdown that exists on a plex member, these show as timeout errors in zFS.

� File Operations:
– Client to Owner Transmit/Reply Error or Timeout

• Generally speaking the individual operation will fail.
• The client will un-cache any data for that object.

– Owner to client callbacks
• Owner might have to reclaim tokens held by clients for an object
• If it cannot communicate to clients, tokens cannot be reclaimed and new accesses to object for all

other members fail until communication can be established.

� Administration Operations:
– Administration operations are operations like mount, un-mount, quiesce etc…
– A lost transmit or reply could leave zFS name-spaces out of sync with each other.

• In this case zFS will dynamically repair via validation and correction
• Any new administration operation is made to wait until zFS name space issues corrected due to

lost communication packets.

� Hangs and slowdowns appear to other members as a transmit or reply failure
– Will treat similarly to the above
– Administration operations have a 15 minute timeout and file operations a 10 minute timeout.

The one difference between a hang/slowdown and a lost transmit or reply packet is
that there is still a task doing that work on the member that took too long processing
the message; zFS handles those cases and will ensure that zFS systems stay
consistent with each other and prevent improper sysplex access to file system
objects and will repair zFS file system name-spaces.

20

20

XCF Errors II: Messages, Validation, Correction

� If an individual file operation has an XCF error or a timeout occurs you will see a message
like:

– IOEZ00659E Timeout exceeded for the Csvi Create operation on
ZFSAGGR.BIGZFS.FS1. A reply was not received from system DCEIMGHQ.

� If an administration operation like a MOUNT has an XCF error or a timeout occurs you will
see a sequence of messages similar to:

12.22.13 DCEIMGHR STC00106 *IOEZ00547I zFS has a potentially hanging XCF
request on systems: DCEIMGHQ.
12.22.15 DCEIMGHR STC00106 IOEZ00659E Timeout exceeded for the Connect
operation on
12.22.15 DCEIMGHR STC00106 ZFSAGGR.BIGZFS.FS2. A reply was not received
from system DCEIMGHQ.
12.22.17 DCEIMGHR STC00106 *IOEZ00613I zFS Name Space Validation is
running due to a detected XCF
communication failure or message timeout.
12.22.17 DCEIMGHR BPXF221I FILE SYSTEM ZFSAGGR.BIGZFS.FS2
FAILED TO MOUNT LOCALLY.
RETURN CODE = 0000007A, REASON CODE = EFF3650C
THE FILE SYSTEM IS ACCESSIBLE ON THIS SYSTEM THROUGH
A MOUNT ON A REMOTE SYSTEM.
12.22.22 DCEIMGHR STC00106 IOEZ00621E There is only one cache entry for aggregate
12.22.22 DCEIMGHR STC00106 ZFSAGGR.BIGZFS.FS2 on system DCEIMGHQ but
this entry indicates there

12.22.22 DCEIMGHR STC00106 are other systems connected.

zFS hang detector highlights
operator message warning of
hanging message

zFS issues timeout message for
operation that timed out.

Because an admin operation timed
out sysplex-wide zFS namespace
validation is initiated
Mount fails because client dceimghr
could not talk to owner dceimghq

� z/OS Unix function shipping now
occurs on dceimghr for this file
system, and it does not get benefit
of zFS RWSHARE sysplex.

There was a correction performed for the DCEIMGHQ namespace, which ensures
namespace consistency in this plex. The actual message text/correction intended
for IBM level-2 if needed.

As shown on later slides, zFS has a hang detector that highlights messages on the operator console
to warn when another system is taking too long for a message transmitted to them. In this case we
transmitted a desire to be an RWSHARE client for the file system that was being mounted, and it
somehow got hung-up on DCEIMGHQ (maybe that system is having a problem). The zFS hang
detector will un-highlight the message when the hang has passed. Any time a file or administration
related communication has a timeout error, zFS issues message IOEZ0659E to indicate the actual
operation that timed-out. zFS has code to prevent too many messages from flooding the system log
in cases of extreme hang-ups.

Since this was an administration command that timed out, that means there could potentially be an
inconsistency in the namespaces between DCEIMGHQ and DCEIMGHR (in this example,
DCEIMGHQ thinks DCEIMGHR is an RWSHARE client but since DCEIMGHR got a failure on the
XCF call to DCEIMGHQ they failed the mount and do not consider themselves an RWSHARE client)
and zFS namespace validation occurs. Since the mount of the file system on DCEIMGHR failed, that
means z/OS Unix function shipping will be used for that file system instead of zFS RWSHARE
support for the system DCEIMGHR. That is not a desirable case, and this will clearly show in the D
OMVS,F output that DCEIMGHR is a z/OS Unix client.

Any time validation finds a problem in a system’s namespace it will correct the problem and issue
messages to show what it corrected. Those messages are more useful to IBM level-2 than to a user,
but the user can at least take note that the inconsistency was corrected which ensures proper future
sysplex function.

21

21

Enabling Debug and Obtaining Dumps
� If you have a problem, IBM level-2 might ask for debug classes enabled.

– Can have debugs enabled at startup by specifying dataset in IOEFSPRM:
• DEBUG_SETTINGS_DSN=SUIMGHQ.PRIVATE.PARMS(ZFS)
• Which would contain statements such as this:

IOEDEBUG=(C=DIR,P=M,L=127)
IOEDEBUG=(C=CTKC,P=M,L=127)

– Can also dynamically enable or disable debug classes like this:
• F ZFS,IOED,C=DIR,P=M,L=127 -- this enables the DIR debug class
• F ZFS,IOED,C=DIR,P=N,L=0 -- this disabled the DIR debug class

� IBM level-2 might ask for you to increase your trace table size.
– Can specify the size only in the startup parms

• trace_table_size=500M
– Cannot dynamically re-size the trace table.
– Default is somewhat small, if possible, maybe make it larger in case you hit a bug.

� IBM level-2 or user might decide that dumps are needed for a situation (such as unexpected
failure of a file command or operation):

– Can obtain one at any time via:
• F ZFS,DUMP

– This dump command will do the following:
• Dump all zFS sysplex members
• Dump both z/OS Unix and zFS storage to allow for debugging of most problems.

A customer would not generally enable zFS debug classes unless requested by
IBM service. IBM service would provide instructions similar to those listed on this
slide for ensuring proper documentation is obtained and request a dump (if one is
not being auto-generated by zFS) via the F ZFS,DUMP command. One thing to
keep in mind is that the zFS trace table currently cannot be dynamically re-sized
(this should be fixed in a future release).

22

22

zFS Software Errors I: Overview
� zFS is continually checking for errors on all operations, and periodically:

– Has thousands of active checks in the code looking for problems that might affect
a file or file system, or the entire zFS system.

– Issues 2C3 abend, with a reason code denoting the error type, if a problem found.

� zFS classifies internal errors in one of 3 classes:
• Transient – No significant harm to the system, might affect only a single

operation and/or a single file.
• Disabling – An error has occurred that might affect the integrity of a file

system. In this case zFS disables access to the file system in hopes to
prevent bad data from being written to disk (this is very effective at preventing
corruptions).

� zFS will attempt an internal re-mount or ownership change in this case
up to a maximum of 3 times (>3 assumed a permanent corruption)

• Fatal – zFS has a severe error, or an error in error recovery itself, and will self-
restart. With z/OS 13 the restart will be an internal-restart that will preserve
the file system mount tree in most cases.

� If a file system is corrupted, or believed to be corrupted:
– zFS provides a program called ioeagslv that will verify and repair an aggregate.

• Will not scale to larger file systems though (IBM working on a solution for this)
• If problems are found, will repair them.
• Requires a re-run if problems are found, it is designed this way – re-run fixing

some problems until a run of the program finds no errors (IBM fixing this too)

zFS provides various types of software error recovery. Problems that do not have any serious
impact to the system or a file system will simply result in a dump and possibly an error received by an
application. If a problem is found with an in-memory copy of metadata for a file system, any IO to
that file system is stopped and operations to that file system are disabled. If zFS is running in a
single system environment or the file system is a NORWSHARE file system, zFS will initiate an
internal remount without mode-switch which will cause all data related to that file system to be purged
from memory and a new mount will occur which will ensure memory for that file system is newly
initiated.

If the problem is a fatal problem, one that affects many file systems or all of zFS, or there is an error
itself in error recovery or an unhandled error is found, zFS will restart. With z/OS 13 this restart will
be an internal restart which will stop user activity, re-initialize zFS and then re-mount any mounted
file systems and resume user activity preserving the mount tree and ensuring that the error condition
is corrected.

Actual disk corruption errors require that the file system be restored from a backup or corrected via
the zFS salvage program (ioeagslv). This program requires that it be run repeatedly until a run says
no errors are found in the file system (typically its about 3 times). IBM is working on providing a
better salvage program that scales to the largest zFS file systems and only requires one run to
correct a problem file system.

23

23

zFS Software Errors II: Transient and Disabling Classes

� All errors show a similar initial sequence of messages:

IOEZ00337E zFS kernel: non-terminating exception 2C3 occurred, reason
EA150342 abend psw 77C1000 8C20DCD6
IOEZ00064I General Registers R0: 4000000 42C3000 6BCDD000 C117572
IOEZ00064I General Registers R4: C11B068 EA150342 62F67378 EA150342
IOEZ00064I General Registers R8: 7EB1A34C 0 1 0
IOEZ00064I General Registers R12: 6BCE0000 6BCE0C30 8C65ACFA EA150342 …………… (more
register dumps)
IEA045I AN SVC DUMP HAS STARTED AT TIME=16.10.54 DATE=06/01/2012 903
FOR ASID (004A) QUIESCE = YES
IEA794I SVC DUMP HAS CAPTURED: 904
DUMPID=002 REQUESTED BY JOB (ZFS)
DUMP TITLE=zFS abend 02C3 reason EA150342 Jun 1 20:10:44 in module
IOEFSCM at offset 0010DCD6
IOEZ00334I Return code and reason code for dump is 40000000

� Disabling errors for RWSHARE file systems in a sysplex also do:

IOEZ00422E Aggregate ZFSAGGR.BIGZFS.FS1 disabled
IOEZ00548I Requesting that DCEIMGHR takeover aggregate ZFSAGGR.BIGZFS.FS1
(requests: local 0, new owner 0 total 0)

� Disabling errors for NORWSHARE file systems or single-system do:
IOEZ00422E Aggregate ZFSAGGR.BIGZFS.FS1 disabled
IOEZ00747I Automatically re-enabling file system ZFSAGGR.BIGZFS.FS1
IOEZ00048I Detaching aggregate ZFSAGGR.BIGZFS.FS1
IOEZ00725I Automatic re-enablement of file system ZFSAGGR.BIGZFS.FS1 complete.

With RWSHARE, zFS
switches ownership
to clear condition
(fastest method)

With NORWSHARE
or single-system,
zFS initiates a
remount without
mode switch

Transient errors only issue the PSW/register dump messages and show the return
and reason code for the x2C3 dump zFS issues.

For errors that require zFS to disable access to the file system, zFS will move
ownership to another sysplex member if the file system is an RWSHARE file system
and there is at least one other plex member capable of assuming ownership of the
aggregate. This results in a clearing of the in-memory structures on the original
owner which clears the error condition. In all other cases zFS would perform an
internal remount with mode switch. In this case z/OS Unix would internally un-
mount the file system resulting in zFS clearing its memory of any data related to the
file system and a fresh mount would occur for the file system. While the resolution
of the problem occurs, any applications requesting access to the file system are
made to wait.

24

24

zFS Software Errors III: Internal Restart Process (Simplified)

ioefscm

FS1 FS2 FS3

Application tasks

FS1 FS2 FS3

1. New Application requests
stopped in ioefscm

2. New IOs prevented
(fenced), outstanding IOs
waited on

3. Waiting/running application
tasks return error

Ioefskn (old)

1

2

Rc=157 Rc=157

3

ioefscm

FS1 FS2 FS3

Application tasks

4. zFS leaves XCF group

5. ioefskn and all its storage
is unloaded, all zFS
datasets remain allocated
and open

FS1 FS2 FS3

ioefscm

FS1 FS2 FS3

Application tasks

FS1 FS2 FS3

Ioefskn (new)

6

7a
7b

7c

8a
8b

8c

6. Ioefskn reloaded and re-initializes all
caches at same sizes before restart
occurred

7. File systems internally remounted in
order of application demand

8. Application tasks resumed in
demand order

zFS internal restart is designed to handle fatal errors; hence, errors that significantly affect zFS operation or errors in error
recovery (leaving something in an inconsistent state) and is a method to avoid a system-IPL.

1. zFS will, as quick as possible, make new application requests wait tracking how many tasks are waiting for each
currently mounted file system. Ioefscm owns the file system and vnode storage, so that storage remains.

2. Disk IO is fenced, no new IO is allowed and any outstanding IOs are waited on.
3. And application tasks running/waiting inside ioefskn code are made to return with error (a common error code will be

157 – EMVSERR).
4. zFS will then leave the XCF group, other systems would detect the system went down and will try and assume

ownership of file systems owned by this system.
5. Ioefskn tasks are stopped and ioefskn and all its storage (which is all zFS storage with exception of the file system and

vnode structures accessed by z/OS Unix) is freed.
6. Ioefskn is then re-loaded and initialized so all caches and storage start clean.
7. File systems will be internally re-mounted in application demand order and as soon as an application task’s file system

is ready that application task can resume processing.

This internal restart process is opaque to z/OS Unix. no file systems are unmounted or lost. Some file systems may be taken
over by other plex members but if most of the access is from the system that restarted, zFS usage based movement
will move the file system back.

This ensures the fasted possible resolution to the error, the error condition should truly be cleared. Some applications will
see errors if they had an open file at the time, this scheme preserves the file system tree but some applications will see
errors at the time of restart.

Note that internal restart does not re-read the IOEFSPRM file, all program settings, cache sizes and options are the same as
they were at the time of the zFS restart.

Note that an internal restart tries to leave things as they were at the time of the restart; this means that when zFS restarts it
does not re-read the IOEFSPRM dataset, but instead initializes caches at the same size as they were before the restart
occurred.

25

25

Software Errors IV: Internal Restart Example
13:52:21 F ZFS,ABORT
13:52:21 IOEZ00338A zFS kernel: restarting exception 2C3 occurred, reason

EA150384 abend psw 77C1000 8C20DCD6
13:52:21 IOEZ00334I Return code and reason code for dump is 00000000
13:52:56 IOEZ00051I An error occurred in program IOEFSKN
13:52:56 IOEZ00357I Successfully left group IOEZFS.
13:52:56 IOEZ00057I zFS kernel program IOEFSKN is ending.
13:52:57 IOEZ00579I Restarting zFS kernel, Restart count 1
13:52:57 IOEZ00559I zFS kernel: Initializing z/OS zSeries File System 703

Version 01.13.00 Service Level OA38177 - HZFS3D0.
Created on Mon Mar 5 13:16:13 EST 2012.
Address space asid x46

13:52:57 IOEZ00178I DCEIMGHQ.PARMLIB(ZFSPARMS) is the configuration dataset
currently in use.

13:52:57 IOEZ00727I Pre-processing 100000 vnodes for file system restart
13:53:32 IOEZ00617I zFS is running sysplex filesys,rwshare with interface level 4
13:53:32 IOEZ00350I Successfully joined group IOEZFS
13:53:32 IOEZ00646I*zFS Kernel is restarting 4 file systems 708
13:53:32 IOEZ00055I zFS kernel: initialization complete.
13:53:33 IOEZ00397I Recovery statistics for ZFSAGGR.BIGZFS.FS3:

elapsed time 352 ms 37 log pages
3527 log records, 40 data blocks modified
3075 redo-data, 0 redo-fill records
2 undo records, 0 unwritten blocks

13:53:33 IOEZ00728I Resuming user operations for file system ZFSAGGR.BIGZFS.FS3
Waking 7 waiting tasks
Re-cached 1435 vnodes for this file system

……….
13:55:32*IOEZ00646I zFS Kernel is restarting 1 file systems
13:55:39 IOEZ00731I zFS internal restart complete.

1. Fatal error occurred,
issue diagnostics,
fence IO, stop calls
into zFS and wake
waiting tasks.

2. zFS unloads and re-
loads, indicates
restarting.

3. Pre-processes cache
of objects that
applications were
accessing

4. Rest of initialization
completes and begin
internally re-mounting
file systems

5. File system FS3
recovered and
application tasks
resumed

6. Last of file systems
re-mounted and
restart complete

Its important to note that the application users of file system
ZFSAGGR.BIGZFS.FS3 are running again as soon as message IOEZ00728I is
issued. This restart was from a high stress workload against a zFS with very large
caches and applications that were accessing a very large number of objects.

26

26

System Hangs I: Overview
� Hangs that are the fault of zFS are rare in the field.

� zFS will often warn the administrator via highlighted operator messages when:
– A target system taking a long time processing a message from a sending system

• IOEZ00547I zFS has a potentially hanging XCF request on systems: DCEIMGHQ.
– An external function call seems to be taking a long time

• IOEZ00604I Task asid=0059 tcb=6E8448 is delayed outside zFS while opening
dataset.
� This message used for any unexpectedly long external call to DFSMS, XCF, GRS,

waiting for an IO completion etc… by zFS.
– A zFS task seems to not be making progress, or taking too long, or possibly looping:

• IOEZ00605I Task asid=0059 tcb=6E8448 appears to be delayed.
If the task is a zFS task, zFS will restart since we assume zFS has a loop.

� zFS has a hang detection task that will:
– Internally restart zFS if it finds a confirmed deadlock in the classic sense after first

reporting the deadlock and obtaining proper dumps (extremely rare in the field).
– Issue above warning messages any time it finds something taking a long time.
– Warn the user if a potential possible hang exists in zFS:

• IOEZ00524I zFS has a potentially hanging thread caused by asid=0048
tcb=728440 asid=0068 tcb=6C6388
� Will list any tasks that appear to be possible culprits of the hang, it does not list
every waiting task, just the potential suspects that may have caused a hang.

zFS has a hang detector task that is waking up every 20-30 seconds and checking
for anything that is taking too long or running too long. It will warn the administrator
via highlighted operator messages if anything is taking too long or if another system
is taking too long processing a request from this system. These messages
appearing at the operator’s console are a sign of a possible problem or a
performance issue. If the hang detector ever finds a true deadlock in the classic
parallel programming definition, it will obtain a dump and initiate an internal restart
since zFS has a fatal error where it will leave the system hung (this is extremely
rare). If the hang detector finds signs of a possible deadlock (the hang detector
does not have every piece of information sysplex-wide to confirm in all cases) it will
simply issue message IOEZ00524I and indicate the likely suspect tasks that are
involved in the potential hang. If this message is not being deleted and the hang
does not appear to be going away, a hang break by the administrator might be
required.

27

27

System Hangs II: Diagnosis
� F ZFS,QUERY,THREADS,OLDEST (APAR #XXXXXX)

– Lists the tasks (and system name) that is waiting the longest sysplex-wide
– If repeated issuance of this command shows same tasks (nothing changing) you have a

likely hang

� zFS uses GRS latches and will ENQUEUE GRS resources for certain administration
operations (such as MOUNT, QUIESCE, performance based aggregate movement),

– D GRS,C – will include zFS ENQUEUEs and latches
• Look for EXCL access on IOEZJOIN and/OR IOEZNS resources
� Means a system is delayed joining or leaving sysplex or administration commands
timed-out and a namespace validation is pending

� If message IOEZ00604I is shown, look at system log for problems with the catalog, DFSMS,
XCF, GRS, or problems communicating with a sysplex member based on the message text.

19.42.59 DCEIMGHQ f zfs,query,threads,oldest
19.42.59 DCEIMGHQ STC00158 IOEZ00438I Starting Query Command OLDEST.

Oldest zFS and z/OS UNIX Tasks

STK/Recov TCB ASID Stack Routine State
-------- -------- ---- -------- -------- --------
System DCEIMGHQ
612E8820 005FF188 004A 611843E8 ZFSRDDIR WAITLOCK
612A4000

since Jun 4 23:42:59 2012 Current DSA: 61185258
wait code location offset=04E2 rtn=get_evp_locked

lock=71FA79F0 state=E2F82001 owner=(62F82000 0077 5CEBF8)
lock description=Vnode-cache access lock

Operation counted for OEVFS=667A4150 VOLP=63162950

fs=ZFSAGGR.BIGZFS.FS3

Shows system name, time it
started waiting and file system
its using

Generally speaking the F ZFS,QUERY,THREADS,OLDEST would be used to determine which
system had the oldest waiting task. If repeatedly issuing the command provides the same exact
output, or the command indicates it cannot communicate with a particular sysplex member, then
those sysplex members are likely the source systems of a sysplex-wide hang. This command also
works single-system, if repeated issuance of the command shows the same output over a “long”
period of time, then its likely there is a hang. The zFS hang detector will also likely be issuing
warning messages but zFS sysplex is one large shared file system, so multiple system can
sometimes be complaining about each other.

Another source of analysis can be the use of the D GRS,C command. This is useful to show cases
where there is contention with zFS sysplex administration options; it is not as valuable as the
query,threads command since this command really factors every last task running inside zFS
sysplex-wide. But it is another method of showing contention.

If message IOEZ00604I is shown on the operator’s console, then it could be the case that a
component that zFS is calling is the source of a hang. A zFS task calling an external component
might hold a lock in zFS, which makes other tasks wait, though the ultimate issue is an external
component. The diagnosis procedure of the component shown by the message should be used,
possibly consulting the system log or issuing additional command to find out what is wrong.

28

28

System Hangs III: Resolution

� If the hang is due to a component that zFS calls due to message IOEZ00604I
– � Refer to that components documentation for a resolution procedure

• … fixing zFS is not going to fix the external component
• Canceling the listed tasks/jobs may break the hang in some cases, depending on the

component, unless the listed task is a zFS task, then you have to use hangbreak.

� But if the hang looks to be in zFS itself then the recommended procedure is:
– Use F ZFS,QUERY,THREADS,OLDEST to determine oldest hanging system
– Issue F ZFS,HANGBREAK on that plex member (or single-system)

• � This will cause an internal restart after ensuring proper documentation obtained,
this should get dumps and solve the problem.

• (If for some reason an internal restart does not work or it gets hung (this should be
rare), then perform a system IPL after obtaining a dump of the zFS and z/OS Unix
address spaces)

– Remember that canceling user tasks/jobs will normally not break a zFS hang
– When the internal restart is complete, check to see that hang is resolved, if not then

repeat these steps with next oldest system.

� Can initiate a sysplex-wide internal restart:
– F ZFS,ABORT,ALL

• � This will do an internal restart on all plex members which ensures every zFS
starts with fresh storage.

• Generally an approach of last-resort.

29

29

Storage Shortages I: Overview
� zFS does cache in-memory copies of disk data in dataspaces, but all of its data structures

are in its primary address space.

� zFS keeps track of how much storage it is using and queries the operating system to
determine how much storage it has available in its address space.

� zFS has the following storage thresholds:
– USS/External Limit: 60M below the address space limit

• If exceeded zFS will fail any operation that attempts to allocate memory for an object
that is not already cached in memory
� Applications will see ENOMEM failures.

• zFS issues the following highlighted operator message:
IOEZ00662I zFS is low on storage.

– Non-critical Limit: 20M below the address space limit
• If exceeded only requests for critical storage allowed
• Very dangerous, zFS could very well run out of memory
� Applications even more likely to see ENOMEM and other failures.

• zFS issues the following highlighted operator message:
IOEZ00663I zFS is critically low on storage.

– Address space limit (as determined by z/OS):
• If exceeded, zFS will restart.
• Restart will be:
� Internal restart, if most of storage not held by z/OS Unix
� External restart, if a large portion of storage held by z/OS Unix access of zFS
objects.

Because zFS is a 31 bit program, it is constrained to hold all of its data structures below the bar. It
does keep in-memory copies of disk blocks in data spaces, but the tracking structures for those
caches and all other structures are inside the zFS primary address space. zFS queries the
virtual storage management (VSM) component of z/OS to determine how much storage it has in
its address space. zFS has defined 3 limits which if exceeded, will alter zFS function:

1. USS/External Limit – 60M below the VSM limit, if this is exceeded zFS will issue message
IOEZ00662I. It will also fail any application request that tries to access or create a file system
object not already cached in zFS memory. zFS keeps an LRU cache of the most recently
accessed objects by applications. If zFS has to allocate storage for a new object it will simply fail
if this limit is exceeded. Thus if message IOEZ00662I is on the operator’s console, applications
likely have seen failures.

2. Non-critical Limit – 20M below the VSM limit, if this is exceeded, only certain types of storage
allocations are allowed internally in zFS. This means that most operations, even operations to
currently cached objects will fail.

3. Address space limit – the VSM limit, if met/exceeded zFS will restart. If the reason that zFS ran
out of storage is an excessive number of objects held by z/OS Unix (z/OS Unix has a hold on
cached objects it accesses, zFS cannot delete these structures even in an internal restart, and
thus an internal restart would not correct the condition in this case) then it will simply do an
external restart. An external restart means that zFS will completely stop and the address space
will end and then its up to z/OS Unix to restart zFS based on the rules of z/OS Unix. An internal
restart would occur if z/OS Unix was not responsible for the low-storage condition (hence likely
some zFS storage leak) and an internal restart would likely correct the condition and therefore
would solve the problem and leave the file system mount tree intact.

30

30

Storage Shortages II: Diagnosis and Actions
� F ZFS,QUERY,STORAGE – shows zFS storage use

IOEZ00438I Starting Query Command STORAGE. 778
zFS Primary Address Space Storage Usage

Total Storage Available to zFS: 1738539008 (1697792K) (1658M)
Non-critical Storage Limit: 1717567488 (1677312K) (1638M)
USS/External Storage Access Limit: 1675624448 (1636352K) (1598M)
Total Bytes Allocated (Stack+Heap+OS): 1669189632 (1630068K) (1591M)
Heap Bytes Allocated: 1587033610 (1549837K) (1513M)
Heap Pieces Allocated: 11445446
Heap Allocation Requests: 4
Heap Free Requests: 3

� If storage dangerously close or exceeds USS/External Storage Access Limit:
– Try reducing cache sizes (meta_cache_size/metaback_cache_size/user_cache_size) to

free some storage via zfsadm config.
– If cache reduction does not solve problem, report it to IBM service.

� zFS should be run with a region size of 0M

Address space limit
determined by VSM

Non-critical limit

USS/External limit
Storage currently
allocated

If zFS is low on storage, one possible method of freeing some memory is to reduce
cache sizes via the zfsadm config command. The query storage command will also
show a per-component breakdown (not shown here) which can be used to
determine which cache is the best to reduce in size. Generally speaking, when
increasing caches due to performance tuning, be careful not to make them too large
for zFS primary storage; you want to prevent a storage shortage rather than correct
one.

31

31

Publications of Interest

� z/OS UNIX System Services Planning (GA22-7800)
General Administration of z/OS UNIX file systems

� z/OS Distributed File Service zSeries File System Administration (SC24-5989)
zFS Concepts and zfsadm command for zFS

� z/OS Distributed File Services Messages and Codes (SC24-5917)
IOEZxxxt messages and X’EFxxrrrr’ reason codes for zFS

� z/OS MVS System Commands (SA22-7627)
Describes D OMVS command

� QR Code

���
���
���

