
What and Why of System z Millicode

Bob Rogers
IBM Corporation

rrrogers@us.ibm.com

August 7, 2012
Session Number 11773

Abstract

Millicode as an advancement over microcode is arguably
one of the best recent ideas in mainframe computer
design. While microcode requires a distinct microcode
processor to be designed and built, millicode shares the
same processor that runs regular software, allowing it to
take advantage of all the technology investment in that
processor. In IBM mainframe processors, millicode is used
to implement complex instructions, to implement other
elements of the architecture and to provide system
initialization, error recovery and other control functions.
This presentation takes a look at z/Architecture millicode
from a number of perspectives.

Important Disclaimer

• THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED
FOR INFORMATIONAL PURPOSES ONLY.

• WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND
ACCURACY OF THE INFORMATION CONTAINED IN THIS
PRESENTATION, IT IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED.

• IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT
OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION
OR ANY OTHER DOCUMENTATION.

• NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, OR
SHALL HAVE THE EFFECT OF:

• CREATING ANY WARRANTY OR REPRESENTATION FROM IBM
(OR ITS AFFILIATES OR ITS OR THEIR SUPPLIERS AND/OR
LICENSORS); OR

• ALTERING THE TERMS AND CONDITIONS OF THE APPLICABLE
LICENSE AGREEMENT GOVERNING THE USE OF IBM
SOFTWARE.

What is Millicode?

• Answer: Millicode is a form of microcode.

• So what is microcode?

• To paraphrase Wikipedia: Microcode is a layer of
hardware-level instructions involved in the implementation
of higher level machine code instructions.

• A microarchitecture is the actual architecture of a machine
which executes internal microcode which in turn
implements the external architecture of the machine as
seen by software.

• Microcode is used not only to implement the instruction set
architecture but also other controls like interrupt processing.

4

The invention of microcode is attributed to M.V.Wilkes, Proc. Cambridge Phil. Soc., pt. 2, vol. 49, April 1953, pp. 230-238.

The term architecture was first applied to a computer instruction set by Gene Amdahl.

What’s good about Microcode?

• Originally developed as a simpler method of developing
the control logic for a computer.

• Logic errors in the microcode can be fixed with a reload of
the microcode without actual hardware changes.

• Microcode patches can even be used to work around
errors in the hardware.

• Machines with differing internal designs and built on
different hardware technologies can present a single
architecture to software.

5

An Example: System/360 Model 30

• Most models of the IBM System/360 line were microcoded
machines.

• This allowed the System/360 architecture to be provided
on machines across wide ranges of price and performance
based on the underlying technology and engineering.

• The Model 30 was the low-end model.

• Implemented the 32-bit S/360 architecture on a much simpler
machine:
• An 8-bit machine with 8-bit data paths
• GPRs were actually in core memory
• The microcode itself was in a Read-only Store (ROS)

Forms of microcode: Horizontal

• Horizontal microcode
• A type of code in which the instructions are composed of a

sequence of bit fields that more or less directly control the
data flow with the CPU.

• Horizontal microcode instructions are very literal and do not
need much decoding.

• As a simple example, one instruction might
• Gate the value in a register to the left half of an adder
• Gate the value in another register to the right half of the adder
• Cause a 2s-compliment addition in the adder
• Shift the result by 4 bits
• Gate the result to some other register

• A single micro-instruction might perform more than one
operation in a single cycle.

• VLIW (very long instruction word) architectures are somewhat similar to a
horizontal micro-architecture

Forms of microcode: Vertical

• Vertical microcode

• A type of code with instructions very similar to the types of

instructions that programmers are familiar with.

• Basically, a vertical micro-architecture is just the architecture

of a simpler machine than the one presented to

programmers.

• On the simpler machine, the hardware and microcode

implement the more complex architecture which is presented

to programmers.

• Each micro-instruction typically does only a single operation

in a cycle.

An Example: S/390 9672 G3

• The early CMOS S/390 processors used vertical
microcode. It was very similar to familiar machine
language instructions, but the architecture is much simpler
than the target architecture (i.e. S/390).

• Most of the frequently used simple instructions were
implemented directly in hardware.

• More complex functions were implemented in vertical
microcode that ran on distinct microcode processors which
acted somewhat like a coprocessor.

• The microcode programs were stored in a special memory.
If there was more microcode than fit into the special
memory then the microcode for some instructions had to
be "paged in" from regular memory before execution.

Forms of microcode: Millicode

• Millicode on the IBM mainframe is a vertical microcode with
some differences

• IBM System z micro-architecture instruction set is a superset of
a subset of the instruction set of the external architecture
described in Principles of Operation.

• Millicode runs on the same hardware processor as customer
software.

• Architected instructions that are implemented in hardware are also
available to millicode programs.

• The millicode architecture includes additional instructions and
registers not available in the external architecture.

• Instructions which are implemented in millicode, of course, are not
available to millicode programs

An Example: S/390 9672 G4

• Starting with 9672 G4, the processors used a vertical code
which is very similar to the target architecture (S/390,
z/Architecture).

• It is so similar that it is executed on the same processor as the
target architecture. There is no need for a special
microprocessor.

• The programs are stored in standard memory (but not
accessible to programs) and accessed via the L1 instruction
cache, just like normal programs. There is no special instruction
store1.

• Because of these similarities to normal code, this type of code
was named Millicode.

1Actually, G4 had a read only millicode cache to hold some performance sensitive routines. The rest
of the millicode was handled as described.

Millicode Implementation

• Since millicode executes on the same processor as
zArchitecture instructions, that processor must be augmented

with additional state information and be capable of executing

additional instruction types.

• there is a "millicode mode" - millimode

• millicode status: GPRs, ARs, millicode instruction address register
plus other millicode registers

• there are instructions to move between the register sets

• other special instructions only available in millimode

• cannot use instruction implemented in millicode

• when millicode is entered, specific millicode registers are loaded
before the millicode is given control.

Uses of System z Millicode

• On modern systems, most of z/Architecture is
implemented in hardware.

• Millicode augments the hardware to provide:

• System configuration functions

• System initialization functions

• Virtualization support for logical partitioning

• Complex instructions

• I/O functions

• Interrupts and other control functions

• RAS, Recovery, Logouts

• Instrumentation

Reasons for Millicoded Instructions

• Very complex instructions can be implemented with
reasonable engineering expense.

• Conversely, the ability to implement in millicode allows the

architecture the freedom to define very complex instructions.

• Compatibility across processor generations can be
provided by an early implementation in millicode.

• Millicode has access to hardware facilities not available to
normal code.

More Reasons for Millicoded Instructions

• Millicoded instructions are non-interruptible.

• Can perform multiple storage updates without requiring

explicit disablement

• Millicode runs with high authorization.

• This allows well-defined operations to be performed without

needing to invoke the operating system (e.g. via SVC).

• A millicoded instruction can provide common functions
almost like subroutines.

Very Complex Millicoded Instructions

• Using millicode allows engineers to provide complex
functions without complex logic design.

• Many of the most complex z/Architecture instruction include
over 100 cycles of activity

• Examples:
• Program Call (PC), Branch and Stack (BAKR), Program Transfer

(PT)
• Load Address Space Parameters (LASP)
• Perform Locked Operation (PLO)
• Cipher Message (KM)
• I/O Instructions (SSCH, TSCH, HSCH, TPI), etc.

Compatibility through Millicode Implementation

• Instructions and processor facilities can be provided earlier
by providing an initial implementation in millicode.

• This enables greater compatibility and provides a test
environment for functions later implemented in hardware.

• Examples:

• Compare Double and Swap (64) on z900

• Long Displacement Facility on z900

• Decimal Floating Point on z990

Millicoded Instructions as Subroutines

• Some millicoded instructions are implemented to provide a
common function.

• MVCL and CLCL are examples of functions that can be done in
normal code in a dozen lines of code or so (more if padding).

• Others include Translate (TR), Translate and Test (TRT)1.

• In many cases, implementing these functions in normal code
actually takes less cycles than using the millicoded instructions.

• However, in some cases, there is special hardware to make these
common functions execute more efficiently.

• Using these “machine-provided subroutines” can reduce code bloat
and improve programmer productivity.

1 The newest IBM mainframe processors have special hardware to assist

Translate and Translate and Test.

Millicoded Instructions for non-interruptibility

• Millicode can efficiently implement functions that must execute
without interruption.
• Millicode, by its nature, is not interruptible.

• Using a millicoded instruction is faster than disabling for interrupts in
normal code, performing the function and then re-enabling.

• Disabling for interrupts is not available to unauthorized application code.
Unauthorized code must depend upon an operating system service to
perform the function.

• An example is Extract CPU Time (ECTR). It “atomically” extracts the CPU
Timer value, subtracts it for one operand and adds a second operand to
the result.

• An interruption during these calculations leads to incorrect results because the
operating system updates the fields which are the operands whenever an interrupt
occurs.

• Before this instruction was introduced, an operating system service was needed to do
this calculation of “CPU time used”.

• The Perform Locked Operation (PLO) is an obvious example of taking
advantage of the non-interruptibility of millicode.

Millicoded Instructions for Authority

• Millicode can perform operations that require levels of
authority

• Millicode is self-enforcing as far as authorization is concerned – it
does whatever it wants to do.

• Millicode can use its authority to perform well-defined operation for
unauthorized programs.

• Using a millicoded instruction is faster than using an SVC or PC
routine that has the appropriate authority.

• Examples are the stacking instructions and Extract CPU Time.

Millicode for access to special hardware

• In some cases, millicode has access to hardware facilities not
available to normal code.

• For example, the MVCL instruction can use a hardware “data

mover” when moving a full 4K frame of data (i.e. 4K bytes on a
4K boundary).

• The “data mover” can move data out in the memory nest without

bringing it into processor cache. The data can be moved as a

number of blocks that can be moved in parallel.

• As another example, the Edit (ED) and Edit and Mark (EDMK)

instructions are supported by special hardware not available in

the external architecture.

Performance of Millicoded Instructions

• There’s nothing magic about millicode. It runs in the same way
and at the same speed as ordinary software.

• Therefore, it’s often possible to implement a function in normal
code which runs faster than using a millicoded instruction to do
that function.

• When there is a choice of using a millicoded instruction or
writing the function in open code, trade-offs need to be
considered.

• Convenience and programmer productivity

• Code footprint size

• Whether non-interruptibility is required

• Whether the millicode has access to special hardware (e.g. some
cases of MVCL and CLCL, data compression, encryption)

Why Millicode is a Great Idea

• Based on the fact that millicode runs on the same
processor as regular code:

• additional cost to design and manufacture a separate
processor to run millicode are avoided.

• Millicode performance benefits from all the optimizations of the
main processing engine.

• Millicode RAS benefits from all the RAS mechanisms of the main
processing engine.

• There is very low latency in switching into and out of millicode
execution.

How Millicode differs from Program Code

• To get its work done,

• Millicode needs additional hardware registers:
• Millicode GPRs, ARs, millicode instruction address register

• Special registers: Operand Access Control Registers (OACRs)

• Special instructions:
• To copy values between the architected registers and the millicode

registers

• Instructions to access special hardware

• Millicode needs to be able to access data
• in memory in the current partition using application addressability

• in system memory that in not in any partition.

Millicode GPRs and ARs

• Millicode has its own 16 GPRs and 16 ARs.
• Operands in program registers need to be transferred to

millicode registers and results returned to program
registers.

• Some operand registers are specified in the instruction text
and some are implicit.

• There are special millicode instructions to extract or set
program registers.

• Extract Program GR, Set Program GR
• Extract Program GR Indirect, Set Program GR Indirect
• Extract Program AR, Set Program AR
• Extract Program AR Indirect, Set Program AR Indirect

• To assist with transferring the data, four 4-bit register
indirect tags are defined, with each pointing to the GR
specified as an (implicit or explicit) operand by the
instruction.

Millicode Entry

• Even for instructions implemented in millicode, the
hardware performs some setup before branching to the
millicode routine.

• For example, here is the setup for Compare Until
Substring Equal (CUSE):
• Machine Check if Millicode Mode

• Specification Exception if R1 or R2 are Odd GRs

• IAREGA7.0:31 set to Instruction Text

• RI0 set to R1 GR number

• RI1 set to R2 GR number

• RI2 set to R1+1 GR number

• RI3 set to R2+1 GR number

Millicode Memory Access

• When a GPR is used as a base register, the register number is
significant in determining the location of the data.
• Registers 1-7: the storage access is made using the same addressing

mode that is currently indicated by the system program.
• Registers 12-15: the corresponding address is treated as a hardware

system area address.
• Register of 8-11: special hardware designates the address mode used for

the storage access.
• Four OACRs correspond one-to-one to millicode base registers 8-11.

These registers include:
• storage access key
• address-space control (primary, secondary, home, or access register)
• addressing mode (24-bit, 31-bit, or 64-bit addressing)
• addressing type (real, virtual, host real, absolute, hw system area)
• special controls which can block program event recording (PER) storage

alteration detection or protection exceptions, and can pretest for store-type
access exceptions.

Perform Translator Operation (PXLO)

• Load Address Space Control Element - Determines the ASCE used for a translation

• Load Absolute Address - Obtains an Absolute Address of a translation

• Load Real Address - Obtains the Real Address of a translation

• Load Host Real Address - Used while in emulation mode to obtain the Host Real
Address, when translating a Host Virtual Address

• Load Page Table Entry - Obtains the Page Table Entry address for a translation

• Load Host Page Table Entry - Used while in emulation mode to obtain the address of
the Host Page Table Entry, when translating a Host Virtual Address

• Purge TLB - Purges previous translations from the TLB

• Invalidate Page Table Entry - Invalidates selected entries from the TLB

• Read TLB - Reads an entry from the TLB

• Write TLB - Writes an entry into the TLB

• Purge Data Cache - Purges all entries from the Data Cache

• Purge Instruction Cache - Purges all entries from the Instruction Cache

Adapted from Millicode in an IBM zSeries processor, IBM Journal of Research and Development,

Volume 48 Issue 3-4, May 2004

A Footnote to History

• The floppy disk was invented specifically as a way of
loading microcode.

• In about 1971 IBM started using floppy disks as a medium
for loading microcode into their System/370 computers
during µIPL prior to system IPL.

• These were 8 inch floppy disks.

Bibliography

• Millicode in an IBM zSeries processor, IBM Journal of
Research and Development, Volume 48 Issue 3-4, May
2004

• Even More of What You Do When You're a CPU?
SHARE 105 (Boston) session 2835 by Bob Rogers

• Coding Assembler for Performance, SHARE 107
(Baltimore) session 8192 by David Bond

• My article on millicode, IBM Systems Magazine,
Mainframe edition to be published in the
September/October 2012 issue

