
11669: Make Your C/C++ and PL/I Code FLY With
the Right Compiler Options

Visda Vokhshoori
IBMIBM

Peter Elderon
IBM

AGENDA

• What does application performance mean to you and how
do you achieve it?

• Compiler knobs

22

• Summary

What does application performance
mean to you and how do you achieve it?

• Reduction of code size • Newer hardware

3

• Reduction in the time spent
running

• Reduction in the time spent
compiling

• Code for performance

• Utilize compiler option

-Often design is around a functionality of a feature
-Tuning the application for better performance is _often_ (not
always) an after thought and in reaction to an observed
non-ideal transaction response time or througput

-The performance of the transaction is subject to change

4

-The performance of the transaction is subject to change

ARCH

-The ARCH option specifies the
architecture for which the
executable program’s
instructions are to be generated.

-Default is ARCH(5) produces

5

-Default is ARCH(5) produces
code available on 2064-xxx
(z900)

Architecture
Machine supported Hardware features

exploited

ARCH(5) z900 64-bit support,…

ARCH(6) z990 Support long
displacement facility,…

6

ARCH(7) z9 Extended immediate
support, Decimal
Floating Point,…

ARCH(8) z10 Compare and Branch
Add Logical with

Signed Immediate, …

ARCH(9) z196 Conditional Load/Store,
Non-desctructive ops,

high word,…

ARCH 7

PL/I
• >= 7: srstu used to inline some

widechar index
• >= 7: trtr used to inline some

searchr and verifyr

C/C++ & PL/I
• On z9 machine IEEE DFP was

added in software, millicode
• On z10 machine support added to

the hardware
• Use of –qdfp –qarch=7 to enable

7

• >= 7: cu12 used to inline some
ulength and uvalid

• >= 7: cu21 used to inline some
ulength and uvalid

• >= 7: cu12 used to inline memcu12
• >= 7: cu21 used to inline memcu21

• Use of –qdfp –qarch=7 to enable
the new dfp instructions

• In addition decimal types can be
used to facilitate DFP programming

• In the experiments using DFP
provided 5x speedup

ARCH 8

PL/I
>= 8: used to inline conversions between hex/ieee float

and dfp float

• ADD LOGICAL WITH SIGNED IMMEDIATE
• COMPARE AND BRANCH (RELATIVE)
• COMPARE (HALFWORD) RELATIVE LONG
• COMPARE IMMEDIATE AND BRANCH (RELATIVE)
• COMPARE LOGICAL AND BRANCH (RELATIVE)
• COMPARE LOGICAL IMMEDIATE AND BRANCH

C/C++
• Compare and Branch
• Prefetch
• ADD LOGICAL WITH SIGNED IMMEDIATE
• COMPARE AND BRANCH (RELATIVE)
• COMPARE (HALFWORD) RELATIVE LONG
• COMPARE IMMEDIATE AND BRANCH (RELATIVE)
• COMPARE LOGICAL AND BRANCH (RELATIVE)
• COMPARE LOGICAL IMMEDIATE AND BRANCH

(RELATIVE)

8

• COMPARE LOGICAL IMMEDIATE AND BRANCH
(RELATIVE)

• COMPARE LOGICAL RELATIVE LONG
• LOAD HALFWORD RELATIVE LONG
• LOAD LOGICAL (HALFWORD) RELATIVE LONG
• LOAD RELATIVE LONG
• MULTIPLY SINGLE IMMEDIATE
• STORE (HALFWORD) RELATIVE LONG
• and also the PFPO instruction (useful in converting

bewteen DFP and hex or between DFP and IEEE
binary)

(RELATIVE)
• COMPARE LOGICAL RELATIVE LONG
• LOAD HALFWORD RELATIVE LONG
• LOAD LOGICAL (HALFWORD) RELATIVE LONG
• LOAD RELATIVE LONG
• MULTIPLY SINGLE IMMEDIATE
• STORE (HALFWORD) RELATIVE LONG

ARCH 8 (C/C++)

-Data prefetch instruction PFD
Because of memory latencies, cache misses can be very expensive
Tell h/w to pull data from memory into cache
Have seen 60% speedup with it's use (program did a lot of data movement)
IBM JVM uses it for double-digit improvement of GC
Compiler can insert prefetch instructions for you (minimum: ARCH=8 and at least HOT)
Compiler currently only recognizes loop-based traversal over arrays
Will not catch things like red-black trees etc

9

Will not catch things like red-black trees etc
-XL z/OS C/C++ compiler provides built-ins, a C-level routine to use directly
__dcbt, __dcbst, __dcbf and __dcbtst (same as on AIX)

http://publib.boulder.ibm.com/infocenter/zos/v1r12/index.jsp?topic=%2Fcom.ibm.zos.r12.cb
cpx01%2Fcbcpg1b0334.htm

-Exploiting the z10 prefetch built-in
example:

https://www.ibm.com/developerworks/mydeveloperworks/blogs/5894415f-be62-4bc0-81c5-
3956e82276f3/entry/exploiting_the_z10_prefetch_built_in25?lang=en

-Biggest problem is knowing where to use it, and tuning it
Profiler & developer knowledge can help!

ARCH 9

PL/I and C/C++

• High-word facility
• Interlocked-access facility
• Load/store-on-condition facility

10

• Load/store-on-condition facility
• Distinct-operands facility
• Population-count facility

ARCH9: Load/store on condition facility

consider this small program:

2.0 | test: proc returns(fixed bin(31));
3.0 |
4.0 | exec sql include sqlca;
5.0 |
6.0 | dcl c fixed bin(31);

11

6.0 | dcl c fixed bin(31);
7.0 |
8.0 | exec sql commit;
9.0 |
10.0 | if sqlcode = 0 then
11.0 | c = 0;
12.0 | else
13.0 | c = -1;
14.0 |
15.0 | return(c);
16.0 | end;

• Under OPT(3) ARCH(8), the instructions after the call are:

12

• But, under OPT(3) ARCH(9), the instructions after the call
are:

13

• So, under ARCH(8), the code sequence was:Load SQLCODE into r0
• Load -1 into r1
• Compare r0 (SQLCODE) with 0 and branch if NE to @1L8
• Load 0 into r1
• @1L8

14

• Store r1 into the return value

• While under ARCH(9), the code sequence has no label and no
branch:Load -1 into r1

• Load SQLCODE into r0 via ICM (so that CC is set)
• Load 0 into r0
• Load-on-condition r1 with r0 if the CC is zero (i.e. if SQLCODE = 0)
• Store r1 into the return value

Benefit of specifying ARCH option

Run-time of a typical C program Default ARCH vs ARCH(8) Executed on a z10
machine using XL C/C++ V1R13

On average 5% better with ARCH(8)

1600
1800

E
xe
cu
ti
o
n
 t
im
e
in

15

0
200
400
600
800
1000
1200
1400
1600

noopt o2 o3

Across optimization levels

E
xe
cu
ti
o
n
 t
im
e
in

se
co
n
d
s Default ARCH

ARCH(8)

ARCH option does NOT increase compile
time

Compile-time of a typical C program Default ARCH vs ARCH(8) compiled on a
z10 machine using XL C/C++ V1R13 On average 9% less with ARCH(8)

100

120

C
o
m
p
il
e
ti
m
e
in
 s
ec
o
n
d
s

16

0

20

40

60

80

noopt o2 o3

Across optimization levels

C
o
m
p
il
e
ti
m
e
in
 s
ec
o
n
d
s

Default ARCH

ARCH(8)

TUNE* (C/C++)

-Tunes instruction selection, and
other implementation-dependent
performance enhancement for a
specific implementation of a
hardware architecture

17

-Default is TUNE(5) produces code
available on 2064-xxx (z900)

-TUNE impacts with
OPTIMIZATION

Recommendation for Architecture
Setting

Choosing the right hardware architecture target is important
especially when application is known to run on a specific
type of machine.

For C/C++ application we recommend the TUNE option to

18

For C/C++ application we recommend the TUNE option to
match the ARCH option or be greater. TUNE is primarily
an optimization option

Help the compiler understand your code

-Value add of compilers realized when optimization is turned
on

-The un-optimized, default follows all the source code lines
literally; lots of loads and stores

-With optimization compiler will keep the intermediate values

19

-With optimization compiler will keep the intermediate values
in registers avoiding memory updates until the final value
is calculated

-Address calculations inside loops are optimized such that as
much as possible is done outside of the loop

-Optimization is inhibited by non-ANSI aliasing source code, e.g. unsafe
pointer casting

*(unsigned long long *)(buf + 8) = (unsigned long long)code;

-When –qalias=noansi compile option is specified optimizer makes
pessimistic aliasing assumptions such as all pointers can point to any

20

pessimistic aliasing assumptions such as all pointers can point to any
object whose address is taken, regardless of type. Optimizing such
source code may cause more harm than benefit, especially if it is a
performance critical part of the application

-The amount of improvement varies depending on the specific application

-Increasing the optimization level will significantly increase compile time

Summary of key optimization options

Optimization Level
xlc: -O batch/PL/I: OPT()

C/C++ PL/I

2 Implies NOANSIALIAS
inlining, instruction
scheduling, unrolling,
dead code removal,

Same as C/C++ except
individual optimizations
run less # of times,
dead code, or less # of

21

dead code removal,
common sub-
expression elimination,
more dead code,…

dead code, or less # of
individual optimization
are run, CSE

3 Implies ANSIALIAS, all
above plus instruction
level parallelism, more
pattern
matching,NOSTRICT

Identical to C/C++
OPT(2)

Summary of key optimization options

Optimization Level
xlc: -O batch: OPT()

C/C++ PL/I

4 Optimization decision
made for the sub-
program: high order
transformation of loops,

N/A

22

transformation of loops,
pointer analysis, constant
propagation, …

5 Optimization decision
made for the entire
program which could lead
to significant
improvement in the
generated code at cost of
significant compile time

N/A

Optimization options (C/C++)

Optimization Level
xlc: -q batch:

C/C++ PL/I

HOT At least requires OPT(2).
Exploiting parallelism in
loops. Loop fusion, loop
distribution, loop

N/A

23

distribution, loop
parallelization

PDF1/PDF2 Requires at least
OPT(2). Requires
training data. With PDF
can do loop alignment on
cache line boundary

N/A

Improvement in run-time performance
with higher optimization

Run-time performance ARCH(9) on z196 using XL C/C++ V1R13

310

320

330

24

260

270

280

290

300

o2 o3 o3+HOT o4 o5 o5+pdf

Across Optimizations

S
ec
o
n
d
s

Run-time

Recommendation for compiling with
optimization levels

Program has to run
clean with noopt

Compile time savings?
Precise floating point results?

No-ANSI alias?
O2YES

N

O

25

O

Do you have data rep.
your run-time input?

Y E S PDF

Not compile time sensitive?
ANSI alias?

Not strict floating point calculations?

O3

C/C++ compiler option to help performance
Inlining

-Which one of the following yields a better execution time?
a) –O2 –qinline
b) –O2 –qnoinline
c) requires tuning
-A C program could perform 4.5X worse with INLINE

26

-A C program could perform 4.5X worse with INLINE
-Using the inline sub-option is one way to help the right
balance

-#pragma inline* is another way to hint the compiler as to
which functions to inline

*C only

Example of a C program using inline
sub-options

Execution Time in seconds
-O2 -qnoinline 25.71

-qinline=auto:report:_threshold_:1000
threshold execution time in seconds

:100 111.98

27

:100 111.98 *default
:150 111.97
:190 10.72
:200 10.72
:250 10.73
:300 10.78

Table 1. Shows the execution time with respect to different inlining thresholds

XPLINK

-A modern linkage convention that is 2.5 times more efficient than
conventional

-Have seen some programs improve by 30%
-Cannot statically link non-XPLINK with XPLINK, so your hands may be
tied

-Can call non-XPLINK DLLs from XPLINK DLLs and vice-versa but

28

-Can call non-XPLINK DLLs from XPLINK DLLs and vice-versa but
must tell compiler about this so it generates translation code. These calls
are more expensive

-If XPLINK to XPLINK calls more frequent than noXPLINK to XPLINK,
then it's a win, otherwise, a loss

*http://www.redbooks.ibm.com/abstracts/sg245991.html

Feedback

• I am collecting feedback for future sessions, which topics
are you interested in?

• Looking forward to hearing from you!!

29

30

