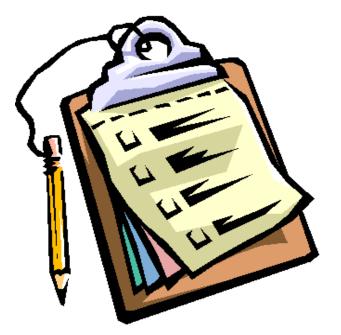


Digital Certificate Goody Bags on z/OS

Ross Cooper, CISSP IBM Corporation RACF/PKI Development Poughkeepsie, NY Email: rdc@us.ibm.com

> August 6th, 2012 Session 11623



Agenda

- What is a Digital Certificate?
- RACF RACDCERT Command Overview
 - RACDCERT CONNECT Tips
 - Tips for Generating a certificate request and renewing a certificate
 - Certificates stored as a profile
- RACF Key Rings:
 - Virtual Key Rings
 - Key Ring Protection
 - Sharing a Private Key with SITE
 - Key Ring exploiters
 - Server Authentication
 - Client Authentication
- RACF Digital Certificate APIs
- Certificate Mapping on z/OS:
 - One-to-one certificate to user ID association
 - Certificate Name Filtering (CNF)
 - Host Id Mapping extensions
- PKI Services

What is a Digital Certificate?

- A Digital Certificate is a digital document issued by a trusted third party which binds an end entity to a public key.
- Digital document:
 - Contents are organized according to ASN1 rules for X.509 certificates
 - Encoded in binary or base64 format
- Trusted third party aka Certificate Authority (CA):
 - The consumer of the digital certificate trusts that the CA has validated that the end entity is who they say they are before issuing and signing the certificate.
- Binds the end entity to a public key:
 - End entity Any person or device that needs an electronic identity. Encoded in the certificate as the Subjects Distinguished Name (SDN). Can prove possession of the corresponding private key.
 - **Public key** The shared half of the public / private key pair for asymmetric cryptography
 - Digitally signed by the CA

How is Digital Certificate used?

- Prove Identity to a peer:
 - Owner of the certificate can prove possession of the certificate's private key
 - Identity can be validated by checking it is signed by a trusted Certificate Authority
- Prove origin of a digital document is authentic:
 - Programs can be signed by code signing certificates
 - E-mail signatures
 - Certificates are signed by CA certificates
- Establish a secure connection:
 - Certificates contain a public key which allows protocols such as SSL and AT-TLS to exchange session keys

RACDCERT Overview

- **RACDCERT** is the primary administrative tool for managing digital certificates using RACF.
- TSO command shipped as part of RACF
- Command line interface with ISPF panels
- Certificates and Rings are protected by RACF profiles
- Learn more:
 - RACF Command Language Reference

RACDCERT ID(FTPServer) GENCERT SUBJECTSDN(CN('Server Certificate')OU('Production')O('IBM')L('Poughkeepsie') SP('New York')C('US')) SIZE(1024) WITHLABEL('Server Certificate') ALTNAME(DOMAIN('mycompany.com'))

RACDCERT ID(FTPServer) ADD('user1.svrcert') WITHLABEL('Server Certificate')

RACDCERT ID(userid) EXPORT (LABEL('label-name')) DSN(outputdata-set-name) FORMAT(CERTDER | CERTB64 | PKCS7DER | PKCS7B64 | PKCS12DER | PKCS12B64) PASSWORD('pkcs12password')

	RACF - Digital Certificate Key Ring Services OPTION ===>		
	For user:		
	Enter one of the following at the OPTION line:		
	1 Create a new key ring		
,	2 Delete an existing key ring		
	3 List existing key ring(s)		
	4 Connect a digital certificate to a key ring 5 Remove a digital certificate from a key ring		
	5 Remove a digital certificate from a Reg fing		
RACF - Digital Certificate Services			
OPTION ===>			
Select one of the following:			
	 Generate a certificate and a public/private key pair. 		
	2. Create a certificate request.		
	3. Write a certificate to a data set.		
	 Add, Alter, Delete, or List certificates or check whether a digital certificate has been added to the RACF database and associated with a user ID. 		
	5. Renew, Rekey, or Rollover a certificate.		

••••• in Anaheim 2012

RACDCERT Commands

- Certificate Generation:
 - RACDCERT GENCERT Generate key pair and certificate
 - RACDCERT **GENREQ** Generate a certificate request
- Certificate Installation:
 - RACDCERT ADD Install a certificate and public/private key
- Certificate Administration:
 - RACDCERT LIST Display certificate information from an installed certificate
 - RACDCERT ALTER Change certificate installation information
 - RACDCERT **DELETE** Delete certificate and key pair
 - RACDCERT CHECKCERT Display certificate information from a dataset
 - RACDCERT **EXPORT** Export a certificate
 - RACDCERT REKEY Renew certificate with new key pair
 - RACDCERT **ROLLOVER** Finalize the REKEY process

RACDCERT Commands

- Certificate Ring Administration:
 - RACDCERT ADDRING Create a key ring
 - RACDCERT **CONNECT** Place a certificate in a key ring
 - RACDCERT **REMOVE** Remove a certificate from a key ring
 - RACDCERT **LISTRING** Display key ring information
 - RACDCERT **DELRING** Delete a key ring
- Certificate Map Administration:
 - RACDCERT **MAP** Create a certificate filter
 - RACDCERT ALTMAP Change the certificate filter
 - RACDCERT **DELMAP** Delete a certificate filter
 - RACDCERT **LISTMAP** Display certificate filter information

RACDCERT ID

- RACDCERT commands specified without the ID keyword will normally default to the user ID issuing the command:
 - User1's certificate is displayed if user1 issues the following command
 - RACDCERT LIST(LABEL(`cert1'))
 - User2's certificate is displayed if user1 issues the following command (assuming user1 has the authority to list other's certificate)
 - RACDCERT ID (user2) LIST (LABEL ('cert2'))

RACDCERT CONNECT

- **RACDCERT CONNECT** connects a Certificate to a key ring.
- Uses two different user IDs:
 - Certificate owner Defaults to ring owner
 - **Ring owner** Defaults to command issuer
- Syntax:

RACDCERT ID(<ring-owner>) CONNECT(ID(<certificate-owner>) label...)

- Which case has the exception?
 - RACDCERT ID (Mary) CONNECT (ID (John) LABEL...)
 - Ring owner: Mary, Cert owner: John
 - RACDCERT ID (Mary) CONNECT (LABEL...)
 - Ring owner: Mary, Cert owner: Mary
 - RACDCERT CONNECT (ID (John) LABEL...)
 - Ring owner: Issuer of command, Cert owner: John
 - RACDCERT CONNECT (LABEL...)
 - Ring owner: Issuer of command, Cert owner: Issuer of command

RACDCERT GENREQ

- **RACDCERT GENREQ** generates a certificate request for obtaining a certificate from a Certificate Authority.
- GENREQ requires an existing certificate. If a certificate does not exist, use GENCERT to create a self signed certificate first:
 - RACDCERT GENCERT (usually a self-signed one)
 - This is a stepping stone to get the request, will be replaced once the certificate is fulfilled by the CA
 - RACDCERT ID(ftpd) GENCERT SUBJECTSDN(CN('ftpcert') OU('RACF')...) WITHLABEL('ftpcert')
 - RACDCERT GENREQ <use the certificate label from GENCERT above >
 - RACDCERT ID(ftpd) GENREQ(LABEL('ftpcert')) DSN('user1.ftpreq')
 - Send the request to external CA for signing
 - When the certificate is returned from the external CA, install it in RACF with RACDCERT ADD. This will replace the RACDCERT GENCERT certificate.

WARNING: Do not delete the self-signed certificate from RACF after the certificate request has been generated. You will lose the private key.

Renewing a Certificate: Same Key Pair

- Eventually all certificates expire. To avoid application outages, certificate should be renewed before they expire.
- Renew a certificate with the original key pair:
- If the certificate is a self-signed certificate:
 - 1) Create a new certificate request from the original certificate and save the request in a dataset 'request_dsn':

```
RACDCERT CERTAUTH GENREQ(LABEL('original cert'))
DSN(request_dsn)
```

2) Create the new certifcate using the request in step 1:

```
RACDCERT CERTAUTH GENCERT(request_dsn) SIGNWITH(CERTAUTH
LABEL('original cert'))
```

- If the certificate is not a self-signed certificate:
 - 1) Same as step 1 above
 - 2) Send the request to the original certificate CA
 - 3) After you receive the new certificate and save it in a dataset 'cert_dsn', add it back under the same ID:
 - RACDCERT CERTAUTH ADD(cert_dsn)

Warning: Don't delete the 'original cert'!!!

Renewing a Certificate: New Key Pair (1 of 3)

• Renew a certificate with a new key pair

The longer a key pair is used, the more likely it is to be cracked. The key pair should be periodically changed. Two **RACDCERT** functions are provided:

RACDCERT REKEY

Make a self-signed copy of the original certificate with a new public-private key pair

RACDCERT ROLLOVER

- Finalize the **REKEY** operation
- Private key of the old certificate is deleted so that it may not be used again for signing or encryption
- Cert with usage PERSONAL: all keyring occurrences of the old certificate will be replaced with the new one
- Cert with usage CERTAUTH or SITE: the new cert will be added to all keyring occurrences of the old one

Renewing a Certificate: New Key Pair (2 of 3)

- Renew a certificate with a new key pair...
- If the certificate is a self-signed certificate:
 - 1) Make a self copy of the original certificate:

```
RACDCERT CERTAUTH REKEY(LABEL('original cert'))
WITHLABEL('original cert2')
```

2) Roll over the original certificate to the new one:

```
RACDCERT CERTAUTH ROLLOVER(LABEL(`original cert'))
NEWLABEL(`original cert2')
```


Renewing a Certificate: New Key Pair (3 of 3)

- Renew a certificate with a new key pair...
- If the certificate is not a self-signed certificate:
 - 1) Make a self copy of the original certificate RACDCERT ID(myid) REKEY(LABEL('original cert')) WITHLABEL('original cert2')
 - 2) Create a certificate request from the copied certificate in step 1: RACDCERT ID(myid) GENREQ(LABEL('original cert2')) DSN(request_dsn)
 - 3) Send the request to the original certificate CA
 - After you receive the new certificate and save it in a dataset 'cert_dsn', add it back under the same ID: RACDCERT ID(myid) ADD(cert_dsn)
 - 5) Roll over the original certificate to the new one: RACDCERT ID(myid) ROLLOVER(LABEL('original cert')) NEWLABEL('original cert2')

Certificate stored as a profile (1 of 2)

- A certificate profile in the **DIGTCERT** class is created for a certificate added or created
 - The profile name is in the form:

<Certificate Serial #>.<Issuer's distinguished name>

– Example:

RACDCERT CERTAUTH GENCERT SUBJECTDN(OU('Master CA') O('IBM') C('US')) WITHLABEL('MyCA')

Profile created: 00.OU=Master¢CA.O=IBM.C=US

RACDCERT ID(testid) GENCERT SUBJECTDN(OU('Test Dept') O('IBM) C('US')) WITHLABEL('TestCert') SIGNWITH(CERTAUTH LABEL('MyCA'))

Profile created: 01.OU=Master¢CA.O=IBM.C=US

- Serial number of a self-signed certificate is 0
- Subsequent serial numbers will be incremented in order by 1
- Blanks in the DN are substituted with '¢' in the profile name
- If the CA's DN name is too long to be stored in a profile (246 characters), a hash of the name is used in the profile

Certificate stored as a profile (2 of 2)

- This profile represents the certificate, NOT a protection profile
 - The certificate profile can not be managed by the resource management commands, like **RALTER**, **RDELETE**...
 - Managed though **RACDCERT** commands
- There are specific profiles in the FACILITY class for RACDCERT authority checking
 - IRR.DIGTCERT.<function>
 - IRR.DIGTCERT.GENCERT
 - IRRDIGTCERT.ADD ...
- Certificate Rings, and filters are also stored in RACF profiles (DIGTRING, DIGTNMAP)
- The RACF User profile contains information about certificates associated with the user. DELUSER will remove digital certificates associated with a user.

RACF Key Rings

- A key ring is a collection of certificates that identify a networking trust relationship. Key Rings are used to identify the certificates required to establish a connection to a peer.
- A certificate must be placed in a key ring before it can be used by middleware applications though the RACF R_DataLib callable service.
- Key Ring Syntax for applications:
 - <user-id>/<ring-name>
- Types of Certificates in RACF:
 - **User** Directly Associated with one z/OS user ID.
 - **CERTAUTH** Trusted CA certificate used to verify the peer entity's certificate.
 - SITE Certificates associated with an off-platform server or other network identity. SITE certificates bypass the normal certificate chain validation. Private keys can be shared.
- Key Rings contain Certificate Usage The usage assigned to a certificate when it is connected to a key ring indicates its intended purpose.
 - PERSONAL Used to identify a local server application. Personal usage must be used to get access to the private key.
 - CERTAUTH Used to verify the peer entity's certificate. Used to identify the local server's CA certificate.
 - SITE Certificate associated with an off-platform server or other network identity. SITE certificates bypass the normal certificate chain validation.

Virtual Key Rings

- A Virtual Key Ring is a set of certificates which are logically associated, but not connected to a 'real' RACF key ring.
- There are three types of virtual key rings:
 - CERTAUTH All trusted CA certificates
 - Syntax: *AUTH*/*
 - SITE All site certificates
 - Syntax: *SITE*/*
 - **User** All certificates owned by a single user ID
 - Syntax: <owning-id>/*
- Most common usage is the CERTAUTH virtual key ring.
 - It is used when an application validates the certificates of others but has no need for its own certificate and private key.
 - Example: An FTP user who wants to establish a SSL encrypted connection to a FTP server. As long as the CA certificate which issued the FTP server's SSL certificate is a trusted CA certificate in RACF, the CERTAUTH virtual key ring can be used.

Technology - Connections -

RACF Key Ring Protection

2012

- RACF Key Rings are protected by resource profiles
- Two types of profiles are checked: Ring Specific or Global
- Ring Specific RDATALIB class profiles:
 - <ring owner>.<ring name>.LST
 - <virtual ring owner>.IRR_VIRTUAL_KEYRING.LST
 - **READ** access Read all certificates and own private key
 - **UPDATE** access Read other user's private keys
 - **CONTROL** access Read CA / SITE private keys
- **Global** FACILITY class profiles:
 - IRR.DIGTCERT.LISTRING:
 - **READ** access Read own key rings and own private keys. Read SITE and CA Virtual key rings.
 - UPDATE access Read other user's rings (Can not read others user's private keys)
 - IRR.DIGTCERT.GENCERT:
 - **CONTROL** access Read CA / SITE private keys
- Note: Private keys are only returned when certificate usage is PERSONAL
- Remember: When switching from Global FACILITY class profiles to Ring Specific RDATALIB class profiles, the Ring Specific will be checked first.

Share a Private Key with SITE or CERTAUTH

- Applications can share the private key of a certificate which is added under SITE or CERTAUTH
- Create a keyring under one ID, say SRV1:

RACDCERT ID(SRV1) ADDRING(ShareRing)

• Create a certificate under CERTAUTH or SITE, not a personal ID:

RACDCERT SITE GENCERT... WITHLABEL('Share Cert')

• Connect the cert to this ring:

RACDCERT ID(SRV1) CONNECT(SITE LABEL('Share Cert') RING(ShareRing) USAGE(PERSONAL) DEFAULT)

• Permit both IDs to use this ring:

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ACCESS(READ) ID(SRV1) PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ACCESS(UPDATE) ID(SRV2)

• Permit both IDs to use this private key:

RDEF FACILITY IRR.DIGTCERT.GENCERT UACC(NONE) PERMIT IRR.DIGTCERT.GENCERT CLASS(FACILITY) ACCESS(CONTROL) ID(SRV1 SRV2)

 Warning: This access to these profiles allows these user IDs to access ANY private keys in SITE or CERTAUTH

Certificate Life Cycle Planning (1 of 2)

- To set up a certificate for secure traffic the first time is only the beginning
- Must plan for the **certificate life cycle**
- Certificate expiration causes system outage
- Things to consider:
 - **How many** certificates are actively used in the system?
 - Categorize them:
 - Certs locally created VS Certs by external provider
 - Certs used to authenticate the incoming requests VS certs to identify your servers to the other parties
 - What CA certs will you trust?
 - Each server will have its own ring and own cert or shared?

Certificate Life Cycle Planning (2 of 2)

- If you are a local CA which issues certs to the other systems:
 - Who should be responsible to keep track of the expiry date?
 'You' as the issuer or 'They' as the requestors?
 - When to **renew your CA** cert?
 - A 10 year validity CA cert should not issue 2 year validity cert after the 8th year
- How to keep track of the expiration dates of all the certificates in the system?
 - Spreadsheets?
 - Utilities?
 - Automation for renew?
 - Use certificate management vendor products?

z/OS Key Ring exploiters

Exploiter	Connect the server cert to the ring, eg. 'MYRING'	Where/How to specify the
		RACF Key Ring
FTP Server	RACDCERT ID(FTPSVR)	FTP.DATA file
	CONNECT(LABEL('FTP Cert') RING(MYRING) DEFAULT)	KEYRING MYRING
	Note1	or
		AT-TLS policy
TN3270 Server		Telnet profile file
	CONNECT(LABEL('TN Cert') RING(MYRING) DEFAULT)	KEYRING SAF MYRING
	Note1	or
		AT-TLS policy
IP Security (IPSEC)	RACDCERT ID(IPSEC)	Iked.conf file
	CONNECT(LABEL('IPSEC Cert') RING(MYRING) DEFAULT)	KEYRING MYRING
	Note1	or
		AT-TLS policy
HTTP Server	RACDCERT ID(WEBSVR) CONNECT(LABEL('WEB Cert') RING(MYRING) DEFAULT)	httpd.conf file
		Keyfile MYRING SAF
	Note: must be connected as default	
Websphere MQ	RACDCERT ID(QM1) CONNECT(LABEL	MQ command
	('ibmWebSphereMQMQ1') RING(MYRING))	ALTER QMGR SSLKEYR (MYRING)
	Note: label of the cert must start with 'ibmWebSphereMQ'	

Complete your sessions evaluation online at SHARE.org/AnaheimEval

•...• in Anaheim 2012

RE

: SHA

Key Ring Setup: Server authentication

- **Example:** A user wants to establish a secure FTP connection between their workstation and an FTP server, but NOT use client authentication.
- User Key Ring:
 - CA certificate which signed the FTP Server identity certificate
 - Notes:
 - No End entity certificate required
 - (Other authentication method used such as User ID & Password)
 - No Private keys required
 - On z/OS the CERTAUTH Virtual Key Ring can be used if the FTP server is signed by a CERTAUTH certificate
- The FTP Server Key Ring:
 - FTP Server Identity Certificate (with access to private key)
 - CA Certificate which signed the FTP Server Identity Certificate

User Key Ring

• CA Certificate (signed FTP)

FTP Server Key Ring

•FTP Server Identity Certificate
•CA Certificate (signed FTP)

Key Ring Setup: Client authentication

- **Example:** A user wants to establish a secure FTP connection between their workstation and an FTP server and use client authentication to authenticate to the server.
- User Key Ring:
 - User Identity Certificate (with access to private key)
 - CA Certificate which signed the User Identity Certificate
 - CA Certificate which signed the FTP Server Identity Certificate

• The FTP Server Key Ring:

- FTP Server Identity Certificate (with access to private key)
- CA certificate which signed the FTP Server Identity Certificate
- CA certificate which signed the User Identity Certificate

User Key Ring

FTP Server Key Ring

•FTP Server Identity Certificate
•CA Certificate (signed FTP)
•CA Certificate (signed User)

RACF Digital Certificate APIs

SHARE Technology - Connections - Results

- Applications can get access to digital certificates though APIs
- Java RACF KeyStore: Allows Java programs to access RACF Key Rings
- System SSL: Allows UNIX applications to access RACF Key Rings
- R_DataLib Callable service: The lowest level API used by applications on z/OS to access RACF keyrings.
- R_DataLib Functions:
 - **DataGetFirst / DataGetNext** Return certificates from a RACF keyring.
 - CheckStatus Get certificate trust status
 - IncSerialNum Increment a CA certificate's last used serial number
 - NewRing Create a key ring
 - **DelRing** Delete a key ring
 - DataPut Add a certificate to RACF and connect to key ring
 - DataRemove Remove a certificate from a key ring and/or from the Database

Certificate Mapping on z/OS

- Applications can call RACF to map a digital certificate to a RACF user ID
- **InitACEE** is the main RACF API for performing this mapping
- Some applications which can use these mappings:
 - WAS
 - HTTP Server
 - FTP Server
- Certificate Mapping options (evaluated in this order):
 - One-to-one certificate to user ID association
 - Certificate Name Filtering (CNF)
 - Host Id Mapping extensions

Certificate Mapping on z/OS: One-to-one certificate to user ID association

- When a certificate is either generated (RACDCERT GENCERT) or added to RACF, it is registered to a user ID and added to the RACF database.
- This establishes a direct one-to-one mapping between a certificate and a user ID.
- Certificates added to RACF are stored in certificate profiles in the DIGTCERT class. Can optionally contain the private key, or a link to the private key in ICSF.
- Advantages:
 - Simple One certificate = one user id
- Disadvantages:
 - Administrative cost of this approach could be high if a large number of users is required

Certificate Mapping on z/OS: Certificate Name Filtering

- Associates many certificates with one user ID based on filters covering portions of the subject's and/or issuer's distinguished names in the certificate.
- Filters can map a large number of certificates to a limited number of user Ids with little administrative cost.
- Filters are created with the **RACDCERT MAP** command
- Appropriate when a large number of users need to be mapped to a single role, such as a group of bank tellers.
- Auditing accountability remains since the IDN/SDN in the end-entity's certificate will appear in SMF audit records.
- Advantages:
 - Less administrative setup for a large number of certificates
- Disadvantages:
 - Planning required

Certificate Mapping on z/OS: Certificate Name Filtering - Example

- End Entity Certificate:
 - SDN: CN=Ross Cooper,OU=Bank Tellers,O=Big Bank,C=US
 - IDN: CN=Some CA Root, OU=Some CA,O=Some CA Inc,C=US
- Filter:
- RACDCERT ID(BANKT) MAP
 SDNFILTER('OU=Bank Tellers,O=Big Bank,C=US')
 IDNFILTER('CN=Some CA Root, OU=Some CA,O=Some CA Inc,C=US')
- Search Order:
 - 1) Subject's-full-name.issuer's-full-name: CN=Ross Cooper,OU=Bank Tellers,O=Big Bank,C=US.CN=Some CA Root, OU=Some CA,O=Some CA Inc,C=US
 - Subjects-partial-name.issuer's-full-name:
 OU=Bank Tellers,O=Big Bank,C=US.CN=Some CA Root, OU=Some CA,O=Some CA Inc,C=US
 - 3) Subject-full-name:

CN=Ross Cooper,OU=Bank Tellers,O=Big Bank,C=US

4) Subjects-partial-name:

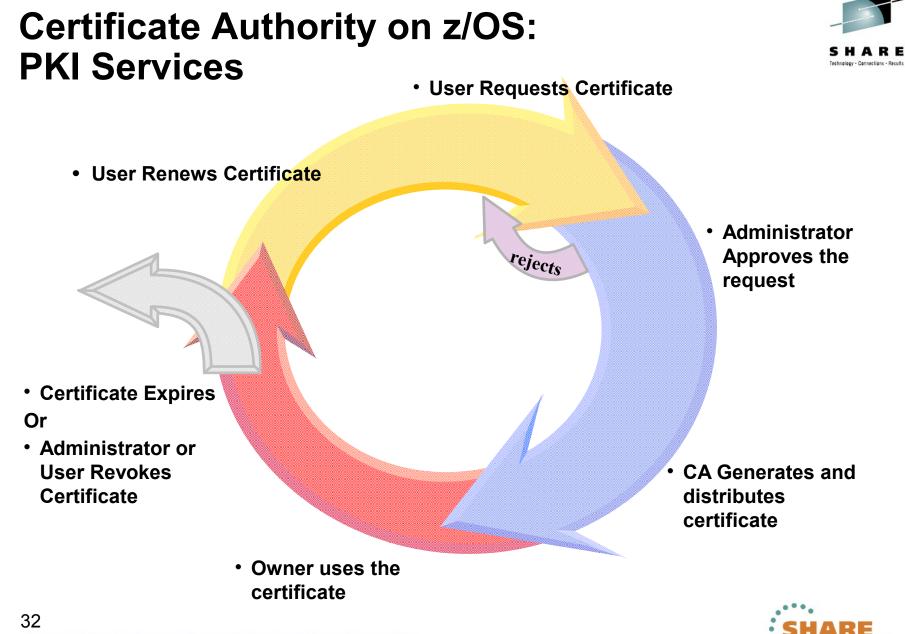
OU=Bank Tellers,O=Big Bank,C=US

5) Issuer's-full-name:

CN=Some CA Root, OU=Some CA,O=Some CA Inc,C=US

6) Issuer's-partial-name:

OU=Some CA,O=Some CA Inc,C=US



Certificate Mapping on z/OS: Host Id Mappings extensions

- The hostIdMappings certificate extension is used to communicate the end entity's user ID on a particular system
- The extension contains a list of host name and user ID value pairs:
 - userID1@hostName1.com
 - userID2@hostName2.com
- RACF uses the extension to find the local system's host name and then determine the local user ID for the ACEE
- Setup:
- CA Cert must be marked **HIGHTRUST**
- Host name matches SERVAUTH class profile: IRR.HOST.<HOSTNAME>
- Id which presents the certificate must have **READ access** to the SERVAUTH class profile
- Advantages:
 - End entity certificates or filters need not be added to RACF
- Disadvantages:
 - Certificates can not be changed, therefore changes in user IDs will require a new certificate

Certificate Authority on z/OS: PKI Services

- **PKI Services** provides full certificate life cycle management
 - **Request**, **create**, **renew**, **revoke** certificates
 - Provides certificate status:
 - Certificate Revocation List (CRL)
 - Online Certificate Status Protocol (OCSP)
 - Generation and administration of certificates via customizable web pages
 - Support Simple Certificate Enrollment Protocol (SCEP) for routers to request certificates automatically
 - Automatic notifications or renewal of expiring certificates

Review

- What is a Digital Certificate?
- RACF RACDCERT Command Overview
 - RACDCERT CONNECT Tips
 - Tips for Generating a certificate request and renewing a certificate
 - Certificates stored as a profile
- RACF Key Rings:
 - Virtual Key Rings
 - Key Ring Protection
 - Sharing a Private Key with SITE
 - Key Ring exploiters
 - Server Authentication
 - Client Authentication
- RACF Digital Certificate APIs
- Certificate Mapping on z/OS:
 - One-to-one certificate to user ID association
 - Certificate Name Filtering (CNF)
 - Host Id Mapping extensions
- PKI Services

References

IBM Education Assistant web site:

http://publib.boulder.ibm.com/infocenter/ieduasst/stgv1r0/index.jsp

RACF web site:

http://www.ibm.com/servers/eserver/zseries/zos/racf

• PKI Services web site:

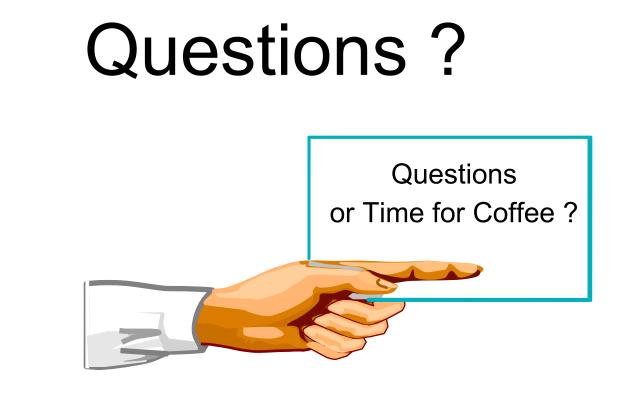
http://www.ibm.com/servers/eserver/zseries/zos/pki

- IBM Redbooks z/OS V1 R8 RACF Implementation
- Security Server Manuals:

RACF Command Language Reference RACF Security Administrator's Guide

Cryptographic Server Manual

Cryptographic Services System Secure Sockets Layer Programming


RFCs

RFC2459 - Internet X.509 Public Key Infrastructure Certificate and CRL Profile

RFC5280 - Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile

Session 11623

