
Highly Available Messaging
Rock solid MQ
Session #11511

Paul S Dennis
dennisps@uk.ibm.com

Agenda

• Introduction to HA

• WebSphere MQ HA technologies

• Using MQ in an HA cluster

• HA and WebSphere Message Broker

• Application considerations

Introduction

• Techniques and technologies to
ensure availability of messaging

• Anything that can cause an
outage is significant

– e.g. an overloaded system

• You can have the best HA
technology in the world, but you
have to manage it correctly

• HA technology is not a substitute
for good planning and testing!

Availability objective

• The objective is to achieve 24x7 availability of messaging

• Not always achievable, but we can get close

– 99.9% availability = 8.76 hours downtime/year

– 99.999% = 5 minutes

– 99.9999% = 30 seconds

• Potential outage types:

– 80% scheduled downtime (new software release, upgrades, maintenance)

– 20% unscheduled downtime (source: Gartner Group)

• 40% operator error

• 40% application error

• 20% other (network failures, disk crashes, power outage etc.)

Single Points of Failure

• With no redundancy or fault tolerance, a failure of any component
can lead to a loss of availability

• Every component is critical. The system relies on the:

– Power supply, system unit, CPU, memory

– Disk controller, disks, network adapter, network cable

– ...and so on

• Various techniques have been developed to tolerate failures:

– UPS or dual supplies for power loss

– RAID for disk failure

– Fault-tolerant architectures for CPU/memory failure

– ...etc

• Elimination of SPOFs is important to achieve HA

N

O

T

E

S

Availability objective

• The objective is to achieve 24x7 availability of messaging. Applications should be processing
messages continuously, regardless of any failures in any component. This presentation
concentrates on the MQ and MB element, but they are not the only areas to think about.

• Availability is not necessarily the same as ensuring processing of each and every message.
In some situations, some limited message loss is acceptable provided that availability is
maximised. For example, a message might expire or be superseded during an outage. Here,
the important thing is to ensure that messages are still getting through.

• Service Level Agreements (SLAs) should define what level of availability your applications
and services should provide. The level of availability is often measured by the number of 9s.

• HA solutions should increase availability given scheduled or unscheduled downtime.
Scheduled downtime is more common than unscheduled. Availability issues usually involve a
multitude of hardware and software systems.

• Avoid application awareness of availability solutions and aim to have little or no code in the
application managing the environment. That’s a task better left to systems administrators.

• The applications also need to be resilient to failures, since the messages will only flow if the
applications are available to produce and consume them.

Agenda

• Introduction to HA

• WebSphere MQ HA technologies

• Using MQ in an HA cluster

• HA and WebSphere Message Broker

• Application considerations

WebSphere MQ HA technologies

• Queue manager clusters

• Queue-sharing groups

• Support for networked storage

• Multi-instance queue managers

• HA clusters

• Client reconnection

Queue Manager Clusters

• Sharing cluster queues on
multiple queue managers
prevents a queue from
being a SPOF

• Cluster workload algorithm
automatically routes traffic
away from failed queue
managers

N

O

T

E

S

Queue Manager Clusters

• Although queue manager clustering does provide some
facilities useful in maintaining availability of messaging, it is
primarily a workload distribution feature. It is simple to deploy
extra processing power in the cluster to process more
messages.

• If a queue manager in a cluster fails, the failure can be
mitigated by other cluster queue managers hosting instances
of the cluster queues. Messages are marooned on the failed
queue manager until it restarts, but messaging through the
cluster is still operational.

Queue-Sharing Groups

• On z/OS, queue managers can
be members of a queue-sharing
group

• Shared queues are held in a
coupling facility

– All queue managers in the QSG

can access the messages

• Benefits:

– Messages remain available even if

a queue manager fails

– Apps can connect to any QM in the

queue-sharing group

Queue

manager

Private

queues

Queue

manager

Private

queues

Queue

manager

Private

queues

Shared

queues

N

O

T

E

S

Queue-Sharing Groups

• In the queue-sharing group environment, an application can connect to any
of the queue managers within the queue-sharing group. Because all the
queue managers in the queue-sharing group can access the same set of
shared queues, the application does not depend on the availability of a
particular queue manager; any queue manager in the queue-sharing group
can service any queue. This gives greater availability if a queue manager
stops because all the other queue managers in the queue-sharing group
can continue processing the queue.

• To further enhance the availability of messages in a queue-sharing group,
WebSphere MQ detects if another queue manager in the group
disconnects from the Coupling Facility abnormally, and completes units of
work for that queue manager that are still pending, where possible. This is
known as peer recovery.

Introduction to Failover and MQ

• Failover is the automatic switching of availability of a service

– For MQ, the “service” is a queue manager

• Traditionally the preserve of an HA cluster, such as HACMP

• Requires:

– Data accessible on all servers

– Equivalent or at least compatible servers

• Common software levels and environment

– Sufficient capacity to handle workload after failure

• Workload may be rebalanced after failover requiring spare capacity

– Startup processing of queue manager following the failure

• MQ offers two ways of configuring for failover:

– Multi-instance queue managers

– HA clusters

N

O

T

E

S

Introduction to Failover and MQ

• Requirement to access data

– Networked storage for a multi-instance queue manager

– Shared disks for an HA cluster, usually “switchable” between the servers

• Requirement for client connectivity

– IP address takeover (IPAT) is generally a feature of failover environments

– If a queue manager changes IP address, intelligent routers can hide this or MQ

network configuration can be defined with alternative addresses

• Servers must be equivalent

– Common software levels – or at least compatible, to allow for progressive

upgrade of the servers

– Common environments – paths, userids, security

• Sufficient capacity to handle workload

– Often, workload will be redistributed following a failover. Often, the systems are

configured for mutual takeover where the workload following failover is doubled

since the surviving servers must handle the traffic intended for both.

Failover considerations

• Failover times are made up of three parts:

– Time taken to notice the failure

• Heartbeat missed

• Bad result from status query

– Time taken to establish the environment before activating the service

• Switching IP addresses and disks, and so on

– Time taken to activate the service

• This is queue manager restart

• Failover involves a queue manager restart

– Nonpersistent messages, nondurable subscriptions discarded

• For fastest times, ensure that queue manager restart is fast

– No long running transactions, for example

Support for networked storage

• Queue manager data can be placed in networked storage

– Data is available to multiple machines concurrently

– Networked storage can be NAS or a cluster file system

• Already have SAN support

– Protection against concurrent starting two instances of a queue manager
using the same queue manager data

– On Windows, support for Windows network drives (SMB)

– On Unix variants, support for Posix-compliant filesystems with leased file
locking

• NFS v4 has been tested by IBM

• Some customers have a “no local disk” policy for queue manager
data

– This is an enabler for some virtualized deployments

– Allows simple switching of queue manager to another server following a
hardware failure

N

O

T

E

S

Support for networked storage

• While not directly an HA technology, this is an enabler for customers who want to
place all of the data remote from their servers such that it becomes possible to
replace one server with another in the event of a failure.

• Support has been added for networked storage for queue manager data and logs.
Previously, it’s been supported for error and trace directories, and for installation
binaries.

• On Windows, we support Windows network drives (SMB).

• On Unix platforms, we support Posix-compliant filesystems which supports lease-
based file locking. The lease-based locking ensures that files unlock when the
server running a queue manager fails. This rules out NFS v3 for use in an HA
environment because the file locks are not released automatically for some failures
and this will prevent failover.

• On Unix, we have provided a test program (amqmfsck) which checks out the
filesystem’s behavior. If the tests do not pass, a queue manager using the
filesystem will not behave correctly. Output from this program can be used to
diagnose a failure.

Multi-instance Queue Managers

• Basic failover support without HA cluster

• Two instances of a queue manager on different machines

– One is the “active” instance, other is the “standby” instance

– Active instance “owns” the queue manager’s files

• Accepts connections from applications

– Standby instance monitors the active instance

• Applications cannot connect to the standby instance

• If active instance fails, standby performs queue manager restart and becomes
active

• Instances are the SAME queue manager – only one set of queue
manager data

– Queue manager data is held in networked storage

N

O

T

E

S

Multi-instance Queue Managers

• “Basic failover”: no coordination with other resources like disks, IP
addresses, databases, user applications. There is also no sophisticated
control over where the queue managers run and move to (like a 3-node HA
cluster, for example). Finally, once failover has occurred, it is necessary to
manually start a new standby instance.

• Architecturally, this is essentially the same as an existing HACMP/VCS
setup, with the data shared between systems. It does not give anything
“stronger” in terms of availability – but we do expect the typical takeover
time to be significantly less. And it is much simpler to administer.

• Just as with a configuration using an HA cluster, the takeover is in essence
a restart of the queue manager, so nonpersistent messages are discarded,
queue manager channels go into retry, and so on.

Multi-instance Queue Managers

1. Normal
execution

Owns the queue manager data

MQ
Client

Machine A Machine B

QM1

QM1
Active

instance

QM1
Standby
instance

can fail-over

MQ
Client

network

168.0.0.2168.0.0.1

networked storage

Multi-instance Queue Managers

2. Disaster
strikes

MQ
Client

Machine A Machine B

QM1

QM1
Active

instance

QM1
Standby
instance

locks freed

MQ
Client

network

IPA

networked storage

168.0.0.2

Client
connections

broken

Multi-instance Queue Managers

3. FAILOVER

Standby
becomes

active

MQ
Client

Machine B

QM1

QM1
Active

instance

MQ
Client

network

networked storage

Owns the queue manager data

168.0.0.2

Client
connection
still broken

Multi-instance Queue Managers

4. Recovery
complete

MQ
Client

Machine B

QM1

QM1
Active

instance

MQ
Client

network

networked storage

Owns the queue manager data

168.0.0.2

Client
connections
reconnect

Multi-instance Queue Managers

• MQ is NOT becoming an HA cluster

– If other resources need to be coordinated, you need an HA cluster

– WebSphere Message Broker will integrate with multi-instance QM

– Queue manager services can be automatically started, with limited control

• System administrator is responsible for restarting another standby
instance when failover has occurred

• The IP address of the queue manager changes when it moves

– MQ channel configuration needs list of addresses unless you use external

IPAT or an intelligent router

– Connection name syntax extended to a comma-separated list

• CONNAME(‘168.0.0.1,168.0.0.2’)

• In MQ 7.1, extended to LOCLADDR too New in MQ
7.1

Multi-instance and Queue Manager Clusters

• Must handle the IP address of the queue manager changing

• Method 1 – List of connection names in CLUSRCVR

– DEFINE CHL(‘TO_MIQM’) CHLTYPE(CLUSRCVR) CONNAME(‘MA,MB’)

– Only works if all other cluster members are v7.0.1 or later

• Method 2 – Blank connection names in CLUSRCVR

– DEFINE CHL(‘TO_MIQM’) CHLTYPE(CLUSRCVR) CONNAME(‘ ’)

• Causes QM to re-advertise its local IP address when it restarts

– In MQ 7.1, you can supply just a port number in brackets

• DEFINE CHL(‘TO_MIQM’) CHLTYPE(CLUSRCVR) CONNAME(‘(1415)’)

New in MQ
7.1

Administering a Multi-instance Queue Manager

• All queue manager administration must be performed on the
active instance

• dspmq enhanced to display instance information

– dspmq issued on “staravia”

– On “staravia”, there’s a standby instance

– The active instance is on “starly”

$ hostname

staravia

$ dspmq -x

QMNAME(MIQM) STATUS(Running as standby)

INSTANCE(starly) MODE(Active)

INSTANCE(staravia) MODE(Standby)

Agenda

• Introduction to HA

• WebSphere MQ HA technologies

• Using MQ in an HA cluster

• HA and WebSphere Message Broker

• Application considerations

HA clusters

• MQ traditionally made highly available using an HA cluster

– IBM PowerHA for AIX (formerly HACMP), Veritas Cluster Server, Microsoft Cluster
Server, HP Serviceguard, …

• HA clusters can:

– Coordinate multiple resources such as application server, database

– Consist of more than two machines

– Failover more than once without operator intervention

– Takeover IP address as part of failover

– Applicable to more use-cases than multi-instance queue managers

• The disks in an HA cluster are switchable shared disks

– Not networked storage as used by multi-instance queue managers

• Most customers using MQ and HA clusters use MC91

– This has been withdrawn – still downloadable, but no further updates

HA clusters

• In an HA cluster, queue manager data and logs are placed on a
shared disk

– Disk is switched between machines during failover

• The queue manager has its own “service” IP address

– IP address is switched between machines during failover

– Queue manager’s IP address remains the same after failover

• The queue manager is defined to the HA cluster as a resource
dependent on the shared disk and the IP address

– During failover, the HA cluster will switch the disk, take over the IP address

and then start the queue manager

N

O

T

E

S

HA clusters

• The collection of servers that makes up a failover environment is known as
a cluster. The servers are typically referred to as nodes.

• One nodes runs an application or service such as a queue manager, while
the HA cluster monitors its health. The following example is called a cold
standby setup because the other nodes are not running workload of their
own. The standby node is ready to accept the workload being performed
by the active node should it fail.

• A shared disk is a common approach to transferring state information
about the application from one node to another, but is not the only solution.
In most systems, the disks are not accessed concurrently by both nodes,
but are accessible from either node, which take turns to "own" each disk or
set of disks. In other systems the disks are concurrently visible to both (all)
nodes, and lock management software is used to arbitrate read or write
access.

• Alternatively, disk mirroring can be used instead of shared disk. An
advantage of this is increased geographical separation, but latency limits
the distance that can be achieved. But for reliability, any synchronous disk
writes must also be sent down the wire before being confirmed.

HA cluster

MQ in an HA cluster – Cold standby

1. Normal
execution

MQ
Client

Machine A Machine B

QM1
data

and logs

QM1
Active

instance

can fail-over

MQ
Client

network

shared disk

168.0.0.1

2 machines
in an HA
cluster

HA cluster

MQ in an HA cluster – Cold standby

2. Disaster
strikes

MQ
Client

Machine A Machine B
QM1

Active
instance

MQ
Client

network

IPA

QM1
data

and logs

shared disk

168.0.0.1

IP address
takeover

Shared disk
switched

HA cluster

MQ in an HA cluster – Cold standby

3. FAILOVER
MQ

Client

Machine B
QM1

Active
instance

MQ
Client

network

QM1
data

and logs

shared disk

168.0.0.1

Client
connections
still broken

HA cluster

MQ in an HA cluster – Cold standby

4. Recovery
complete

MQ
Client

Machine B
QM1

Active
instance

MQ
Client

network

QM1
data

and logs

shared disk

168.0.0.1

Client
connections
reconnect

HA cluster

MQ in an HA cluster – Active/active

1. Normal
execution

MQ
Client

Machine A Machine B
QM1

Active
instance

MQ
Client

network

168.0.0.1

QM2
Active

instance

QM2
data

and logs

QM1
data

and logs

shared disk

168.0.0.2

HA cluster

MQ in an HA cluster – Active/active

2. Disaster
strikes

MQ
Client

Machine A Machine B
QM1

Active
instance

MQ
Client

network

168.0.0.1

QM2
Active

instance

QM2
data

and logs

QM1
data

and logs

shared disk

168.0.0.2

HA cluster

MQ in an HA cluster – Active/active

3. FAILOVER
MQ

Client

Machine A Machine B

MQ
Client

network

168.0.0.1

QM2
Active

instance

QM2
data

and logs

QM1
data

and logs

shared disk

168.0.0.2

QM1
Active

instance

Shared disk
switched

IP address
takeover

Queue
manager
restarted

N

O

T

E

S

MQ in an HA cluster – Active/active

• This configuration is also sometimes called a "mutual takeover" system

• In normal operation, both machines are running independent queue managers. If
one of the systems fails, then this configuration can migrate the failed queue
manager to the working machine. So it still appears to applications outside the
cluster that you have 2 queue managers. The throughput of each queue manager
may degrade (depending on how heavily loaded they run) but at least the work is
still getting done.

• With this kind of setup, you probably have a failback capability so that the queue
manager can be sent back to its original node when the failure has been corrected.
Whether the failback is automatic or not may be your choice, but I'd strongly
recommend that it's done manually so that applications which have already
connected to the running queue manager do not have their connections broken
arbitrarily. You probably want to monitor the workload and only failback when
there's not too much work that's going to be disrupted by the failback.

• A number of variations on the themes of cold and hot standby are also possible, for
example having 3 nodes to host 2 queue managers (an "N+1" configuration). The
availability of these options will depend on the facilities available in your cluster
software.

• In this configuration, we've shown the IP address associated with each queue
manager being migrated. You will also need to keep a port number reserved for
each queue manager (the same number on both machines in the cluster), and
have appropriate setup for runmqlsr or a queue-manager listener object.

Creating a QM in an HA cluster

• Create filesystems on the shared disk, for example

– /MQHA/QM1/data for the queue manager data

– /MQHA/QM1/log for the queue manager logs

On one of the nodes:

• Mount the filesystems

• Create the queue manager

– crtmqm –md /MQHA/QM1/data –ld /MQHA/QM1/log QM1

• Print out the configuration information for use on the other nodes

– dspmqinf –o command QM1

On the other nodes:

• Mount the filesystems

• Add the queue manager’s configuration information

– addmqinf –s QueueManager –v Name=QM1 –v Prefix=/var/mqm

–v DataPath=/MQHA/QM1/data/QM1 –v Directory=QM1

N

O

T

E

S

Using MQ in an HA cluster

• The list of queue managers on a machine is stored in /var/mqm/mqs.ini. Each queue manager is described
by a QueueManager stanza which lists its name and where its data lives.

– crtmqm creates the data for a queue manager and adds it to mqs.ini

– addmqinf simply adds a queue manager to mqs.ini

• Some of the files that MQ uses must be local to each node. These files are used to derive keys using the
ftok() function call, and are based on inode numbers in filesystems. If the inodes are on different
filesystems, then their numbers might be the same and key clashes may occur. A good way to ensure all
keys are on the same filesystem is to leave the Prefix attribute of all of the queue managers with its default
value of /var/mqm. This will result in all of these key files being stored underneath /var/mqm/sockets on the
node’s local disk. If it is necessary to override this default, the MQSPREFIX environment variable can be
used.

• A queue manager will not restart if it believes there are still-attached processes. You might need to change
the MC91 example start scripts to kill any of your application processes which might be running. Many
customers use client applications in HA configurations which eliminates the possibility of an application
process preventing queue manager restart. Another alternative is isolated bindings for local applications.

• Most queue managers will require a listener. A common way of controlling this in an HA cluster is to put the
listener itself under control of the HA cluster as a separate resource dependent on the queue manager. An
alternative is to have the queue manager automatically start the listener, but a running queue manager will
not restart a listener automatically if it fails.

MC91 SupportPac

• Scripts for IBM PowerHA for AIX, Veritas Cluster Server and HP
Serviceguard

– The scripts are easily adaptable for other HA cluster products

• Scripts provided include:

– hacrtmqm – Create queue manager

– hadltmqm – Delete queue manager

– halinkmqm – Link queue manager to additional nodes

– hamqm_start – Start queue manager

– hamqm_stop – Stop queue manager

– hamigmqm – Used when migrating from V5.3 to V6

Equivalents to MC91 facilities

Use the MC91 hamqm_applmon, or a
script more tailored to your needs

hamqm_applmon

Part of MC91 hamqm_startrc.local script

Use the MC91 hamqm_stophamqm_stop

Use the MC91 hamqm_starthamqm_start

New rmvmqinf command to remove
queue manager from a node, dltmqm
to delete the queue manager

hadltmqm

New addmqinf commandhalinkmqm

New crtmqm –md optionhacrtmqm to create queue manager on
shared disk and point symbolic links
back to node’s /var/mqm

Using MQ 7.0.1 and laterMC91

What does the HA cluster support add?

• Queue manager start and stop scripts are more resilient than
vanilla strmqm/endmqm

– For example, endmqm could get stuck in extreme cases

• Monitoring script for health-checking of queue manager by HA
cluster

– Uses runmqsc PING QMGR

– A new alternative is dspmq –n <qmname> | grep “RUNNING”

Multi-instance QM or HA cluster?

• Multi-instance queue manager

� Integrated into the WebSphere MQ product

� Cheaper – special “idle-standby” licensing terms

� Faster failover than HA cluster and MC91

• Delay before queue manager restart is much shorter

� Runtime performance of networked storage

� Less able to react to an unresponsive queue manager

• HA cluster

� Capable of handling a wider range of failures

� Failover historically rather slow, but some HA clusters are improving

� Some customers frustrated by unnecessary failovers

� Require MC91 SupportPac or equivalent configuration

� Extra product purchase and skills required

Shared Queues,
HP NonStop Server continuous continuous

MQ
Clusters none continuous

continuousautomatic

automatic automatic

none none

HA Clustering,
Multi-instance

No special
support

Access to
existing messages

Access for
new messages

Comparison of Technologies

N

O

T

E

S

Comparison of Technologies

• This picture shows one view of the different capabilities.
However you also need to consider factors such as:

– total hardware/software price

– the requirement for nonpersistent message availability (remember that

they are discarded by a failover-restart)

– the requirement for persistent message availability (not if you're using

the shared queue support)

Agenda

• Introduction to HA

• WebSphere MQ HA technologies

• Using MQ in an HA cluster

• HA and WebSphere Message Broker

• Application considerations

WebSphere Message Broker – Multi-instance

brokers

• WebSphere Message Broker v7 is designed to work well with
multi-instance queue managers

– Standby broker instance can be started on a standby QM instance

– An alternative is to make the broker a queue-manager service

Owns the queue manager data

Machine A Machine B

QM1

QM1
Active

instance

QM1
Standby
instance

can fail-over

networked storage

Broker1
Active

instance

Broker1
Standby
instance

can fail-over

WebSphere Message Broker – HA Clusters

• Unit of failover is a broker

– Broker depends on a queue manager

– May also be a user database, but no broker database any more (v7)

• Lots of configurations available, because of database topologies

– SupportPacs list common/recommended setups

• SupportPac IC91 available (still at MB v6 currently)

– Support for Windows MSCS, AIX PowerHA for AIX, Veritas Cluster Server,
HP Serviceguard, Linux HA

– They prereq the equivalent MQ and DB2 packages

• MC91

• DB2 ships the support on the product CDs

– There are scripts to make the Config Manager highly available if you require

Agenda

• Introduction to HA

• WebSphere MQ HA technologies

• Using MQ in an HA cluster

• HA and WebSphere Message Broker

• Application considerations

How to make your own applications HA

• Application environment

– What does the application depend on

• Application design

– Affinities implicit in the application design

– Message loss

• MQ connectivity

– What happens when the application loses connectivity

HA applications – Application environment

• Simple applications only need a queue manager connection

• Many business applications have dependencies, such as:

– Database instance, message broker, application server

– Configuration information

– Some data is machine-specific, other data is server-specific

– Get the ordering of dependencies and timing correct

• How can you tell if it's working

– Such as PING QMGR

– Remember that restart might take a little while

• Start/stop operations need to be robust

– Don't rely on anything!

– Remember that a 'stop' command might erroneously block

• If you want to put your app in an HA cluster, you’ll need to answer these

HA applications – Message loss

• Does your application really need every message delivered?

– If so, it’s quite fragile to failures

– Queue manager restart will lose nonpersistent messages

– Message expiry discards old messages

– Typically, disaster recovery (DR) situations involve message loss

• By careful design of the messages and applications, it is often
possible to keep messaging even without failover

– Some customers use workload balancing and application redundancy

instead

HA applications – Application affinities

• Affinities reduce availability

• Affinities can be introduced by:

– The need to continue using the same instance of a service

– Multiple messages sent to the same application process

– Conversational-style applications

• Carry any transient state in the message

– And replicate frequently-read data

• Let other components handle partitioning or sharing of data

– e.g. store state in a parallel database

• MQ clusters can handle application affinity requirements

– Use BIND_ON_OPEN option

– Maybe create a workload exit to remember previous messages

HA applications – MQ connectivity

• If an application loses its connection to a queue manager, what
does it do?

– End abnormally

– Handle the failure and retry the connection

– Reconnect automatically thanks to application container

• WebSphere Application Server contains logic to reconnect

– Use MQ automatic client reconnection

Automatic client reconnection

• MQ client automatically reconnects when connection broken

– MQI C clients and JMS clients

• Reconnection includes reopening queues, remaking subscriptions

– All MQI handles keep their original values

• Can connect back to the same queue manager or another,
equivalent queue manager

• MQI or JMS calls block until connection is remade

– By default, will wait for up to 30 minutes

– Long enough for a queue manager failover (even a really slow one)

Automatic client reconnection

• Can register event handler to observe reconnection

• Not all MQI is seamless, but majority repaired transparently

– Browse cursors revert to the top of the queue

– Nonpersistent messages are discarded during restart

– Nondurable subscriptions are remade and may miss some messages

– In-flight transactions backed out

• Tries to keep dynamic queues with same name

– If queue manager doesn’t restart, reconnecting client’s TDQs are kept for a

while in case it reconnects

– If queue manager does restart, TDQs are recreated when it reconnects

Automatic client reconnection

• Enabled in application code or ini file

– MQI: MQCNO_RECONNECT, MQCNO_RECONNECT_Q_MGR

– JMS: Connection factories/activation specification properties

– In MQ 7.1, a new DEFRECON channel attribute lets you control
reconnection administratively

• Plenty of opportunity for configuration

– Reconnection timeout

– Frequency of reconnection attempts

• Requires:

– Threaded client

– At least 7.0.1 server

– Full-duplex client communications (SHARECNV >= 1)

New in MQ
7.1

Summary

• MQ and operating system products provide lots of options to
assist with availability

– Many interact and can work well in conjunction with one another

• But it's the whole stack which is important ...

– Think of your application designs

– Ensure your application works in these environments

• Decide which failures you need to protect against

– And the potential effects of those failures

• Also look for RedBooks and read the MQ HA whitepaper
– www.ibm.com/developerworks/websphere/library/techarticles/0505_hiscock/0505_hiscock.html

Spreading the
message – MQ pubsub

MQ Q-Box - Open
Microphone to ask the
experts questions

For your eyes only -
WebSphere MQ
Advanced Message
Security

06:00

Shared Q using
Shared Message Data
Sets

Diagnosing problems
for MQ

What the **** is going
on in my Queue
Manager!?

The MQ API for
Dummies - the
Basics

04:30

The Do’s and Don’ts of
z/OS Queue Manager
Performance

Under the hood of
Message Broker on
z/OS - WLM, SMF and
more

What's new in
Message Broker V8.0

First steps with
WebSphere
Message Broker:
Application
integration for the
messy

03:00

MQ Performance and
Tuning on distributed
including internals

Extending IBM
WebSphere MQ and
WebSphere Message
Broker to the Cloud

What’s new in the
WebSphere MQ
Product Family

WebSphere MQ 101:
Introduction to the
world's leading
messaging provider

01:30

The Doctor is In and
Lots of Help with the
MQ family - Hands-on
Lab

Putting the web into
WebSphere MQ: A
look at Web 2.0
technologies

Highly Available
Messaging - Rock
solid MQ

12:15

Using IBM WebSphere
Application Server and
IBM WebSphere MQ
Together

Lock it down -
WebSphere MQ
Security

Diagnosing problems
for Message Broker

11:00

The Dark Side of
Monitoring MQ - SMF
115 and 116 record
reading and
interpretation

MQ on z/OS –
vivisection

Clustering – the
easier way to
connect your Queue
Managers

09:30

Free MQ! - MQ Clients
and what you can do
with them

08:00

FridayThursdayWednesdayTuesdayMonday

Any questions?

Please fill in evaluations at
share.org/AnaheimEval

Session #11511

Copyright Information

© Copyright IBM Corporation 2011. All Rights Reserved. IBM, the IBM logo, ibm.com, AppScan, CICS, Cloudburst,
Cognos, CPLEX, DataPower, DB2, FileNet, ILOG, IMS, InfoSphere, Lotus, Lotus Notes, Maximo, Quickr,
Rational, Rational Team Concert, Sametime, Tivoli, WebSphere, and z/OS are trademarks or registered
trademarks of International Business Machines Corporation in the United States, other countries, or both. If these
and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol
(® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common law trademarks in other
countries. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at
ibm.com/legal/copytrade.shtml.

Coremetrics is a trademark or registered trademark of Coremetrics, Inc., an IBM Company.

SPSS is a trademark or registered trademark of SPSS, Inc. (or its affiliates), an IBM Company.

Unica is a trademark or registered trademark of Unica Corporation, an IBM Company.

Java and all Java-based trademarks and logos are trademarks of Oracle and/or its affiliates. Other company, product
and service names may be trademarks or service marks of others. References in this publication to IBM products
and services do not imply that IBM intends to make them available in all countries in which IBM operates.

