
1

Free MQ! MQ Clients and what you can
do with them

Mark Taylor

marke_taylor@uk.ibm.com

WMQ Technical Strategy, IBM Hursley

Session 11510

CSS: F S

Agenda

 What are the MQ clients ?

 The MQ client and how it works

 How to connect a client to a server

• Channel Table Configuration

 What facilities are available to clients

• Transactions

• Global Transactions

• Security

• Exits

2

What is a client ?

 Allows access to messaging API on a

different machine than the queue manager

• Simpler administration

• Same programming capabilities (almost)

• Cheaper

• Free in most cases

 However.....

MQ

Queue

Manager

MQ Client

Application No network – No messaging.

Messaging Clients

WebSphere

Platform

Messaging

Direct IP &

Multicast

C++ Java
.NET

MQI
C, COBOL, PL/1, RPG

etc
JMS

XMS
C C++ C# (.NET)

WebSphere

MQ

MQTT
C, Java

3

Which client to use

 Power of MQI vs Portability of JMS

• JMS does not tie you to a provider (99% portable)

• JMS available for non-JAVA languages in XMS

• XMS is IBM specific though

 How important is speed ?

• C tends to be faster than Java

• MQI tends to be faster than JMS/XMS

 Mobile/small environments

• Consider MQTT

Application

Server

Model

MQ Server

Library

MQ

Server
Network

Communications

Client

Model

MQ

Server

Inter process

Communications

local or bindings mode

Application

MQ Client

Library

What is an MQ Client ?

4

MQ Client

Library

MQCONN MQCONNX MQDISC

MQOPEN MQCLOSE MQSUB

MQPUT MQPUT1 MQGET

MQCB MQCTL

MQINQ MQSET

MQCMIT MQBACK

MQI Channel

How does a client work ?

Application

MQ Server

MQI Calls

• Requires network access

• Each MQI Call shipped to server

• Response returned to application

1. Install a MQ client and MQ server system

 Install MQ server using the SERVER CD ROM

 Install the MQ client using the CLIENT CD ROM

2. Install MQ client and server on the same machine

 Install MQ server from SERVER CD ROM

 and select MQ clients you wish to install

3. Install MQ client from SupportPacs site

 Download SupportPac

 Extract and run installation program

See the platform Quick Beginnings for specific details

How to install a client

5

What about Licensing ?

 Installable clients can be downloaded for

free

• Available on many platforms

 Client attachment feature required

for z/OS

 Extended Transactional (XA) Clients are

now free

Building a client application

 Compile your application as you would for local application

 Make sure you link your application with CLIENT libraries

• libmqic* for "C" applications on UNIX systems

• mqic32.lib for "C" applications on Windows

• imqb23* imqc23* for "C++" applications

 Take care when linking threaded programs

• e.g. libmqic_r.a for AIX

 Ensure that the correct runtime libraries are available

• e.g.mqic32.dll for Windows

 From V7.1 onwards, libmqm can also act as client

• Support for multi-version installations

6

Client machine Server machine

 MQI Calls

Application

CLNTCONN SVRCONN

How to connect a client to a server

 The client must be able to identify which channel it should use to

communicate with the queue manager

 How to specify the client's connection to a queue manager:

• Explicitly on the MQCONNX verb

• MQSERVER variable

• Client channel tables

 Java client programs use either the MQEnvironment Java class or

JNDI (using JMS) or explicit properties

Using the MQSERVER variable

 The easiest way to define a client channel.
• BUT has default CLNTCONN properties, ie.

• No security, such as SSL
• No exits
• etc

 Takes precedence over channel tables
• but is superseded by the use of the MQCNO structure.

 set MQSERVER=ChannelName/TransportType/ConnectionName
• In Windows: use Control Panel -> System -> Advanced ->Environment Variables

• In UNIX: export MQSERVER

 Examples:
• MQSERVER=SYSTEM.DEF.SVRCONN/TCP/127.0.0.1

• MQSERVER=SYSTEM.DEF.SVRCONN/TCP/127.0.0.1(1415)

• MQSERVER=SYSTEM.DEF.SVRCONN/TCP/JUPITER.SOLAR.SYSTEM.UNI

• MQSERVER=SYSTEM.DEF.SVRCONN/LU62/BOX99

7

Channel definition tables

 A channel definition table is:

• A binary file (not editable by a user)

• Created by RUNMQSC (or other MQ mechanism) as

AMQCLCHL.TAB (by default) when client channels are defined

• Use CSQUTIL MAKECLNT function on z/OS

• Located in directory (by default):

• <mq root>\qmgrs\QMGRNAME\@ipcc (Windows)

• <mq root>/qmgrs/QMGRNAME/@ipcc (UNIX)

• Read by the client if no MQSERVER variable defined and

MQCONNX options are not used

AMQCLCHL.TAB

RUNMQSC

def chl(...) chltype(clntconn) ….

<mq root>\qmgrs\QMGRNAME\@ipcc (NT)

<mq root>/qmgrs/QMGRNAME/@ipcc (Unix)

copy
c:\mqm\qmgrs\qmgrname\@ipcc\AMQCLCHL.TAB

to
z:\mytable.tbl

MYTABLE.TAB

How do I create and deploy a channel table ?

8

mars

venus
MQCONN ("venus",hConn,cc,rc);

chl2

connected via channel chl2 to “venus"

MQ Client

AMQCLCHL.TAB

Using Channel Definition Tables: Example 1

 How is the QMNAME client channel attribute used?

• def chl(chl1) chltype(clntconn) trptype(tcp) conname(host1) qmname(mars)

• def chl(chl2) chltype(clntconn) trptype(tcp) conname(host2) qmname(venus)

mars

venus
MQCONN ("venus",hConn,cc,rc);

chl2

connected via channel chl3 to “venus"

MQ Client

AMQCLCHL.TAB

chl3

Using Channel Definition Tables: Example 2

 Multiple routes to the same Queue Manager
• def chl(chl1) ….trptype(tcp) conname(host1) qmname(mars)

• def chl(chl2) ….trptype(tcp) conname(tokenring) qmname(venus)

• def chl(chl3) ….trptype(tcp) conname(ethernet) qmname(venus)

• def chl(chl4) ….trptype(tcp) conname(dialup) qmname(venus)

9

mars

venus

MQCONN (“planet",hConn,cc,rc);

THIS DOESN’T WORK (quite!)

MQ Client

AMQCLCHL.TAB

pluto

Using Channel Definition Tables: Example 3

 How do we have back-up Queue Managers ?
• def chl(chl1) ….trptype(tcp) conname(ip.mars) qmname(planet)

• def chl(chl2) ….trptype(tcp) conname(ip.venus) qmname(planet)

• …..

• def chl(chl5) ….trptype(tcp) conname(ip.pluto) qmname(planet)

mars

venus

MQCONN (“*planet",hConn,cc,rc);

This works !

Notice the ‘*’ preceding the Queue Manager name

MQ Client

AMQCLCHL.TAB

pluto

Using Channel Definition Tables: Example 4

 How do we have back-up Queue Managers ?
• def chl(chl1) ….trptype(tcp) conname(ip.mars) qmname(planet)

• def chl(chl2) ….trptype(tcp) conname(ip.venus) qmname(planet)

• …..

• def chl(chl5) ….trptype(tcp) conname(ip.pluto) qmname(planet)

10

mars

venus

MQCONN (“ ”,hConn,cc,rc);

This works too !

MQ Client

AMQCLCHL.TAB

pluto

Using Channel Definition Tables: Example 5

 How do we have back-up Queue Managers ?
• def chl(chl1) ….trptype(tcp) conname(ip.mars) qmname()

• def chl(chl2) ….trptype(tcp) conname(ip.venus) qmname()

• …..

• def chl(chl5) ….trptype(tcp) conname(ip.pluto) qmname()

MQCONN(*planet)

Name CHLTYPE TRPTYPE CONNAME QMNAME CLNTWGHT AFFINITY

chl1 CLNTCONN TCP ip.mars planet 4 PREFERRED

chl2 CLNTCONN TCP ip.venus planet 4 PREFERRED

chl3 CLNTCONN TCP ip.pluto planet 2 PREFERRED

40%

40%

20%

mars

venus

pluto

Workload Balancing client connections

11

Limiting client connections
Queue Manager

SVRCONN

MAXINST(4)

MAXINSTC(2)

Starting MQSC for queue manager TEST1.

DEFINE CHANNEL(SALES.CONNECT) CHLTYPE(SVRCONN)
 MAXINST(4) MAXINSTC(2)

MQCONNX (qmgr name, CNO, Hconn, cc, rc)

...

If used, overrides MQSERVER and CHANNEL tables

MQCD - Channel Definition

. . .

MQCHAR ChannelName[20]; /* Channel definition name */

. . .

MQCHAR ConnectionName[264]; /* Connection name */

MQCNO - Connection Options:

MQCHAR4 StrucId; /* Structure identifier */

MQLONG Version; /* Structure version number */

MQLONG Options; /* Options that control the action of MQCONNX */

. . .

MQLONG ClientConnOffset; /* Offset of MQCD structure for client connection */

MQPTR ClientConnPtr; /* Address of MQCD structure for client connection*/

. . .

Using MQCONNX

12

MQCD cd = {MQCD_CLIENT_CONN_DEFAULT};

cno.Version = MQCNO_VERSION_2; // CD ignored if CNO not V2 or greater

cno.ClientConnPtr = &cd;

strcpy(cd.ChannelName,"SYSTEM.DEF.SVRCONN“);

strcpy(cd.ConnectionName,"VENUS.SOLAR.SYSTEM.UNI“);

MQCONNX (“”, &cno, &hQm, &cc, &rc)

Using MQCONNX

MQ Cloud Support: Pre-Connect Exit

 Supports movement by some to “Utility Compute”, Private

Cloud configs, etc.

• Rapid provision of applications allied with need to further

decouple Client/Server connectivity

• Server applications might move location – new addresses or

queue managers

 MQ Client connects to a “service” rather than specific

Queue Manager

 Can transparently change location of MQ server-side

applications

• No client code changes needed

• No configuration files need to be updated at client machine

• JMS/XMS applications already do this via JNDI lookup

 Exit run during MQCONN queries a repository to discover

real location

• MQ V7.1 incorporates the LDAP implementation from

SupportPac MA98

CSS: F S

13

mars

venus

MQCONN (“*planet",hConn,cc,rc);

MQ Client

AMQCLCHL.TAB

pluto

Dynamic Connections: CCDT

 How it used to be done …

 The CCDT is used to select a queue manager from a list

• Based on a pseudo-queue manager name prefixed with “*”

• CCDT is a locally-accessible file

 CCDT must be distributed to all client systems

CSS: F

mars

venus

MQCONN (“planet",hConn,cc,rc);

MQ Client

pluto

Dynamic Connections: Pre-Connect Exit

 Look up in a directory such as LDAP

 Make choice based on any accessible criteria

• Is system running?

• Workload?

• Where is the application running now?

 No “*” needed

LDAP

planet?

use pluto

CSS: F

14

Debugging Connection problems

 Check the error logs!

• Server error log <root>\qmgrs\<QM>\errors\AMQERR01.LOG

• Client error log <root>\errors\AMQERR01.LOG

 Double check the MQSERVER variable

 Does the amqsputc sample work?

 Is the network working ?

• Can you "tcp ping" the host?

 Is there an MQ listener running?

 Is the channel table specified correctly

• Do the environment variables point to the right place?

WMQ V7 Enhancements for Client Performance

Read Ahead

"Read Ahead" for Receiving Messages/Publications:

• Messages sent to a client in advance of MQGET, queued internally

• Administrative choice – no application changes needed

• Higher performance in client

Client

MQCONN

MQOPEN

MQGET

MQGET

MQGET

Server

Request for

‘n’ messages

15

WMQ V7 Enhancements for Client Performance

Asynchronous Put

"Asynchronous Put" for Sending/Publishing Messages:

• Application can indicate it doesn't want to wait for the real return code

• Maybe look for return code later – MQSTAT verb

• Maintains transactional semantics

• Higher performance in client

Client

MQCONN

MQOPEN

MQOPEN

MQPUT

MQPUT

MQPUT

MQPUT

MQCMIT

Server

WMQ V7 Enhancements

Sharing Conversations

 Controlled by SHARECNV channel attribute
• 0 All sharing is off ; channel operates in MQ V6 mode

• 1 Sharing is off but channel still operates in MQ V7 mode

• Many Sharing up to negotiated value : Default 10

S
e

rv
e

r

MQCONN
MQOPEN
MQPUT

Q2

One socket for ‘n’ conversations
Socket is bi-directional
Heartbeats occur at all times

C
lie

n
t

Q3

Q1

MQCONN
MQOPEN
MQPUT

MQCONN
MQOPEN
MQPUT

16

As always If you don't want to lose messages, code MQ*_SYNCPOINT on

MQGET and MQPUT calls then issue MQCMIT

Programming Considerations

 Take care when specifying the queue manager name on MQCONN if using client

channel definition table...

 Most MQI calls are SYNCHRONOUS and tend to be slower than in a server

environment.

 Always be prepared for MQRC_CONNECTION_BROKEN.

 Always code MQGMO_FAIL_IF_QUIESCING.

 For optimum performance don’t use really short lived connections (MQCONNs)

 Carefully code MQWI_UNLIMITED on MQGET calls.

 Use Asynchronous MQPUT and Read Ahead if appropriate

Automatic Client Reconnection

 Client library provides reconnection logic on detection of a failure

 Tries to hide queue manager failures by restoring state automatically

• Can reconnect to the same or different QMgr

• Re-opens queues, re-establishes subscriptions …

QM1

MQ Client

Application

QM3

QM2

17

Automatic Client Reconnection:

What causes reconnection?

 Only explicit ends or failures

• Communications failure

• Queue Manager or Listener failure

• STOP CONN

• endmqm –s or endmqm –r

 The following will not cause reconnect

• STOP CHANNEL

• Any other endmqm

Automatic Reconnection: MQI Considerations

 Some MQI options will fail if you have reconnection enabled

• Using MQPMO/MQGMO_LOGICAL_ORDER, MQGET gives

MQRC_RECONNECT_INCOMPATIBLE

 New MQCONNX options

• MQCNO_RECONNECT

• MQCNO_RECONNECT_Q_MGR

• MQCNO_RECONNECT_DISABLED

 MQPUT of PERSISTENT message outside of syncpoint

• May return MQRC_CALL_INTERRUPTED

 Event handler notified of reconnection ‘events’

 MQSTAT may return only a ‘subset’ of information

• Reconnection may have occurred during a message sequence

• Can be used to query reconnection status

18

MQ Client

MQGMO_GET WAIT +

MQGMO_NO_SYNCPOINT

MQ Server

MQGMO_GET WAIT +

MQGMO_NO_SYNCPOINT

Message Arrives

Transactions

Message Is Lost!

Application

Dies!

MQPUT/GET

EXEC SQL

SQL COMMIT

MQCMIT

MQ

Server

Global Transactions

Database

Server

Multiple Resource Managers involved in the transaction

19

Database

client

App

Queue

Manager

XA

TM

NODE 1

Database Server

NODE 2

Local

Application

Database

client

App

Extended MQ

Client

 XA

TM

NODE 1

Database Server

NODE 2

NODE 3

Queue

Manager

Extended

Transactional

Client

Extended Transactional Client

Client Server

Transport (Security)

Security Exit to Exit

Userid (real)

from

Environment
Userid to Exit

SSL

Security Security

Client Security

20

Client Server

DEF CHANNEL ('SYSTEM.DEF.SVRCONN')

 CHLTYPE(SVRCONN)

 SSLCAUTH(REQUIRED)

 SSLCIPH('RC4_MD5_US')

 SSLPEER('CN="*", O="IBM", C="UK"')

Authentication,

Encryption, Integrity

DEF CHANNEL('SYSTEM.DEF.CLNTCONN')

 CHLTYPE(CLNTCONN)

 SSLCIPH('RC4_MD5_US')

 SSLPEER('CN=“user", O="IBM",C="UK"')

SSL facility

ƒkey repository

ƒMQSSLKEYR

environment variable

SSL facility

ƒkey repository

Client Security - SSL

Security

Send

Receive

Security

Receive

Send

Client Server

Message exits and Retry Exits are not applicable

MQCONN(..)

MQOPEN(..)

MQPUT(..)

…

Exits

21

Summary

 Clients are a simple, low administration and cheap way of

providing queuing throughout your network.

 Consider which client to use based on

• Programming Language required (C,Java,C#, C++)

• Programming model required (MQI vs JMS)

• Performance

 Client applications can do the same as local applications

• However, no network - no queuing

Please submit evals – Session 11510

