
Diagnosing Problems for WebSphere
Message Broker
(z/OS and Distributed)

Dave Crighton – WebSphere Message Broker L3 Service Delivery Lead
IBM Hursley – davicrig@uk.ibm.com

Tuesday 7th August 2012
Session Number 11508

2

Agenda

•

WMB Recap

•

External Components

•

Diagnostic Information

•

How to diagnose common scenarios

3

WebSphere Message Broker
•

Universal Connectivity FROM anywhere, TO anywhere
•

Simplify application connectivity for a flexible & dynamic infrastructure

•

Comprehensive Protocols, Transports, Data Formats & Processing
•

Connect to applications, services, systems and devices
•

MQ, JMS 1.1, HTTP(S), SOAP, REST, File (incl. FTP, FTE, ConnectDirect), Database, TCP/IP, MQTT, CICS, IMS, SAP, SEBL, .NET, PeopleSoft,
JDEdwards, SCA, CORBA, email…

•

Understand the broadest range of data formats
•

Binary (C/COBOL), XML, CSV, JSON, Industry (SWIFT, EDI, HL7…), IDOCs, User Defined
•

Built-in suite of request processors
•

Route, Filter, Transform, Enrich, Monitor, Publish, Decompose, Sequence, Correlate, Detect…

•

Simple Programming with Patterns & Graphical Data Flows
•

Patterns for top-down, parameterized connectivity of common use cases
•

e.g. Service façades, Message processing, Queue2File…
•

IBM & User defined patterns for development reuse & governance
•

Graphical data flows represent application & service connectivity
•

Custom logic via Graphical mapping, PHP, Java, ESQL, XSL & WTX

•

Extensive Management, Performance & Scalability
•

Extensive Administration & Systems Management facilities for developed solutions
•

Wide range of operating system &hardware platforms supported, including virtual & cloud options
•

High performance transactional processing, additional vertical & horizontal scalability
•

Deployment options include Trial, Express, Standard and Advanced

•

Connectivity Packs for Industry Specific Content
•

Connectivity Pack for Healthcare includes HL7 Connectors, Patterns & Tooling

4

Agenda

•

WMB Recap

•

External Components

•

Diagnostic Information

•

How to diagnose common scenarios

5

External Components

Broker

Message Broker Java API

Message
Broker Toolkit Command lineCommand line Third Party Third Party

ToolsTools

Message
Broker

Explorer
Web UIWeb UI

GET /admin/eg/MYEGNAME
From: machine@ibm.com
User-Agent: MyApp/1.0

Message Broker
REST API

V8

V8

6

Broker View for Application Developers

7

Message Broker Explorer (MBX)
•

Advanced broker management
option designed for
administrators

•

Plug-in to MQ Explorer

•

Extra features
•

Create/Manage Configurable
Services

•

Performance Views
•

Group brokers using broker
sets

•

Offload WS-Security onto
Datapower

•

Administration Log
•

Administration Queue

8

Command line tools
•

A wide selection of tools for scripting broker actions
•

Requires a configured environment
•

Command console (Windows)
mqsiprofile (Linux/UNIX)
JCL or ISPF (z/OS)

•

Most commands work against local or remote brokers

BIP1121I: Creates an execution group.

Syntax:
mqsicreateexecutiongroup brokerSpec -e egName [-w timeoutSecs] [-v traceFileName]

Command options:
'brokerSpec' is one of:

(a) 'brokerName' : Name of a locally defined broker
(b) '-n brokerFileName' : File containing remote broker connection parameters (*.broker)
(c) '-i ipAddress -p port -q qMgr' : hostname, port and queue manager of a remote broker

'-e egName' name of the new execution group
'-w timeoutSecs' maximum number of seconds to wait for the execution group to be created
'-v traceFileName' send verbose internal trace to the specified file.

9

Message Broker API (CMP)

•

Java interface that enables the broker administration tools
•

Use for custom administration requirements
•

Fully documented and samples available

New
in V8 •

V8 allows you to create and edit message flows too
•

Build your entire system programmatically!

10

Web UI
•

Web Administration Console
•

Objective is to provide comprehensive web management interface
•

Focus on non-administrators to understand brokers & resources
•

Supports all major browsers Firefox, IE, Opera, Safari, Chrome
•

Designed as users as a complement MBExplorer
•

MB Administrators can users continue to use MB Explorer

•

Easy to configure
•

No extra moving parts - uses internal HTTP listener to serve data
•

Web admin started by default on port 7050
•

Can reconfigure to listen on user port or disable
•

SSL connector configured via mqsichangeproperties
•

Role based access provides custom class user control
•

Default is read-only access to MB resources
•

More authority required to create, change or delete resources

•

Using Web Admin
•

Intuitive tree view shows hierarchy of MB resources
•

View resource details with click or button
•

Includes full suite of resources
•

Apps, Libs, Flows, Configurable services etc

•

Web Admin & MB Explorer
•

MBX & web admin designed for concurrent use
•

Web admin requires MB8 broker
•

Explorer can manage both MB8 & MB7 brokers

New
in V8

WMB Runtime Structure z/OS

LE
process

Broker

Message Flow Engine(s)

Controller Administrative
Agent

Process
Node

Input
Node

Output
Node

Filter
Node

Process
Node

Node

z/OS

Control
Process

Execution
group n

Infra-
structure
main

Threads

bipservice DataFlow
Engine

bipbroker

Execution
group 2

Infra-
structure
main

DataFlow
Engine

Threads

Infra-
structure
main

WebSphere
MQ

DB2 RRSOMVS

/s nnBRK

biphttp
listener

Execution
group 1

Infra-
structure
main

DataFlow
Engine

Threads

Deployment
Manager

WMB Runtime Structure
Key components

•

bipservice
•

“Angel” process, restarts brokers which have terminated
unexpectedly

•

bipbroker
•

Often referred to as the “AdminAgent”
•

The interface to CMP-API applications
•

Responsible for:
•

EG lifecycle
•

Deployment of artifact to EG’s
•

Reporting of EGs
•

biphttplistener
•

The broker-wide http listener
•

DataFlowEngine
•

The actual execution group where message flow processing takes
place

13

Agenda

•

WMB Recap

•

External Components

•

Diagnostic Information

•

How to diagnose common scenarios

14

Diagnostic Information in WMB

•

Diagnostic Information is available from a multitude of sources
•

System Log
•

Message Flow and Resource Statistics
•

Activity Log
•

Event Monitoring
•

Message Tracking
•

Administration Log
•

Message Flow Debugger
•

Trace
•

Trace Nodes
•

Stdout/Stderr
•

Abends/Dumps

•

Problem Diagnosis often requires you to coordinate different pieces of
evidence from different places

System and Product Logs

•

Diagnostic Information is written to platform specific
logging facilities

•

z/OS
•

MVS SYSLOG and JOBLOG
•

Unix and Linux
•

Syslog
•

Windows
•

Event Log
•

Messages have a 4 digit “BIP” number
•

For example BIP2153: “About to change an execution group”
•

BIP messages only issued to system logs if not handled by
flow

stdout/stderr

•

Captures everything written to std io
•

Java: System.out.println()
•

C: printf()
•

z/OS
•

STDOUT/STDERR DD cards in JOBLOGs
•

Distributed
•

Admin Agent
•

$MQSI_WORKPATH/components/<Broker_Name>/stdout and sttderr

•

Execution Groups
•

$MQSI_WORKPATH/components/<Broker_Name>/<EG_UUID>/stdout and stderr

Stdout/stderr and Java
•

Captures diagnostic statement written by developers

•

Often captures exception stacks in both Java Compute
Nodes and third party libraries
•

Exception.printStackTrace()
•

Destination for JVM based diagnostics
•

Usually enabled by passing the JVM a “-D” parameter on
startup
•

Set environment variable IBM_JAVA_OPTIONS or
_JAVA_OPTIONS

•

Use mqsichangeproperties
•

Examples
•

Classloading trace (-Dibm.cl.verbose=*)
•

JSSE2 “SSL” trace (-Djavax.net.debug=all)

18

Flow Statistics

•

Performance statistics
•

Lightweight non-invasive
•

Reported graphically in
MBX

•

Subscribe to data
•

Integrate with other products
•

Write your own applications.

19

Resource Statistics
•

Find out the current resource usage of a broker
or execution group

•

CICS – successful requests, failures,
security failures…

•

CORBA – Invocations, Success, Failures
•

FTE – Inbound/Outbound transfers, bytes
sent/received…

•

JDBC – Requests, Cached requests,
Providers…

•

JVM – Memory used, thread count, heap
statistics…

•

ODBC – Connections, Closures, Errors,
Successes

•

SOAPInput – Inbound messages, Replies,
Failures, Policy Sets

•

Security – Operations, Success, Failures,
Cache usage…

•

Sockets – Total sockets, message sizes,
Kb sent/received

•

Parsers – Memory usage; message
elements created/deleted; parser count

•

More resource types being added in the future

20

Resource Statistics - Examples
•

Each resource reports values specific to the given
resource type

•

Failure counts are often key values to monitor

•

Parser stats provide a great insight to a given flow

21

Activity Log
•

New Activity Logging Allows users to understand what a
message flow is doing

•

End-user oriented

•

Focus on easily understood actions and resources
•

“GET message from queue X”, “Update DB table Z”…
•

Flexible reporting options
•

All events for a specific flow
•

All events for a specific resource manager
•

Customer filters
•

Available via CMP API,
MBX, log files

New
in V8

22

Event Monitoring
•

Generate Monitoring and Audit Events from Message Flows
•

Administration and Development Time Configuration
•

Every WMB Node includes a “Monitor” tab to generate events
•

Transaction: Start, End, Rollback (input nodes only)
•

Terminal: Any terminal, any node.
•

Operational Control
•

Enable / Disable at runtime (mqsichangeflowmonitoring)
•

Events published on MQ Topics
•

Business Monitor integration

23

Message Tracking
•

Enable Record, Edit and Replay of In-flight Data
•

Comprehensive audit of messages, web, ERP, file & other data
•

Flexible topology: single or multiple brokers for recording, capture & replay

•

Data Recording, Capture & Store
•

Graphically configure binary, text, XML payload capture, including whole, partial & multi-field data
•

Source data is currently limited to MB flows, including MB6.1, MB7 & MB8
•

Monitor tab or monitoring profiles identify captured events
•

Capture events on *any broker*, local or remote
•

Any broker EG can be configured as capture agent
•

Configurable service identifies topic, target database
•

Agent stores data in any supported broker database
•

Oracle, DB2, SQL Server, Sybase, Informix…

•

Web Tooling to View, Query, Edit data
•

Friendly editors to view, query & edit payloads
•

Key data fields, including application data
•

Independent web admin & capture for scalability
•

Configure multiple EG listeners for web

•

Replay for redelivery or flow reprocessing
•

Replay selected data to flows or applications
•

MB admin configures logical destinations
•

Maps to physical protocol, e.g. MQ: {Qmgr, Q}
•

User selects destinations from auto-populated drop-down list

New
in V8

24

•

The tools include a lot of information that is useful
to the administrator, for example:
•

Administration queue: What operational
changes are currently pending

•

Administration log: What changes have been
recently applied to the broker’s configuration,
and by whom?

•

Both are fully accessible to Administration API
applications (e.g. for archival or audit), with
notification hooks also possible.

Administration Queue / Log

25

Trace

•

Various trace options are available
•

User Trace – for you
•

Service Trace – for IBM Support
•

Various components: Commands, “Admin Agent”, Execution
Group

•

CMP API Trace – for both you and IBM Support
•

CVP Trace – for both you and IBM Support
•

Held in binary log files and formatted to text output

•

Most detailed debugging option available

•

Also highest runtime performance cost
•

User Trace relatively light, Service trace very heavy

26

Example usertrace
Trace written by version 7002; formatter version 7002 (build S700-FP02)
2011-08-09 21:58:23.159181 6468 UserTrace BIP2632I: Message received and propagated to 'out' terminal of MQ input node 'DebugFlow1.MQ Input'.
2011-08-09 21:58:23.159496 6468 UserTrace BIP6060I: Parser type ''Properties'' created on behalf of node 'DebugFlow1.MQ Input' to handle portion of incoming message of length 0 bytes

beginning at offset '0'.
2011-08-09 21:58:23.159585 6468 UserTrace BIP6061I: Parser type ''MQMD'' created on behalf of node 'DebugFlow1.MQ Input' to handle portion of incoming message of length '364' bytes

beginning at offset '0'. Parser type selected based on value ''MQHMD'' from previous parser.
2011-08-09 21:58:23.159654 6468 UserTrace BIP6069W: The broker is not capable of handling a message of data type ''MQSTR''.

The message broker received a message that requires the handling of data of type ''MQSTR'', but the broker does not have the capability to handle data of this type.
Check both the message being sent to the message broker and the configuration data for the node. References to the unsupported data type must be removed if the

message is to be processed by the broker.
2011-08-09 21:58:23.160024 6468 UserTrace BIP6061I: Parser type ''XMLNSC'' created on behalf of node 'DebugFlow1.MQ Input' to handle portion of incoming message of length '143'

bytes beginning at offset '364'. Parser type selected based on value ''XMLNSC'' from previous parser.
2011-08-09 21:58:23.160163 6468 UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''BEGIN ... END;'' at ('.DebugFlow1_Compute.Main', '2.2').
2011-08-09 21:58:23.160373 6468 UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''CopyEntireMessage();'' at ('.DebugFlow1_Compute.Main', '3.3').
2011-08-09 21:58:23.160455 6468 UserTrace BIP2538I: Node 'DebugFlow1.Compute': Evaluating expression ''CopyEntireMessage()'' at ('.DebugFlow1_Compute.Main', '3.8').
2011-08-09 21:58:23.160533 6468 UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''BEGIN ... END;'' at ('.DebugFlow1_Compute.CopyEntireMessage', '1.39').
2011-08-09 21:58:23.160598 6468 UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''SET OutputRoot = InputRoot;'' at

('.DebugFlow1_Compute.CopyEntireMessage', '2.3').
2011-08-09 21:58:23.160839 6468 UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''InputRoot'' at ('.DebugFlow1_Compute.CopyEntireMessage', '2.20'). This

resolved to ''InputRoot''. The result was ''ROW... Root Element Type=16777216 NameSpace='' Name='Root' Value=NULL''.
2011-08-09 21:58:23.160905 6468 UserTrace BIP2568I: Node 'DebugFlow1.Compute': Copying sub-tree from ''InputRoot'' to ''OutputRoot''.
2011-08-09 21:58:23.161085 6468 UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''SET OutputRoot.XMLNSC.Order.Total =

CAST(OutputRoot.XMLNSC.Order.Item.Price AS DECIMAL) * CAST(OutputRoot.XMLNSC.Order.Item.Quantity AS INTEGER);'' at ('.DebugFlow1_Compute.Main', '4.3').
2011-08-09 21:58:23.161277 6468 UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''OutputRoot.XMLNSC.Order.Item.Price'' at ('.DebugFlow1_Compute.Main',

'4.44'). This resolved to ''OutputRoot.XMLNSC.Order.Item.Price''. The result was '''3'''.
2011-08-09 21:58:23.161457 6468 UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''CAST(OutputRoot.XMLNSC.Order.Item.Price AS DECIMAL)'' at

('.DebugFlow1_Compute.Main', '4.39'). This resolved to ''CAST('3' AS DECIMAL)''. The result was ''3''.
2011-08-09 21:58:23.161539 6468 UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''OutputRoot.XMLNSC.Order.Item.Quantity'' at ('.DebugFlow1_Compute.Main',

'4.98'). This resolved to ''OutputRoot.XMLNSC.Order.Item.Quantity''. The result was '''7'''.
2011-08-09 21:58:23.161687 6468 UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''CAST(OutputRoot.XMLNSC.Order.Item.Quantity AS INTEGER)'' at

('.DebugFlow1_Compute.Main', '4.93'). This resolved to ''CAST('7' AS INTEGER)''. The result was ''7''.
2011-08-09 21:58:23.161767 6468 UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''CAST(OutputRoot.XMLNSC.Order.Item.Price AS DECIMAL) *

CAST(OutputRoot.XMLNSC.Order.Item.Quantity AS INTEGER)'' at ('.DebugFlow1_Compute.Main', '4.91'). This resolved to ''3 * 7''. The result was ''21''.
2011-08-09 21:58:23.161844 6468 UserTrace BIP2566I: Node 'DebugFlow1.Compute': Assigning value ''21'' to field / variable ''OutputRoot.XMLNSC.Order.Total''.
2011-08-09 21:58:23.161916 6468 UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''RETURN TRUE;'' at ('.DebugFlow1_Compute.Main', '5.3').
2011-08-09 21:58:23.162040 6468 UserTrace BIP4015I: Message propagated to the 'out' terminal of node 'DebugFlow1.Compute' with the following message trees: ''.
2011-08-09 21:58:23.162214 6468 UserTrace BIP3904I: Invoking the evaluate() method of node (class='ComIbmJavaComputeNode', name='DebugFlow1#FCMComposite_1_4').

About to pass a message to the evaluate() method of the specified node.
No user action required.

2011-08-09 21:58:23.162866 6468 UserTrace BIP2638I: The MQ output node 'DebugFlow1.MQ Output' attempted to write a message to queue ''OUT.DEBUG'' connected to queue manager
''''. The MQCC was '0' and the MQRC was '0'.

2011-08-09 21:58:23.162927 6468 UserTrace BIP2622I: Message successfully output by output node 'DebugFlow1.MQ Output' to queue ''OUT.DEBUG'' on queue manager ''''.
Threads encountered in this trace:
6468

27

Trace Status commands
•

Non-persistent trace option (7.0.0.3/8.0.0.0)
•

How do I find the evidence of what went wrong.
•

New ability to Enable execution group wide trace level that
doesn’t survive a restart

•

Helps to capture trace for abend/shutdown situations
•

Stops traces being wrapped during restart

•

What traces are running (7.0.0.3/8.0.0.0)
•

mqsireporttrace is now recursive ☺
•

mqsireporttrace <brkName>
•

Reports all service and user traces which are active
•

mqsireporttrace <brkName> -t
•

Reports all service traces which are active
•

mqsireporttrace <brkName> -u
•

Reports all user traces which are active

BIP8945I: Service trace settings for execution group 'test1' - mode: 'safe', size: '195' KB
BIP8946I: Service trace is enabled for execution group 'test1' with level 'debug'.
BIP8945I: Service trace settings for execution group 'EG2' - mode: 'safe', size: '195' KB
BIP8947I: Service trace is enabled for message flow 'TestFlow' with level 'debug'.
BIP8948I: User trace settings for execution group 'EG2' - mode: 'safe', size: '195' KB
BIP8949I: User trace is enabled for execution group 'EG2' with level 'debug'.

28

Trace Nodes

•

Configured at design time

•

Can be turned on or off at runtime

•

Logs parts of the message tree at key points in the flow

•

Flexible writing options
•

Local File
•

User Trace
•

Error Log

Example Trace Node Output

30

Exception List

•

Exception only gets reported to the event log if it is not
handled by the flow

•

Nested list of exceptions

•

Usually innermost exception is the root cause
•

Other exception are a result of the exception passing through
other nodes or internal code blocks

•

Examine the exception list programmatically for automatic
error handling

•

Examine exception lists for root cause when post-mortem
debugging

31

Example ExceptionList

32

Message Flow Debugger

Resume

Step Over

Step Into Source

Run To Completion

Step Return

33

Message Flow Debugger

•

Use the Message Flow debugger to debug your message
flows

•

Set breakpoints on the connections between nodes

•

At each stage you can view (and edit) the Message Trees

•

Step into ESQL or Java compute nodes

•

Requires the enablement of the JVMDebug port on the
execution group you wish to debug
•

Don’t do this on production machines as it hits
performance
•

It disables Just In Time (JIT) compliation

34

Message Flow Debugger

HOW TO: Enable the debugger to allow you
to debug message flows from the Message
Broker toolkit

35

Message Flow Debugger

HOW TO: Configure the Source lookup path to enable you to step through you
message flow application

Abends and DUMPS

•

Generated when a process terminates unexpectedly

•

z/OS
•

<component_HFS>/common/errors
•

Distributed
•

$MQSI_WORKPATH/common/errors
•

Contains useful information
•

Signal code received
•

Stack back trace
•

MVS abend codes

Reading a stack backtrace

•

Each line is a native routine which was on the stack at the
point of failure

•

The top few entries will often be the Broker’s own abend
handling routines and should be disregarded
•

ImbAbend::terminateProcessInternal etc
•

After the abend handler entries the closer a routine is to
the top of the stack the more likely it is to be the culprit
•

But not always, particularly in the case of data corruption the
problem may have occurred far earlier during execution

•

Message Broker internal classes start with the prefix “Imb”

Call IBM Support or not?
•

The traceback is placed into a CEEDUMP file, which resides in the <component_HFS>/common/errors directory.
•

Each traceback is preceded by the date, time, and unique identifier; for example, CEEDUMP file -
CEEDUMP.20100924.171754.84017230

•

The abend occurs with an Entry Point name of _NumCompute_evaluate.
•

We know that Message Broker always starts Imb so this needs to be looked at by the application team or third party vendor who produced the
lil.

DFDL Tooling

40

Agenda

•

WMB Recap

•

External Components

•

Diagnostic Information

•

How to diagnose common scenarios

Fundamentals of WMB diagnosis
•

Problems often occur on busy production systems

•

Post mortem information is often incomplete or unavailable

•

Good fundamentals are therefore essentials

•

Review Symptoms

•

Form Hypothesis which explains the problem

•

Target collection of diagnostics towards confirming or
refuting that hypothesis

•

Be aware of impact of various diagnostic tools when using
them on a production system

•

Where possible perform diagnosis in lower environments

Scenario: WMB won’t start
•

First check the JOBLOG, Syslog or Event Viewer
+BIP8873I MQ91BRK 0 Starting the component verification for component 'MQ91BRK'. : ImbComponentVerification(78)
+BIP8875W MQ91BRK 0 The component verification for 'MQ91BRK' has finished, but one or more checks failed. :
ImbComponentVerification(187)

•

On z/OS check STDOUT/STDERR for MQSICVP
•

On distributed check output of mqsistart and syslog / event viewer
BIP8873I: Starting the component verification for component 'MQ91BRK'.
BIP8876I: Starting the environment verification for component 'MQ91BRK'.
BIP8894I: Verification passed for 'Registry'.
BIP8894I: Verification passed for 'MQSI_REGISTRY'.
BIP8907E: Verification failed. Unable to verify Java level.
Unable to verify the installed Java level. This error is typically caused by Java not being installed, or a file permissions error.
Ensure Java has been correctly installed, by running the command java -version.
If Java has been correctly installed, see the preceding messages for further information about the cause of this failure, and the actions that you can take
to resolve it.
BIP8894I: Verification passed for 'MQSI_COMPONENT_NAME'.
BIP8894I: Verification passed for 'MQSI_FILEPATH'.
BIP8900I: Verification passed for APF Authorization of file '/u/wmqi91/broker/instpath/bin/bipimain'.
BIP8894I: Verification passed for 'Current Working Directory'.
BIP8877W: The environment verification for component 'MQ91BRK' has finished, but one or more checks failed.
One or more of the environment verification checks failed.
Check the error log for preceding error messages.
BIP8882I: Starting the WebSphere MQ verification for component 'MQ91BRK'.
BIP8886I: Verification passed for queue 'SYSTEM.BROKER.ADMIN.QUEUE' on queue manager 'MQ91'.
BIP8886I: Verification passed for queue 'SYSTEM.BROKER.EXECUTIONGROUP.QUEUE' on queue manager 'MQ91'.
BIP8886I: Verification passed for queue 'SYSTEM.BROKER.EXECUTIONGROUP.REPLY' on queue manager 'MQ91'.
BIP8884I: The WebSphere MQ verification for component 'MQ91BRK' has finished successfully.
BIP8875W: The component verification for 'MQ91BRK' has finished, but one or more checks failed.
One or more of the component verification checks failed.
Check the error log for preceding error messages.

Scenario: Deploy of a Message flow fails

bipbrokerbipservice dataflowenginedataflowenginedataflowengine

biphttplistener

Command line utilities

CMPAPI

Message Broker Explorer Message Broker Toolkit CMP Applications

Runtime

import com.ibm.broker.config.proxy.*;
public class DeployBAR {
public static void main(String[] args) {
BrokerConnecti onParameters bcp =

new MQBrokerConnectionParameters("localhost", 2414,
"MB7QMGR");

try {

BrokerProxy b = BrokerProxy.getInstance(bcp);
ExecutionGroupProxy eg = b.getExecutionGroupByName("default");
DeployResult dr = eg.deploy("MyBAR.bar", true, 30000);
System.out.println("Result = "+dr.getCompletionCode());

} catch (Exception e) {
e.printStackTrace();

}
}

}

Scenario: Deploy of a Message flow fails
•

Whether you deploy using the Message Broker Toolkit, MBX or via the
command line you will see any deploy errors being reported

•

Always make sure to read all of the messages.

•

In this scenario the Java compute node cannot find it’s class
•

Has the relevant jar file been deployed or made available in
the shared_classes directory?

Scenario: Where’s my message?

•

A user reports that they’re not receiving any messages
•

So where are the messages going and what can you look at?
•

Resource statistics
•

Message Flow statistics
•

User trace
•

Message Flow Debugger
•

We’ll see how all of the above can be used to piece together the pieces of the
puzzle

•

The message flow

•

A simple MQ In/Out flow with some transformation logic

Scenario: Where’s my message?

•

Resource statistics
•

Is there a resource stat available for your output transport
that would show if messages are being written?
•

e.g. CICS, CORBA, FTP, File, HTTP Sockets & TCPIP Nodes
are available

•

The parsers output could be useful
•

Are any messages being written?

•

No writes are occurring
•

So no output messages are being written

Scenario: Where’s my message?
•

Message Flow statistics
•

Are all nodes in the flow being driven as expected?

•

The MQOutput node is not being driven
•

So no output messages will be written

Scenario: Where’s my message?
•

User Trace (also consider Activity Log on WMB V8)
•

Can we see why the MQOutput node is not being driven?
•

We saw earlier what to look for in a User Trace, can we see
that here?

UserTrace BIP2632I: Message received and propagated to 'out' terminal of MQ input node 'DebugFlow1.MQ Input'.
UserTrace BIP6060I: Parser type ''Properties'' created on behalf of node 'DebugFlow1.MQ Input' to handle portion of incoming message of length 0 bytes beginning at

offset '0'.
UserTrace BIP6061I: Parser type ''MQMD'' created on behalf of node 'DebugFlow1.MQ Input' to handle portion of incoming message of length '364' bytes beginning at

offset '0'. Parser type selected based on value ''MQHMD'' from previous parser.
UserTrace BIP6061I: Parser type ''XMLNSC'' created on behalf of node 'DebugFlow1.MQ Input' to handle portion of incoming message of length '144' bytes beginning at

offset '364'. Parser type selected based on value ''XMLNSC'' from previous parser.
UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''BEGIN ... END;'' at ('.DebugFlow1_Compute.Main', '2.2').
UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''CopyEntireMessage();'' at ('.DebugFlow1_Compute.Main', '3.3').
UserTrace BIP2538I: Node 'DebugFlow1.Compute': Evaluating expression ''CopyEntireMessage()'' at ('.DebugFlow1_Compute.Main', '3.8').
UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''BEGIN ... END;'' at ('.DebugFlow1_Compute.CopyEntireMessage', '1.39').
UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''SET OutputRoot = InputRoot;'' at ('.DebugFlow1_Compute.CopyEntireMessage', '2.3').
UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''InputRoot'' at ('.DebugFlow1_Compute.CopyEntireMessage', '2.20'). This resolved to

''InputRoot''. The result was ''ROW... Root Element Type=16777216 NameSpace='' Name='Root' Value=NULL''.
UserTrace BIP2568I: Node 'DebugFlow1.Compute': Copying sub-tree from ''InputRoot'' to ''OutputRoot''.
UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''SET OutputRoot.XMLNSC.Order.Total = CAST(OutputRoot.XMLNSC.Order.Item.Price AS

DECIMAL) * CAST(OutputRoot.XMLNSC.Order.Item.Quantity AS INTEGER);'' at ('.DebugFlow1_Compute.Main', '4.3').
UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''OutputRoot.XMLNSC.Order.Item.Price'' at ('.DebugFlow1_Compute.Main', '4.44'). This

resolved to ''OutputRoot.XMLNSC.Order.Item.Price''. The result was '''3'''.
UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''CAST(OutputRoot.XMLNSC.Order.Item.Price AS DECIMAL)'' at

('.DebugFlow1_Compute.Main', '4.39'). This resolved to ''CAST('3' AS DECIMAL)''. The result was ''3''.
UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''OutputRoot.XMLNSC.Order.Item.Quantity'' at ('.DebugFlow1_Compute.Main', '4.98'). This

resolved to ''OutputRoot.XMLNSC.Order.Item.Quantity''. The result was '''77'''.
UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''CAST(OutputRoot.XMLNSC.Order.Item.Quantity AS INTEGER)'' at

('.DebugFlow1_Compute.Main', '4.93'). This resolved to ''CAST('77' AS INTEGER)''. The result was ''77''.
UserTrace BIP2539I: Node 'DebugFlow1.Compute': Evaluating expression ''CAST(OutputRoot.XMLNSC.Order.Item.Price AS DECIMAL) *

CAST(OutputRoot.XMLNSC.Order.Item.Quantity AS INTEGER)'' at ('.DebugFlow1_Compute.Main', '4.91'). This resolved to ''3 * 77''. The result was ''231''.
UserTrace BIP2566I: Node 'DebugFlow1.Compute': Assigning value ''231'' to field / variable ''OutputRoot.XMLNSC.Order.Total''.
UserTrace BIP2537I: Node 'DebugFlow1.Compute': Executing statement ''RETURN TRUE;'' at ('.DebugFlow1_Compute.Main', '5.3').
UserTrace BIP4015I: Message propagated to the 'out' terminal of node 'DebugFlow1.Compute' with the following message trees: ''.
UserTrace BIP3904I: Invoking the evaluate() method of node (class='ComIbmJavaComputeNode', name='DebugFlow1#FCMComposite_1_4').
About to pass a message to the evaluate() method of the specified node.
No user action required.

… then the trace ends ….

•

The last thing the trace shows is the
JavaCompute node being invoked

•

This never propagates to its output terminal
•

Why?

Scenario: Where’s my message?
•

Message Flow Debugger
•

Enable and connect to the debug port
•

Add a breakpoint to the message flow

•

Fire in a message and the breakpoint triggers

•

We can then step through the message flow and into the ESQL and Java
code

Scenario: Where’s my message?
•

Message Flow Debugger
•

As the message is never propagated from the JavaCompute node
we need to see why

•

When the flow is paused on the connection between the compute
and JavaCompute nodes we can step into the source

Where’s my message?
•

Message Flow Debugger
•

Once in the Java source we can step through the code to understand why
propagate is never called

•

We only propagate if the total cost is not
greater than 50

•

Here it’s 231
•

So case closed, input data, user
expectation or message flow design error

Scenario: Who’s misbehaving

•

WMB is often deployed in complex environments

•

It’s not always obvious what product is malfunctioning

•

Example:
•

Web Services clients are reporting that they are receiving
unexpected fault messages

•

WMB is providing a service façade to another Web Service

Scenario: Who’s misbehaving

•

Examine the fault content

•

Error parsing the response

Scenario: Who’s misbehaving

•

User Trace
•

What did the remote server return?

•

BIP3633 shows the bitstream sent to and received from the
remote server

•

Use a hex to ascii converter to see what was received

Scenario: Who’s misbehaving

•

ASCII version of bitstream

•

Remote server has sent invalid data

56

Summary

•

WMB Recap

•

External Components

•

Diagnostic Information

•

How to diagnose common scenarios

Monday Tuesday Wednesday Thursday Friday

08:00 Free MQ! - MQ Clients
and what you can do
with them

09:30 Clustering – the
easier way to
connect your Queue
Managers

MQ on z/OS
– vivisection

The Dark Side of
Monitoring MQ - SMF
115 and 116 record
reading and
interpretation

11:00 Diagnosing problems
for Message Broker

Lock it down -
WebSphere MQ
Security

Using IBM WebSphere
Application Server and
IBM WebSphere MQ
Together

Spreading the message
– MQ pubsub

12:15 Highly Available
Messaging - Rock
solid MQ

Putting the web into
WebSphere MQ: A look
at Web 2.0
technologies

The Doctor is In and
Lots of Help with the
MQ family - Hands-on
Lab

01:30 WebSphere MQ 101:
Introduction to the
world's leading
messaging provider

What’s new in the
WebSphere MQ
Product Family

Extending IBM
WebSphere MQ and
WebSphere Message
Broker to the Cloud

MQ Performance and
Tuning on distributed
including internals

03:00 First steps with
WebSphere Message
Broker: Application
integration for the
messy

What's new in Message
Broker V8.0

Under the hood of
Message Broker on
z/OS - WLM, SMF and
more

The Do’s and Don’ts of
z/OS Queue Manager
Performance

04:30 The MQ API for
Dummies - the
Basics

What the **** is going
on in my Queue
Manager!?

Diagnosing problems
for MQ

Shared Q using Shared
Message Data Sets

06:00 For your eyes only -
WebSphere MQ
Advanced Message
Security

MQ Q-Box - Open
Microphone to ask the
experts questions

This was session ???? - The rest of the week ……

Copyright and Trademarks

58

© IBM Corporation 2012. All rights reserved. IBM, the IBM logo,
ibm.com and the globe design are trademarks of International
Business Machines Corporation, registered in many jurisdictions
worldwide. A current list of IBM trademarks is available on the
Web at "Copyright and trademark information" at
www.ibm.com/legal/copytrade.shtml. Other company, product, or
service names may be trademarks or service marks of others.

QR

59

	Diagnosing Problems for WebSphere Message Broker�(z/OS and Distributed)
	Agenda
	WebSphere Message Broker
	Agenda
	External Components
	Broker View for Application Developers
	Message Broker Explorer (MBX)
	Command line tools
	Message Broker API (CMP)
	Web UI
	WMB Runtime Structure z/OS�
	WMB Runtime Structure�Key components
	Agenda
	Diagnostic Information in WMB
	System and Product Logs�
	stdout/stderr�
	Stdout/stderr and Java�
	Flow Statistics
	Resource Statistics
	Resource Statistics - Examples
	Activity Log
	Event Monitoring
	Message Tracking
	Slide Number 24
	Trace
	Slide Number 26
	Slide Number 27
	Trace Nodes�
	Example Trace Node Output�
	Exception List�
	Example ExceptionList�
	Slide Number 32
	Message Flow Debugger�
	Slide Number 34
	Slide Number 35
	Abends and DUMPS�
	Reading a stack backtrace�
	Call IBM Support or not?�
	DFDL Tooling
	Agenda
	Fundamentals of WMB diagnosis�
	Scenario: WMB won’t start
	Scenario: Deploy of a Message flow fails
	Scenario: Deploy of a Message flow fails
	Scenario: Where’s my message?
	Scenario: Where’s my message?
	Scenario: Where’s my message?
	Scenario: Where’s my message?
	Scenario: Where’s my message?
	Scenario: Where’s my message?
	Where’s my message?
	Scenario: Who’s misbehaving�
	Scenario: Who’s misbehaving�
	Scenario: Who’s misbehaving�
	Scenario: Who’s misbehaving�
	Summary
	This was session ???? - The rest of the week ……
	Copyright and Trademarks
	QR

