
1

Session 11453: They Came from Across the
Pond: Performance Programming for CICS
with WMQ

Lyn Elkins – elkinsc@us.ibm.com

IBM Advanced Technical Skills

2

Agenda

• What is performance to me?

• Performance reports

• Performance Inhibitors

• Building Performance in applications

• Workload skewing

• Summary

2

3

What is performance to me?

• Performance can mean different things:

• Meeting sub-second SLAs on critical transactions

• In spite of workload fluctuations

• Meeting previously set expectations

• Performance is not availability

• Though if resources are not available it can show up as a

performance problem

• Performance is a matter of perception

4

What is performance to me? Notes

• Performance can mean different things:
• Workload fluctuations can be predictable

• Daily - Market open, ‘lunch time’ spikes

• Weekly – Monday morning blues, Friday payday
• Monthly – Pension day payouts
• Annual – ‘Black Friday’, enrollment periods

• Some workload fluctuations are not as predictable
• “The market went nuts today”

• Meeting previously set expectations
• Yesterday my request was back in less than a second, today it is two seconds.

MQ must be broken

• Just as availability is not performance, performance is not availability
• A sharp slowdown caused by performance problems may be perceived as an

outage, just as a real outage may be reported as a performance problem

3

5

WMQ for z/OS Performance Reports

• Published after major releases

• SupportPac MP1H available for WMQ V7.1

• SupportPac MP1G available for WMQ V7.0.1

• Emphasis is on new functionality and major areas of change

• Typically existing features and functions are not retested

• Hardware & Software versions

• ‘Best available’ at the time of testing

• Benchmark environment not a production environment

6

WMQ for z/OS Performance Reports -
Notes

• Generally, if you need information about performance
characteristics for a feature introduced in an earlier
release, you will need to look at the report for that release.
SupportPac MP16 may contain more consolidated
information about a particular feature, but it may be from
older hardware and software.

• The benchmark environment is relatively pristine, it’s not
running a production workload. Numbers from benchmark
reports should only be used as guidelines, not as
absolutes.

• YOUR MILEAGE WILL VARY!

4

7

Performance Inhibitors

• Unnatural expectations

• Performance reports

• Other peoples ideas

• Lack of resources

• Volume growth over time

• DASD response times

• Channel waits on shared
queues

• CPU

• Storage

• Unexpected volume

• Applications

8

Performance Inhibitors - Notes

• Unnatural expectations
• Performance reports

• ‘Why does IBM report X when we can only get Y’?

• Other peoples ideas
• ‘In my environment, I get 2500 transactions per second’

• Sometimes it is a difference in measurement criteria

• Lack of resources
• The overall system may have constraints that MQ has no control over

• Volume growth over time
• This is what I think of as the ‘creeping syndrome’, a process that is executed once an hour initially,

every minute after a full rollout, and going to millions of executions per second when exposed as a
service can impact performance in surprising ways. If planned, the impact can be mitigated in various
ways.

• Unexpected volume
• Stock market meltdowns, recovering from network outages, complete catalog updates, initial database loads

• Unexpected volume growth – anticipating demand for this process is underestimated by a substantial factor

• If not prepared, these events can cause critical performance problems

• Applications
• Always an opportunity.

5

9

Building Performance into the applications

• Using the right queues

• Using the right verbs

• Using the right release

• Using the right hardware

10

Using the right queues

• Creating and using queues with the right characteristics is
key to good application performance

• Dynamic queues

• Queue Indexes

• Shared vs private queues

6

11

WMQ Application Performance - Queues

• Choose the right queue:
• On z/OS Temporary Dynamic queues should be avoided

• Higher CPU costs
• Elapsed time can be significantly longer

• The CPU cost comparison
• Verb TDQ Permanent Difference

• Open 125 38 238%

• Close 111 26 327%

• Put 104 113 -8%

• Inquire 17 18 -5%

• The Elapsed Time comparison
• Verb TDQ Permanent Difference

• Open 850 39 2079%

• Close 113 26 335%

• Put 106 115 -8%

• Inquire 17 18 -5%

12

WMQ Application Performance - Queues

• Choose the right queue - continued:

• The Suspend count comparison
• Verb TDQ Permanent Difference

• Open 727 0 Divide error

• Close 0 0 0

• Put 0 0 0

7

13

Choosing the Right queues - Temporary Dynamic
Queues – SMF data

This information was taken from the SMF116 class 3 records

14

Alignment Page

8

15

Choosing the right queues - Permanent
Queues

This information was taken from the SMF116 class 3 records

16

Choosing the Right queues - Temporary Dynamic
Queues - Notes

• The data shown is taken from one of the sample SMF print programs available
with MP1B (MQ116S)

• The information presented here is a mixture of counts and averages

• The MQ calls made is a count of the calls made as part of this unit of work,
or during the interval for long running tasks.

• The ‘ET’ (elapsed time) and ‘CT’ (CPU time) are averages for the unit of
work.

• The remaining fields are counts.

• Not only is the CPU noticeably higher, note the suspend count. If the
application has very strict SLAs avoiding the opportunity for suspensions can
be critical in a heavily loaded system.

• TDQs are often used as reply queues for online monitors, which seems like a
such an oxymoron. Most monitors have optional permanent queues.

9

17

WMQ Application Performance - Queues

• Queue index specification is unique to WMQ on z/OS

• Messages that are retrieved using an index-able field benefit
from being indexed even when the depth is not high.

• Message ID

• Correlation ID

• Token

• Group ID

• The use of a proper index can substantially improve
performance an CPU consumption.

18

WMQ Application Performance - Queues

• The information that follows illustrates the need for proper
queue definition based on application use. It also shows
where the MQ Admins and application programmer can
find out what is going on within an application.

• Many of the slides are from SMF 116 data that has been
printed using MQ116S, one of the MQ SMF print programs
provided in SupportPac MP1B.

10

19

Non-Indexed Queue retrieval

20

Non-Indexed Queue retrieval - Notes

• How can you tell if a queue is being read for a specific
message?

• In the SMF 116 class 3 data record, the fields of interest
are:

• The Queue Indexing

• The Type of GET request being made. Those with a ‘-S’ are
for specific messages (Get by correlid, get by message id,
etc.). Those with a –G are generic, get the next message on
the queue.

• The average CPU expenditure for the successful gets – the
‘CT’ column highlighted

• The number of pages skipped while finding matching
messages

11

21

Indexed Queue Retrieval

22

Indexed Queue retrieval - Notes

• Note the differences between the non-indexed and
indexed retrieval. In particular, no pages had to be skipped
during the MQGET process. That saves both CPU and
elapsed time.

• In practice, differences were seen with queue depths as
low as 5-10 messages.

12

23

Indexed vs Non - comparison
• Comparing the CPU time, both queues with the same max message

depth:

• Indexed - 27 messages at an average of 99 CPU microseconds

• 2673 µs for 27 messages retrieved

• Non-indexed 28 messages at an average 369 CPU microseconds

• 9963 µs for 27 messages retrieved

• Difference 272%

• Comparing the elapsed time

• Indexed - 27 messages at an average 105 microseconds

• 2835 µs elapsed time for the messages

• Non-Indexed 28 messages at an average 384 microseconds

• 10368 µs elapsed time for 27 messages

• Difference 252%

24

Alignment page

13

25

Shared vs Private queues

• Availability can trump pure performance

• CPU usage is always higher with shared queues

• But messages (and the queues) are much more available

• Typically better throughput on QMGR to QMGR communication

in the same ‘plex

• Can eliminate multiple logging for persistent messages

26

Shared vs Private queues - Notes

• Availability can trump pure performance

• CPU usage is always higher with shared queues
• On a message by message basis, the CPU usage is higher for

shared queues.

• But messages (and the queues) are much more available

• Queues and Messages are on the coupling facility

• Typically better throughput on QMGR to QMGR communication
in the same ‘plex
May eliminate multiple logging

• Persistent messages that are ‘stored and forwarded’ between
z/OS queue managers can benefit quite a bit

•

14

27

Multiple Logging

Appl

MQPUT

Appl

MQGET

CHIN

MQPUT

MQ Log MQ Log

CHIN

MQGET

CF

MQPUT MQGET

28

Multiple logging notes

• When an application is using private queues to
communicate between two z/OS queue managers, double
logging is done for persistent messages.

• A message is logged at the initial MQPUT

• When passed across the channel, the MCA for the receiving
queue manager PUTs the message and the entire message
is logged again

• If a shared queue is used, the MQPUT is logged at the
originating queue manager

• Other log records are written as part of normal processing,
but the largest log message (where the entire message is
written to the log) has been performed twice.

15

29

Using the right Release - Small Message
Storage improvements

• In version 7.0.1 changes were made to the way small
messages are stored internally by the queue manager.
Throughput was substantially increased, and CPU costs
decreased for small messages.

30

Small Message Storage – WMQ V7.0.1 - Notes

• From SupportPac MP1G:
• Prior to version 7.0.1, small messages were stored such that multiple messages could co-

exist on the same page. This meant that the scavenger could not run once a message
was deleted as there were potentially other messages still on the page.

• Instead, the small message scavenger would run periodically – up to every 5 seconds.
This means that a workload using small messages could see a build up of dead pages
that were waiting to be scavenged. With ever faster processors, the time taken to fill the
bufferpool with dead pages becomes significantly reduced. In turn, this meant that the
messages would overflow onto the pageset and potentially the queue manager could be
spending time performing I/O – causing slower MQGETs and MQPUTs.

• To allow the scavenger to work more efficiently with small messages, each message is
now stored in a separate page. In addition a separate index page is used to hold data for
approximately 72 messages. Once the message is deleted, the page holding the message
data can be re-used immediately but the index page can only be scavenged once all
messages referenced are deleted.

• The short message feature can be turned off with a

tuning parameter:

REC QMGR (TUNE MAXSHORTMSGS 0)

16

31

Queue Manager Performance Improvements –
Indexing – WMQ V7.0.1

32

Queue Manager Improvements – Indexing
Improvements – WMQ V7.0.1

• With V7.0.1 the cost to put a message to an indexed queue is almost constant, an
indexed queue can be much deeper. In performance testing there have been indexed

queues with as many as 100M messages, previously the limit had been 7.2M.

• Costs of using 64-bit storage

• There is a slightly higher cost for putting messages to an indexed queue, until the
queue depth grows. In performance testing putting message to an indexed queue
was slightly more expensive until the depth reached 200,000 messages. Depths
greater than that showed a dramatic increase in costs for ‘below the bar’ indexing.

• There is a slightly higher cost for getting messages, and it grows as the queue depth
grows.

• These costs are due to the additional overhead of 64-bit addressing.

• Deep indexed queues may also contribute to slower recovery time in the event of a

failure.

• The use of indexed vs. non indexed queues is in the application section of this
presentation.

17

33

Choosing the right release - Shared Message
Data Sets with WMQ V7.1

• Early Test Results on z196

• Tests show comparable CPU savings making SMDS a more usable feature for
managing your CF storage

• SMDS per CF structure provides better scaling than DB2 BLOB storage

1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

300

350

400

3 LPAR Test - DB2

64KB Non-Persistent Messages In-Syncpoint - DB2

NP SIS Scaling –

3 qmgr

NP SIS Scaling –

6 qmgr

NP SIS Scaling –

9 qmgr

Queue Pairs

T
ra

n
s
a
c
ti
o
n
s

/
S

e
c
o
n
d

1 2 3 4 5 6 7 8 9 10

0

1000

2000

3000

4000

5000

6000

7000

3 LPAR Test - SMDS

64KB Non-Persistent Messages In-Syncpoint - SMDS

NP SIS Scaling –

3 qmgr

NP SIS Scaling –

6 qmgr

NP SIS Scaling –

9 qmgr

Queue Pairs

T
ra

n
s
a
c
ti
o
n
s

/
S

e
c
o
n
d

CSS: F S

34

Queue Manager Performance – SMDS

• In WMQ v7.1 Shared message data sets were introduced

• Messages larger than 63K can be offloaded to VSAM
linear datasets, rather than DB2 Blobs.

• The thoughput rates increased dramatically, and CPU
usage improved.

• In addition, users can now choose the offload size.

18

35

WMQ Application Performance

• Choose the right queues

• Choose the right messaging styles

• Choose the right verbs

36

Alignment Page

19

37

WMQ Application Performance - Queues

• Choose the right messaging style:

• Persistent messages are more costly than non-persistent

• Use nonpersistent messaging –
• When the message is a simple query

• Easy to discover and recover

• Use Persistent messaging
• When the message drives an update transaction that must be

coordinated
• When designing/writing/testing the application recovery code is too

challenging
• Difficult to recreate the request
• When required to by a business
• A ‘C’ level executive is watching

•It’s OUR paychecks

38

WMQ Application Performance – Message Style

• The CPU cost comparison

• Verb Persistent NonP Difference

• Open 125 38 238%

• Close 111 26 327%

• Put 104 113 -8%

• Inquire 17 18 -5%

• The Elapsed Time comparison

• Verb Persistent NonP Difference

• Open 850 39 2079%

• Close 113 26 337%

• Put 106 115 -8%

• Inquire 17 18 -5%

20

39

WMQ Application Performance – Choose the
right verbs

• Like any other subsystem, the choice of verbs can improve
performance and scalability.

• Recycling code is a positive

• Reduces development time and effort

• Often enforces best practices

• Can reduce testing time

• Recycling code is a negative

• Can introduce performance problems if code not well understood

• Increased use of a transaction
can expose underlying issues

40

Choose the Right Verbs

• Misuse of MQPUT1

• MQPUT1 combines an MQOPEN, MQPUT and MQCLOSE
into one verb

• Typically used for the reply messages on request/reply
processing

• More efficient if just putting one message

• Substantial performance impact if putting multiple messages
to the same queue

21

41

Effect of MQPUT1

• Each MQPUT1:

• 117 ųs CPU, for a total 351,000 ųs

• 121 ųs Elapsed time, for a total of
363,000

• Each MQPUT:

• 72 ųs CPU, for a total of 216,000 ųs

• 74 ųs Elapsed time, for a total of 222,000 ųs

42

Effect of MQPUT1 - Notes

• Remember that both elapsed time and CPU time reported
in this section of the MQ116S report is the average time,
not the total time.

22

43

Effect of MQPUT1

• For one PUT it is less expensive to use an MQPUT1

• MQPUT1 - 117 total ųs

• MQPUT - 171 total ųs

• For two PUTs it is less expensive to use an MQOPEN,
MQPUT and MQCLOSE

• MQPUT1 - 234 total ųs

• MQPUT - 213 total ųs

• Draw your own conclusions

44

MQPUT vs MQPUT1 comparison - Notes

• In one particularly good example of this, ATS was
reviewing CPU use for a very high volume queue
manager. A single CICS transaction was issuing 7,000+
MQPUT1s to the same queue for each execution. The
transaction, once executed a few hundred times a day had
become a service. It was now being executed thousands
of times a minute.

• Like the Inquisition, no one expected the dramatic jump in
CPU.

23

45

Choice of WMQ Verbs – Pub/Sub

•Pub/sub is more expensive than point-to-point.
•However putting to multiple queues can quickly add up too.

46

Choice of WMQ Verbs – Pub/Sub - Notes

• Pub/sub, especially when implemented with a limited
number of subscribers is more expensive than point-to-
point messaging. However, when trying to ‘emulate’ a real
pub/sub scenario – that is where a point to point
application is putting messages to different targets, the
CPU costs of true pub sub are lower.

• The chart shown is from the MP1F SupportPac

• The publishing side, is only half the story. For more
complete information, see the SupportPac.

• http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24020142&loc=en_US&cs=utf-8&lang=en

24

47

Choice of WMQ Verbs – MQGET vs Async Consume

• WMQ V7 introduced the Asynchronous Consumer, the
MQCB (register) and MQCTL (start and stop the action)
verbs. These generally do not perform as well as more
traditional processing, but do have practical application.

48

Choice of WMQ Verbs – MQGET vs Async Consume
- Notes

• One particular use of the Async consume is when there
are multiple queues that need to be monitored. A single
application program cannot issue a MQGET with a wait for
multiple queues simultaneously. Async consume allows
you to do just that.

25

49

Workload Skewing

• Ideally messages are delivered evenly across a Q’plex

• That does no always happen

• Workload distribution is skewed to one or more ‘favored’
queue managers or CICS regions in some shared queue
environments.

• This can be fairly dramatic, and can impact the software
costs.

• There are usual suspects……..

50

Workload Skewing – Put to Waiting
Getter

• P2WG:

• Implemented in WMQ V6, a performance enhancement

• Out of syncpoint, nonpersistent messages are put directly to
a waiting application buffer

• No notification, no I/O, nothing

• Reduces CPU by 15-20%

• But

• If messages arrive at a queue manager that has applications
with waiting buffers, they will be processed locally

• No distribution to other consumers until saturation

26

51

Put to waiting getters

For out-of-syncpoint nonpersistent messages

• If there is a get wait for the message – then putting application moves it
directly to the get buffer, and posts the ECB. The message does not touch
the queue, true for both private and shared queues

Total CPUGet CPUPut CPU

256132124Put and get

312Total

165165Get only (drain)

147147Put only (load)

52

Other Queue Manager Performance
improvements- Put to waiting getters Notes

• For out-of-sync point non persistent messages a putting application can put a message directly
into the buffer for an application which issued a get with wait request. The ECB is then posted,
and the getting application can continue with the data.

• The message has to match, that is the msgid and correlid, and there has to be space in the
users buffer for the message.

• For other cases the messages it put onto the queue, and the ECB for the getting application is
posted. The getting application will re-issue the get request and get the message.

• The statistics for a get are collected as the request goes into and out of the queue manager.
When the optimised put/get occurs there is no call to the queue manager, so the accounting
info cannot be collected for the getter.

• Field PUT1PWG and PUTPWG in Queue Accounting for the putter is incremented.

• Note: Put to waiting getters can alter workload distribution in a shared queue environment.

• ‘Diagnostic’ APAR PK55496

• Turns off Put to Waiting Getter via service parm – contact L2.

27

53

Workload Skewing – Local Notification

• Messages destined for shared queues can benefit from
‘local notification’

• The queue manager where messages are received often
gets notification of availability before other queue managers
in the QSG

• Takes advantage of a shorter path length

54

Workload Skewing – Local Notification

• There is a way to turn this off via a service parm

28

55

Workload Skewing – Other contributors

• CF ‘Favoritism’

• Skewing may be the result of faster links or proximity to the
CF hosting the structures

• Observed a 40% skew at one customer

• Asymmetrical Sysplex

• One or more LPARs are on a more powerful engine

• WLM influence

• More transaction instances

56

Workload Skewing – Other contributors

29

57

More information

• Performance is a huge topic, we have only scratched the surface.

There is a lot more investigation that can be done, and more

information being published regularly.

• There are a number of SupportPacs available:

• MP16 - Capacity Planning and Tuning for WebSphere MQ for z/OS

• MP1H - Performance Report - WebSphere MQ for z/OS V7.1

• MP1G - Performance Report - WebSphere MQ for z/OS V7.0.1

• MP1F – Performance Report - WebSphere MQ for z/OS V7.0.0

• MP1B - Interpreting accounting and statistics data WebSphere MQ

for z/OS

• Coming soon (we sincerely hope at any rate!)

• Updates to MP16 and MP1B

58

More information

• There are a number of SupportPacs available:

• MP16 - Capacity Planning and Tuning for WebSphere MQ for
z/OS

• http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24005907&loc=en_US&cs=utf-8&lang=en

• MP1G - Performance Report - WebSphere MQ for z/OS
V7.0.1

• http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24024589&loc=en_US&cs=utf-8&lang=en

• MP1F – Performance Report - Performance Report -
WebSphere MQ for z/OS V7.0.0

• http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24020142&loc=en_US&cs=utf-8&lang=en

• MP1B - Interpreting accounting and statistics data
WebSphere MQ for z/OS

• http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24007421&loc=en_US&cs=utf-8&lang=en

30

59

Spreading the message
– MQ pubsub

MQ Q-Box - Open
Microphone to ask the
experts questions

For your eyes only -
WebSphere MQ
Advanced Message
Security

06:00

Shared Q using Shared
Message Data Sets

Diagnosing problems
for MQ

What the **** is going
on in my Queue
Manager!?

The MQ API for
Dummies - the
Basics

04:30

The Do’s and Don’ts of
z/OS Queue Manager
Performance

Under the hood of
Message Broker on
z/OS - WLM, SMF and
more

What's new in Message
Broker V8.0

First steps with
WebSphere Message
Broker: Application
integration for the
messy

03:00

MQ Performance and
Tuning on distributed
including internals

Extending IBM
WebSphere MQ and
WebSphere Message
Broker to the Cloud

What’s new in the
WebSphere MQ
Product Family

WebSphere MQ 101:
Introduction to the
world's leading
messaging provider

01:30

The Doctor is In and
Lots of Help with the
MQ family - Hands-on
Lab

Putting the web into
WebSphere MQ: A look
at Web 2.0
technologies

Highly Available
Messaging - Rock
solid MQ

12:15

Using IBM WebSphere
Application Server and
IBM WebSphere MQ
Together

Lock it down -
WebSphere MQ
Security

Diagnosing problems
for Message Broker

11:00

They Came from
Across the Pond:
Performance
Programming for
CICS with WMQ

The Dark Side of
Monitoring MQ - SMF
115 and 116 record
reading and
interpretation

MQ on z/OS
– vivisection

Clustering – the
easier way to
connect your Queue
Managers

09:30

Free MQ! - MQ Clients
and what you can do
with them

08:00

FridayThursdayWednesdayTuesdayMonday

……

60

